EDF Scheduling for Identical Multiprocessor Systems

Size: px
Start display at page:

Download "EDF Scheduling for Identical Multiprocessor Systems"

Transcription

1 EDF Schedulng for dentcal Multprocessor Systems Maro Bertogna Unversty of Modena, taly

2 As Moore s law goes on Number of transstor/chp doubles every 18 to 24 mm

3 heatng becomes a problem Power densty (W/cm 2 ) Pentum P1 P Pentum Tejas cancelled! P3 P4 Nuclear Reactor STOP!!! Hot-plate Power 0, Year P V f: Cloc speed lmted to less than 4 GHz

4 Technology trends Reduced gate szes Hgher frequences allowed Larger number of transstors BUT Physcal lmts of semconductor-based mcroelectroncs Larger dynamc power consumed Leaage current becomes mportant Hgher densty of transstors

5 ntel s tmelne Year Processor Manufacturng Number of Frequency Technology transstors µm 108 Hz µm 800 Hz µm 2 MHz µm 5 MHz µm 5 MHz ,5 µm 6 MHz ,5 µm 16 MHz µm 25 MHz Pentum 0,8 µm 66 MHz Pentum Pro 0,6 µm 200 MHz Pentum 0,25 µm 300 MHz Pentum 0,18 µm 500 MHz Pentum 4 0,18 µm 1,5 GHz Pentum M 90 nm 1,7 GHz Pentum D 65 nm 3,2 GHz Core 2 Duo 65 nm 2,93 GHz Core 2 Quad 65 nm 2,66 GHz Core 2 Quad X 45 nm 3 GHz Core 3, 5, 7 32 nm 3,33 GHz Core 5, 7 22 nm 3,4 GHz ? 16nm?

6 Power, frequency and voltage P = A C V 2 f + V lea Dynamc power Statc power (mportant below 100nm) There s no way out for classc frequency scalng on sngle cores systems!

7 Keepng Moore s law alve Explot the mmense number of transstors n other ways Reduce gate szes mantanng the frequency suffcently low Use a hgher number of slower logc gates n other words: Swtch to Multcore Systems!

8 How many cores n the future? Patterson & Hennessy: number of cores wll double every 18 months, whle power, cloc frequency and costs wll reman constant More lely to be applcaton dependent Many trade-offs Technology lmts Transstor densty Amdahl s law

9 Amdahl s law The total speedup that can be obtaned ncreasng the number of processors s Parallel porton of applcaton Number of processors/cores

10 Amdahl s law The total speedup that can be obtaned ncreasng the number of processors s n practce, performance/prce falls rapdly as Ns ncreased, even wth a small (1 P) E.g.: P = 90% (1 P) = 10% speedup < 10

11 Amdahl s law

12 Consequences Parallel computng s lely to be useful for Small/medum number of processors, or Embarrassngly parallel problems(p 1) Large number of parallel tass wth no dependences E.g., brute-force search n cryptography, 3D projecton, GPU handled problems, etc. 1 4 GHz = 2 2 GHz Memory, bus and /O bottlenecs mpose further constrants

13 Real-tme schedulablty on dentcal multprocessor systems

14 System model Platform wth m dentcal processors Tas set τwth nndependent sporadctass τ Perod or mnmum nter-arrval tme T Worst-case executon tme C Deadlne D Utlzaton U =C /T, densty λ =C /mn(d,t )

15 Possble problems Feasblty problem Run-tme schedulng problem Schedulablty problem τ 3 τ 1 τ 2? CPU1 CPU2 τ 5 τ 4 CPU3 w.r.t. a gven tas model

16 Unprocessor RT Systems Sold theory (startng from the 70s) Optmal schedulers Tght schedulablty tests for dfferent tas models Shared resource protocols Bandwdth reservaton schemes Herarchcal schedulers RTOS support

17 Sngle processor EDF Optmal f a set of jobs s feasble, than t can be successfully scheduled wth EDF Bounded number of preemptons Effcent mplementatons Exact feasblty condtons Lnear test for mplct deadlnes: U tot 1 Pseudo-polynomal test for constraned and arbtrary deadlnes [Baruah et al. 90]

18 Mulprocessors are dffcult The smple fact that a tas can use only one processor even when several processors are free at the same tme adds a surprsng amount of dffculty to the schedulng of multple processors [Lu 69] CPU1 CPU2 CPU3

19 Multprocessor RT Systems Many NP-hard problems Few optmalty results Heurstc approaches Smplfed tas models Only suffcent schedulablty tests Lmted RTOS support

20 Global vs parttoned schedulng Sngle system-wde queue nstead of multple per-processor queues: Global schedulng Parttoned approach CPU1 τ 1 τ 5 τ 4 τ 1 CPU1 τ 1 τ 5 τ 4 τ 3 τ 2 τ 1 CPU2 τ 2 τ 3 τ 2 CPU2 τ 2 CPU3 τ 3 CPU3

21 Parttoned schedulng The schedulng problem reduces to: Bn-pacng problem NP-hard n the strong sense + Unprocessor schedulng problem Well nown τ 1 τ 3 τ 5 τ 2 τ 4 Varous heurstcs used: FF, NF, BF, FFDU, BFDD, etc. EDF U tot 1 RM (RTA)...

22 Parttoned schedulablty [Lopez et al.] EDF-FF gves the best utlzaton bound among all possble parttonng methods: A refned bound, when U max s the maxmum utlzaton among all tass, s:

23 Parttoned schedulablty m

24 Global schedulng The m hghest prorty ready jobs are always scheduled Wor-conservng scheduler No processor s ever dled when a tas s ready to execute. CPU1 τ 1 τ 5 τ 4 τ 3 τ 2 τ 1 CPU2 τ 2 CPU3 τ 3

25 Global schedulng propertes Load automatcally balanced Easer re-schedulng (dynamc loads, selectve shutdown, etc.) Lower average response tme (see queueng theory) More effcent reclamng and overload management Smaller number of preemptons Mgraton cost: can be mtgated by proper HW (e.g., MPCore s Drect Data nterventon) Few schedulablty tests Further research needed o Global and parttoned approaches are ncomparable

26 Global schedulng problem Optmal algorthms (U tot m) are nown only for mplct deadlne systems: PFar (PF, PD, PD 2 ), Boundary-Far (DP-Wrap, LLREF, BF, ), EKG, RUN, U-EDF [ECRTS 12] Preempton and synchronzaton ssues No optmal scheduler nown for more general tas models Classc schedulers (e.g., EDF) are not optmal Dhall s effect

27 Dhall s effect Example: mprocessors, n=m+1tass, D = T τ 1,, τ m = (1,T-1) τ m+1 = (T,T) m lght tass 1 heavy tas U tot 1 DEADLNE MSS EDF can fal at very low utlzatons T

28 Beyond mplct deadlnes No optmal algorthm s nown for constraned or arbtrary deadlne systems No optmal on-lnealgorthm s possble for arbtrary collecton of jobs [Leung and Whtehead] Optmal algorthms for sporadc tas system wth constraned deadlnesrequre clarvoyance[fsher et al 09]

29 Global EDF schedulng Smplemplementaton ntutve prorty assgnment Reduced schedulng overhead Small number of preemptons/mgratons Bounded tardness(as long as U tot m) Good performance on average Many suffcentschedulablty tests But most of them are far from tghtness Exact tests are ntractable

30 Global EDF: man results Many suffcent schedulablty tests: GFB (RTSJ 01) BAK (RTSS 03 TPDS 05) BAR (RTSS 07) LOAD (ECRTS 07,ECRTS 08,RTSJ 08 RTSJ 09) BCL (ECRTS 05 TPDS 09) RTA (RTSS 07) FF-DBF (ECRTS 09) Most tests are ncomparable

31 Crtcal nstant A partcular confguraton of releases that leads to the largest possble response tme of a tas. Possble to derve exact schedulablty tests analyzng just the crtcal nstant stuaton. Unprocessor FP and EDF: a crtcal nstant s when all tass arrve synchronously all jobs are released as soon as permtted

32 Multprocessor anomaly Synchronous perodc arrval of tass s not a crtcal nstant for multprocessors: τ 1 = (1,1,2) τ 2 = (1,1,3) τ 3 = (5,6,6) Synchronous Second job perodc of τ 2 delayed stuaton by one unt from [Bar07] Need to fnd pessmstc stuatons to derve suffcent schedulablty tests

33 Problem wndow L Frst mssed deadlne τ D t T C τ ε D C Carry-n

34 Adopted technques Consder the nterference on the problem job Bound the nterference wth the worload Use an upper bound on the worload Exstng schedulablty tests dffer n Problem wndow selecton: L Carry-n bound ε n the consdered wndow Amount of each contrbuton (BAK, LOAD, BCL, RTA) Number of carry-n contrbutons (BAR, LOAD) Total amount of all contrbutons (FF-DBF, GFB)

35 ntroducng the nterference = Total nterference suffered by tas τ = nterference of tas τ on tas τ CPU3 CPU2 CPU τ τ τ r r +R R ( R = ( R ) m ) 1 = C + = + ( R ) C m ( R )

36 Lmtng the nterference t s suffcent to consder at most the porton (R -C +1) of each term n the sum CPU3 CPU2 CPU1 r τ τ τ r +R ( R ) ( R ) < R C + 1 t can be proved that WCRT s gven by the fxed pont of: R C 1 + m mn( ( R ), R C + 1)

37 Boundng the nterference Exactly computng the nterference s complex Pessmstc assumptons: 1. Bound the nterference of a tas wth the worload: ( R ) W ( R 2. Use an upper bound on the worload. )

38 Boundng the worload Consder a stuaton n whch: The frst job executes as close as possble to ts deadlne Successve jobs execute as soon as possble D T ε τ where: W C C C C ( L) w ( L) = N ( L) C + ε ( L) L L + D C N ( L) = T ε ( L) = mn( C, L + D C N ( L) T ) (# jobs excluded the last one) (last job)

39 Boundng the worload Consder a stuaton n whch: The frst job executes as close as possble to ts deadlne Successve jobs execute as soon as possble D T ε τ C C C C L An upper bound on the WCRT of tas s gven by the fxed pont of R n the teraton: R C + 1 m mn( w ( R ), R C + 1)

40 nterference refnement The computed bound R can be used to mprove the nterference estmaton where: + = T C R L R L N ), ( ) ), (, mn( ), ( T R L N C R L C R L + = ε C τ L D C C C T R ), ( ), ( ), ( ) ( R L C R L N R L w L W ε + =

41 teratve schedulablty test 1. All response tmes R ntalzed to D 2. Compute response tme bound for tass 1,,n f smaller than old value update R f R > D, mar as temporarly not schedulable 3. f all tass have R D return success 4. f no response tme has been updated for tass 1,,n return fal 5. Otherwse, return to pont 2

42 Consderatons Very good performances Allows fndng the largest number of EDF schedulable tas sets for varous load dstrbutons Pseudo-polynomal complexty A smpler verson taes O(n 2 ) Fast average behavor

43 Conclusons Real-Tme systems need to deal wth the multcore revoluton Multprocessor Real-Tme systems are dffcult No crtcal nstant Optmalty often needs clarvoyance Many suffcent schedulablty tests Often far from tght condtons Exact tests are ntractable Further research s needed!

44

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

Embedded Systems. 4. Aperiodic and Periodic Tasks

Embedded Systems. 4. Aperiodic and Periodic Tasks Embedded Systems 4. Aperodc and Perodc Tasks Lothar Thele 4-1 Contents of Course 1. Embedded Systems Introducton 2. Software Introducton 7. System Components 10. Models 3. Real-Tme Models 4. Perodc/Aperodc

More information

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities Last Tme Prorty-based schedulng Statc prortes Dynamc prortes Schedulable utlzaton Rate monotonc rule: Keep utlzaton below 69% Today Response tme analyss Blockng terms Prorty nverson And solutons Release

More information

Overhead-Aware Compositional Analysis of Real-Time Systems

Overhead-Aware Compositional Analysis of Real-Time Systems Overhead-Aware ompostonal Analyss of Real-Tme Systems Lnh T.X. Phan, Meng Xu, Jaewoo Lee, nsup Lee, Oleg Sokolsky PRESE enter Department of omputer and nformaton Scence Unversty of Pennsylvana ompostonal

More information

Real-Time Operating Systems M. 11. Real-Time: Periodic Task Scheduling

Real-Time Operating Systems M. 11. Real-Time: Periodic Task Scheduling Real-Tme Operatng Systems M 11. Real-Tme: Perodc Task Schedulng Notce The course materal ncludes sldes downloaded from:! http://codex.cs.yale.edu/av/os-book/! and! (sldes by Slberschatz, Galvn, and Gagne,

More information

Fixed-Priority Multiprocessor Scheduling with Liu & Layland s Utilization Bound

Fixed-Priority Multiprocessor Scheduling with Liu & Layland s Utilization Bound Fxed-Prorty Multprocessor Schedulng wth Lu & Layland s Utlzaton Bound Nan Guan, Martn Stgge, Wang Y and Ge Yu Department of Informaton Technology, Uppsala Unversty, Sweden Department of Computer Scence

More information

Partitioned EDF Scheduling in Multicore systems with Quality of Service constraints

Partitioned EDF Scheduling in Multicore systems with Quality of Service constraints Parttoned EDF Schedulng n Multcore systems wth Qualty of Servce constrants Nadne Abdallah, Audrey Queudet, Marylne Chetto, Rafc Hage Chehade To cte ths verson: Nadne Abdallah, Audrey Queudet, Marylne Chetto,

More information

Fixed-Priority Multiprocessor Scheduling with Liu & Layland s Utilization Bound

Fixed-Priority Multiprocessor Scheduling with Liu & Layland s Utilization Bound Fxed-Prorty Multprocessor Schedulng wth Lu & Layland s Utlzaton Bound Nan Guan, Martn Stgge, Wang Y and Ge Yu Department of Informaton Technology, Uppsala Unversty, Sweden Department of Computer Scence

More information

Quantifying the Sub-optimality of Uniprocessor Fixed Priority Non-Pre-emptive Scheduling

Quantifying the Sub-optimality of Uniprocessor Fixed Priority Non-Pre-emptive Scheduling Quantfyng the Sub-optmalty of Unprocessor Fxed Prorty Non-Pre-emptve Schedulng Robert I Davs Real-Tme Systems Research Group, Department of Computer Scence, Unversty of York, York, UK robdavs@csyorkacuk

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Two Methods to Release a New Real-time Task

Two Methods to Release a New Real-time Task Two Methods to Release a New Real-tme Task Abstract Guangmng Qan 1, Xanghua Chen 2 College of Mathematcs and Computer Scence Hunan Normal Unversty Changsha, 410081, Chna qqyy@hunnu.edu.cn Gang Yao 3 Sebel

More information

Scheduling Motivation

Scheduling Motivation 76 eal-me & Embedded Systems 7 Uwe. Zmmer - he Australan Natonal Unversty 78 Motvaton n eal-me Systems Concurrency may lead to non-determnsm. Non-determnsm may make t harder to predct the tmng behavour.

More information

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions Improved Worst-Case Response-Tme Calculatons by Upper-Bound Condtons Vctor Pollex, Steffen Kollmann, Karsten Albers and Frank Slomka Ulm Unversty Insttute of Embedded Systems/Real-Tme Systems {frstname.lastname}@un-ulm.de

More information

The Schedulability Region of Two-Level Mixed-Criticality Systems based on EDF-VD

The Schedulability Region of Two-Level Mixed-Criticality Systems based on EDF-VD The Schedulablty Regon of Two-Level Mxed-Crtcalty Systems based on EDF-VD Drk Müller and Alejandro Masrur Department of Computer Scence TU Chemntz, Germany Abstract The algorthm Earlest Deadlne Frst wth

More information

Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems

Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems Unversty of Pennsylvana ScholarlyCommons Publcly Accessble Penn Dssertatons 2017 Resource-Effcent Schedulng Of Multprocessor Mxed-Crtcalty Real-Tme Systems Jaewoo Lee Unversty of Pennsylvana, jaewoo@cs.upenn.edu

More information

Schedulability Analysis of Preemptive and Nonpreemptive EDF on Partial Runtime-Reconfigurable FPGAs

Schedulability Analysis of Preemptive and Nonpreemptive EDF on Partial Runtime-Reconfigurable FPGAs Schedulablty Analyss of Preemptve and Nonpreemptve EDF on Partal Runtme-Reconfgurable FPGAs 56 NAN GUAN and QINGXU DENG Northeastern Unversty, Chna ZONGHUA GU Hong Kong Unversty of Scence and Technology,

More information

Global EDF Scheduling for Parallel Real-Time Tasks

Global EDF Scheduling for Parallel Real-Time Tasks Washngton Unversty n St. Lous Washngton Unversty Open Scholarshp Engneerng and Appled Scence Theses & Dssertatons Engneerng and Appled Scence Sprng 5-15-2014 Global EDF Schedulng for Parallel Real-Tme

More information

Quantifying the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic Tasksets with Arbitrary Deadlines

Quantifying the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic Tasksets with Arbitrary Deadlines Quantfyng the Sub-optmalty of Unprocessor Fxed Prorty Pre-emptve Schedulng for Sporadc Tasksets wth Arbtrary Deadlnes Robert Davs, Sanjoy Baruah, Thomas Rothvoss, Alan Burns To cte ths verson: Robert Davs,

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling

Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling Quantfyng the Exact Sub-Optmalty of Non-Preemptve Schedulng Robert I. Davs 1, Abhlash Thekklakattl 2, Olver Gettngs 1, Radu Dobrn 2, and Saskumar Punnekkat 2 1 Real-Tme Systems Research Group, Unversty

More information

AN EXTENDIBLE APPROACH FOR ANALYSING FIXED PRIORITY HARD REAL-TIME TASKS

AN EXTENDIBLE APPROACH FOR ANALYSING FIXED PRIORITY HARD REAL-TIME TASKS AN EXENDIBLE APPROACH FOR ANALYSING FIXED PRIORIY HARD REAL-IME ASKS K. W. ndell 1 Department of Computer Scence, Unversty of York, England YO1 5DD ABSRAC As the real-tme computng ndustry moves away from

More information

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure CPSC-663: Real-me Systems n-depth Precompute statc schedule o-lne e.g. at desgn tme: can aord expensve algorthms. Idle tmes can be used or aperodc jobs. Possble mplementaton: able-drven Schedulng table

More information

Parallel Real-Time Scheduling of DAGs

Parallel Real-Time Scheduling of DAGs Washngton Unversty n St. Lous Washngton Unversty Open Scholarshp All Computer Scence and Engneerng Research Computer Scence and Engneerng Report Number: WUCSE-013-5 013 Parallel Real-Tme Schedulng of DAGs

More information

Keynote: RTNS Getting ones priorities right

Keynote: RTNS Getting ones priorities right Keynote: RTNS 2012 Gettng ones prortes rght Robert Davs Real-Tme Systems Research Group, Unversty of York rob.davs@york.ac.uk What s ths talk about? Fxed Prorty schedulng n all ts guses Pre-emptve, non-pre-emptve,

More information

Improving the Sensitivity of Deadlines with a Specific Asynchronous Scenario for Harmonic Periodic Tasks scheduled by FP

Improving the Sensitivity of Deadlines with a Specific Asynchronous Scenario for Harmonic Periodic Tasks scheduled by FP Improvng the Senstvty of Deadlnes wth a Specfc Asynchronous Scenaro for Harmonc Perodc Tasks scheduled by FP P. Meumeu Yoms, Y. Sorel, D. de Rauglaudre AOSTE Project-team INRIA Pars-Rocquencourt Le Chesnay,

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS Shervn Haamn A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS INTRODUCTION Increasng computatons n applcatons has led to faster processng. o Use more cores n a chp

More information

Partitioned Mixed-Criticality Scheduling on Multiprocessor Platforms

Partitioned Mixed-Criticality Scheduling on Multiprocessor Platforms Parttoned Mxed-Crtcalty Schedulng on Multprocessor Platforms Chuanca Gu 1, Nan Guan 1,2, Qngxu Deng 1 and Wang Y 1,2 1 Northeastern Unversty, Chna 2 Uppsala Unversty, Sweden Abstract Schedulng mxed-crtcalty

More information

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Parametric Utilization Bounds for Fixed-Priority Multiprocessor Scheduling

Parametric Utilization Bounds for Fixed-Priority Multiprocessor Scheduling 2012 IEEE 26th Internatonal Parallel and Dstrbuted Processng Symposum Parametrc Utlzaton Bounds for Fxed-Prorty Multprocessor Schedulng Nan Guan 1,2, Martn Stgge 1, Wang Y 1,2 and Ge Yu 2 1 Uppsala Unversty,

More information

Energy and Feasibility Optimal Global Scheduling Framework on big.little platforms

Energy and Feasibility Optimal Global Scheduling Framework on big.little platforms Energy and Feasblty Optmal Global Schedulng Framework on bg.little platforms Hoon Sung Chwa, Jaebaek Seo, Hyuck Yoo Jnkyu Lee, Insk Shn Department of Computer Scence, KAIST, Republc of Korea Department

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

A Single-Machine Deteriorating Job Scheduling Problem of Minimizing the Makespan with Release Times

A Single-Machine Deteriorating Job Scheduling Problem of Minimizing the Makespan with Release Times A Sngle-Machne Deteroratng Job Schedulng Problem of Mnmzng the Makespan wth Release Tmes Wen-Chung Lee, Chn-Cha Wu, and Yu-Hsang Chung Abstract In ths paper, we study a sngle-machne deteroratng ob schedulng

More information

Real-Time Scheduling of Parallel Tasks under a General DAG Model

Real-Time Scheduling of Parallel Tasks under a General DAG Model Washngton Unversty n St. Lous Washngton Unversty Open Scholarshp All Computer Scence and Engneerng Research Computer Scence and Engneerng Report Number: WUCSE-01-14 01 Real-Tme Schedulng of Parallel Tasks

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Critical sections. Using semaphores. Using semaphores. Using semaphores. How long is blocking time? 17/10/2016. Problems caused by mutual exclusion

Critical sections. Using semaphores. Using semaphores. Using semaphores. How long is blocking time? 17/10/2016. Problems caused by mutual exclusion rtcal sectons Problems caused by mutual excluson crtcal secton wat(s) x = ; y = 5; sgnal(s) wrte global memory buffer nt x; nt y; read wat(s) a = x+; b = y+; c = x+y; crtcal secton sgnal(s) Usng semaphores

More information

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems On Energy-Optmal Voltage Schedulng for Fxed-Prorty Hard Real-Tme Systems HAN-SAEM YUN and JIHONG KIM Seoul Natonal Unversty We address the problem of energy-optmal voltage schedulng for fxed-prorty hard

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

Improving the Quality of Control of Periodic Tasks Scheduled by FP with an Asynchronous Approach

Improving the Quality of Control of Periodic Tasks Scheduled by FP with an Asynchronous Approach Improvng the Qualty of Control of Perodc Tasks Scheduled by FP wth an Asynchronous Approach P. Meumeu Yoms, L. George, Y. Sorel, D. de Rauglaudre AOSTE Project-team INRIA Pars-Rocquencourt Le Chesnay,

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Minimisation of the Average Response Time in a Cluster of Servers

Minimisation of the Average Response Time in a Cluster of Servers Mnmsaton of the Average Response Tme n a Cluster of Servers Valery Naumov Abstract: In ths paper, we consder task assgnment problem n a cluster of servers. We show that optmal statc task assgnment s tantamount

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

Optimal Scheduling Algorithms to Minimize Total Flowtime on a Two-Machine Permutation Flowshop with Limited Waiting Times and Ready Times of Jobs

Optimal Scheduling Algorithms to Minimize Total Flowtime on a Two-Machine Permutation Flowshop with Limited Waiting Times and Ready Times of Jobs Optmal Schedulng Algorthms to Mnmze Total Flowtme on a Two-Machne Permutaton Flowshop wth Lmted Watng Tmes and Ready Tmes of Jobs Seong-Woo Cho Dept. Of Busness Admnstraton, Kyongg Unversty, Suwon-s, 443-760,

More information

Two-Phase Low-Energy N-Modular Redundancy for Hard Real-Time Multi-Core Systems

Two-Phase Low-Energy N-Modular Redundancy for Hard Real-Time Multi-Core Systems 1 Two-Phase Low-Energy N-Modular Redundancy for Hard Real-Tme Mult-Core Systems Mohammad Saleh, Alreza Ejlal, and Bashr M. Al-Hashm, Fellow, IEEE Abstract Ths paper proposes an N-modular redundancy (NMR)

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Synchronization Protocols. Task Allocation Bin-Packing Heuristics: First-Fit Subtasks assigned in arbitrary order To allocate a new subtask T i,j

Synchronization Protocols. Task Allocation Bin-Packing Heuristics: First-Fit Subtasks assigned in arbitrary order To allocate a new subtask T i,j End-to-End Schedulng Framework 1. Tak allocaton: bnd tak to proceor 2. Synchronzaton protocol: enforce precedence contrant 3. Subdeadlne agnment 4. Schedulablty analy Tak Allocaton Bn-Packng eurtc: Frt-Ft

More information

Limited Preemptive Scheduling for Real-Time Systems: a Survey

Limited Preemptive Scheduling for Real-Time Systems: a Survey Lmted Preemptve Schedulng for Real-Tme Systems: a Survey Gorgo C. Buttazzo, Fellow Member, IEEE, Marko Bertogna, Senor Member, IEEE, and Gang Yao Abstract The queston whether preemptve algorthms are better

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Resource Sharing. CSCE 990: Real-Time Systems. Steve Goddard. Resources & Resource Access Control (Chapter 8 of Liu)

Resource Sharing. CSCE 990: Real-Time Systems. Steve Goddard. Resources & Resource Access Control (Chapter 8 of Liu) CSCE 990: Real-Tme Systems Resource Sharng Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtmesystems Resources & Resource Access Control (Chapter 8 of Lu) Real-Tme Systems

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Resource Reservation for Mixed Criticality Systems

Resource Reservation for Mixed Criticality Systems Resource Reservaton for Mxed Crtcalty Systems Guseppe Lpar 1, Gorgo C. Buttazzo 2 1 LSV, ENS - Cachan, France 2 Scuola Superore Sant Anna, Italy Abstract. Ths paper presents a reservaton-based approach

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

On the Scheduling of Mixed-Criticality Real-Time Task Sets

On the Scheduling of Mixed-Criticality Real-Time Task Sets On the Schedulng of Mxed-Crtcalty Real-Tme Task Sets Donso de Nz, Karthk Lakshmanan, and Ragunathan (Raj) Rajkumar Carnege Mellon Unversty, Pttsburgh, PA - 15232 Abstract The functonal consoldaton nduced

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Improvements in the configuration of Posix b scheduling

Improvements in the configuration of Posix b scheduling Improvements n the confguraton of Posx 1003.1b schedulng Matheu Grener, Ncolas Navet To cte ths verson: Matheu Grener, Ncolas Navet. Improvements n the confguraton of Posx 1003.1b schedulng. Ncolas Navet

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Handling Overload (G. Buttazzo, Hard Real-Time Systems, Ch. 9) Causes for Overload

Handling Overload (G. Buttazzo, Hard Real-Time Systems, Ch. 9) Causes for Overload PS-663: Real-Te Systes Handlng Overloads Handlng Overload (G Buttazzo, Hard Real-Te Systes, h 9) auses for Overload Bad syste desgn eg poor estaton of worst-case executon tes Sultaneous arrval of unexpected

More information

Efficient Feasibility Analysis for Real-Time Systems with EDF scheduling*

Efficient Feasibility Analysis for Real-Time Systems with EDF scheduling* Effcent Feasblty Analyss for Real-Tme Systems wth EF schedulng* Karsten Albers, Frank Slomka epartment of omputer Scence Unversty of Oldenburg Ammerländer Heerstraße 114-118 26111 Oldenburg, Germany {albers,

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs Interconnect Optmzaton for Deep-Submcron and Gga-Hertz ICs Le He http://cadlab.cs.ucla.edu/~hele UCLA Computer Scence Department Los Angeles, CA 90095 Outlne Background and overvew LR-based STIS optmzaton

More information

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006 Plannng and Schedulng to Mnmze Makespan & ardness John Hooker Carnege Mellon Unversty September 2006 he Problem Gven a set of tasks, each wth a deadlne 2 he Problem Gven a set of tasks, each wth a deadlne

More information

Using non-preemptive regions and path modification to improve schedulability of real-time traffic over priority-based NoCs

Using non-preemptive regions and path modification to improve schedulability of real-time traffic over priority-based NoCs Real-Tme Syst (2017) 53:886 915 DOI 10.1007/s11241-017-9276-5 Usng non-preemptve regons and path modfcaton to mprove schedulablty of real-tme traffc over prorty-based NoCs Meng Lu 1 Matthas Becker 1 Mors

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

MILP-based Deadline Assignment for End-to-End Flows in Distributed Real-Time Systems

MILP-based Deadline Assignment for End-to-End Flows in Distributed Real-Time Systems MILP-based Deadlne Assgnment for End-to-End Flows n Dstrbuted Real-Tme Systems Bo Peng Department of Computer Scence Wayne State Unversty Detrot, Mchgan, USA et7889@wayne.edu Nathan Fsher Department of

More information

Equilibrium Analysis of the M/G/1 Queue

Equilibrium Analysis of the M/G/1 Queue Eulbrum nalyss of the M/G/ Queue Copyrght, Sanay K. ose. Mean nalyss usng Resdual Lfe rguments Secton 3.. nalyss usng an Imbedded Marov Chan pproach Secton 3. 3. Method of Supplementary Varables done later!

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning Asa and South Pacfc Desgn Automaton Conference 2008 Varablty-Drven Module Selecton wth Jont Desgn Tme Optmzaton and Post-Slcon Tunng Feng Wang, Xaoxa Wu, Yuan Xe The Pennsylvana State Unversty Department

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Coarse-Grain MTCMOS Sleep

Coarse-Grain MTCMOS Sleep Coarse-Gran MTCMOS Sleep Transstor Szng Usng Delay Budgetng Ehsan Pakbazna and Massoud Pedram Unversty of Southern Calforna Dept. of Electrcal Engneerng DATE-08 Munch, Germany Leakage n CMOS Technology

More information

Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks

Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks 1 Utlzaton-Based Schedulng of Flexble Mxed-Crtcalty Real-Tme Tasks Gang Chen, Nan Guan, D Lu, Qngqang He, Ka Huang, Todor Stefanov, Wang Y arxv:1711.00100v1 [cs.dc] 29 Sep 2017 Abstract Mxed-crtcalty models

More information

O-line Temporary Tasks Assignment. Abstract. In this paper we consider the temporary tasks assignment

O-line Temporary Tasks Assignment. Abstract. In this paper we consider the temporary tasks assignment O-lne Temporary Tasks Assgnment Yoss Azar and Oded Regev Dept. of Computer Scence, Tel-Avv Unversty, Tel-Avv, 69978, Israel. azar@math.tau.ac.l??? Dept. of Computer Scence, Tel-Avv Unversty, Tel-Avv, 69978,

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Primal Dual Gives Almost Optimal Energy Efficient Online Algorithms

Primal Dual Gives Almost Optimal Energy Efficient Online Algorithms Prmal Dual Gves Almost Optmal Energy Effcent Onlne Algorthms Nkhl R. Devanur Zhy Huang Abstract We consder the problem of onlne schedulng of obs on unrelated machnes wth dynamc speed scalng to mnmze the

More information

Energy-Efficient Scheduling Fixed-Priority tasks with Preemption Thresholds on Variable Voltage Processors

Energy-Efficient Scheduling Fixed-Priority tasks with Preemption Thresholds on Variable Voltage Processors Energy-Effcent Schedulng Fxed-Prorty tasks wth Preempton Thresholds on Varable Voltage Processors XaoChuan He, Yan Ja Insttute of Network Technology and Informaton Securty School of Computer Scence Natonal

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Optimal Static Partition Configuration in ARINC653 System

Optimal Static Partition Configuration in ARINC653 System JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 9, NO. 4, DECEMBER 7 Optmal Statc rtton Confguraton n ARINC6 System Sheng-Ln Gu, Le Luo, Sen-Sen Tang, and Yang Meng Abstract ARINC6 systems, whch have

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Finding the Longest Similar Subsequence of Thumbprints for Intrusion Detection

Finding the Longest Similar Subsequence of Thumbprints for Intrusion Detection Fndng the Longest Smlar Subsequence of Thumbprnts for Intruson Detecton Mng D. Wan, Shou-Hsuan Stephen Huang, and Janhua Yang Department of Computer Scence, Unversty of Houston Houston, Texas, 77204, USA

More information

Intra-Domain Traffic Engineering

Intra-Domain Traffic Engineering Intra-Doman Traffc Engneerng Traffc Engneerng (TE) MPLS and traffc engneerng (wll go over very brefly) traffc engneerng as networ-wde optmzaton problem TE through ln weght assgnments Traffc Matrx Estmaton

More information

Mixed-criticality Scheduling with Memory Bandwidth Regulation

Mixed-criticality Scheduling with Memory Bandwidth Regulation Mxed-crtcalty Schedulng wth Memory Bandwdth Regulaton Muhammad Al Awan, Pedro F. Souto, Konstantnos Bletsas, Benny Akesson, Eduardo Tovar CISTER/INESC-TEC and ISEP/IPP, Porto, Portugal Unversty of Porto,

More information

Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption

Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption Real-Tme Syst (2009) 42: 63 119 DOI 10.1007/s11241-009-9071-z Worst-case response tme analyss of real-tme tasks under fxed-prorty schedulng wth deferred preempton Render J. Brl Johan J. Lukken Wm F.J.

More information