LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION

Size: px
Start display at page:

Download "LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION"

Transcription

1 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp LIE SYMMETRY GROUP OF (+1)-DIMENSIONAL JAULENT-MIODEK EQUATION by Hong-Ci MA *, Ai-Ping DENG, nd Yo-Dong YU Deprtment of Applied Mthemtics, Donghu University, Shnghi, Chin Originl scientific pper DOI: 10.98/TSCI10557M In this pper, we consider system of (+1)-dimensionl non-liner model by using uxiliry eqution method nd Clrkson-Kruskl direct method which is very importnt in fluid nd physics. We construct some new exct solutions of (+1)-dimensionl non-liner models with the id of symbolic computtion which cn illustrte some ctions in fluid in the future. Key words: symmetry, exct trveling wve solutions, Julent-Miodek eqution, Clrkson-Kruskl direct method Introduction Non-liner evolution eqution plys n importnt role in pplied mthemtics nd physics. In recent yers, vrious effective methods hve been developed to find the exct solutions of non-liner prtil differentil equtions. These methods include tnh function method [1], generlized hyperbolic function method [], homogeneous blnce method [], Jcobi elliptic function expnsion method [], exponentil function method [5], uxiliry eqution method [6], Clrkson Kruskl (CK) direct method [7, 8] nd so on. The purpose of this work is to generlize the work mde in [9, 10]. We pply this method to the (+1)-dimensionl Julent-Miodek eqution which ssocites with energy-dependent Schrudinger potentil nd hs mny interesting chrcters. It is n importnt model in fluid nd physics. New exct trveling wve solutions for (+1)-dimensionl Julent-Miodek eqution In [11], Geng et l. developed some non-liner models generted by the Julent- Miodek hierrchy [1]. Wu [1] gve the N-soliton solution of the first model by using the Hirot biliner method. Liu et l. [1] discussed the bifurction nd exct trvelling wve solutions of the third one. Wzwz [15] obtined the Multiple kink solutions nd multiple singulr kink solutions of the third model. We hve studied the second model in [16] nd obtined the multiple kink solutions. In this pper, we shll discuss the following (+1)-dimensionl Julent-Miodek eqution: wt = ( wxx w ) x x wyy + wx x wy (1) By substituting w = u x into (1), we cn omit the integrl term in eq. (1): * Corresponding uthor; e-mil: hongcim@hotmil.com

2 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek 158 THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp uxt + uxxxx uxuxx + uyy + uxxuy () 16 To seek the trvelling wve solution of eq. (), we introduce: u = U( ξ ), ξ = x+ dy+ et () where d nd e re rbitrry constnts. Substituting () into eq. () nd integrting once with respect to ξ nd setting the integrtion constnt equl to zero, one hs: ξξξ ξ ξ ξ ξ U + 16dU 8U + e U + 6U e= 0 By introducing nother trnsformtion: we cn rrive: ( ξ ) = () U ξ ξξ + 16d 8 + e + 6 e (5) Blncing the liner terms of the highest order with the non-liner terms yields the leding order m = 1. If we propose tht hs the form: ( ξ) = + z( ξ) (6) 0 1 where 0, nd 1 re constnts to be determined, nd z(ξ) express the solutions of [9, 10]: d( z ξ ) z ( ξ ) bz ( ξ) cz ( ξ) dξ = + + (7) Substituting eqs. (7) nd (6) into eq. (5) nd setting the coefficients of z i (ξ) (i, 1,, ) to zero, we obtin following set of non-liner lgebric equtions: d + e + 6e c= d + e + 1e b + 6e Solving this set of lgebric equtions with the id of Mple, we obtin: = d e, 0, b= e1, c= 1 (8) 1 1 8d e e = + + e e 18 d, 0 e e 18 d, ± + = ± b = 1 e e 18 d, c 1 ± + = (9) Substituting eq. (8) with z(ξ) in [10] into eq. (6) gives the exct solution of eq. (5):

3 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp d e 1 d + e sech ξ 1( ξ ) = d e e d + e tnh ξ d e 1 d + e csch ξ ( ξ ) = d e e d + e coth ξ where ξ = x + dy + et, nd 1, d, nd e re rbitrry constnts nd d + (/)e < 0,, d + e 1 d + e sec ξ ( ξ ) = d + e e d + e tn ξ d + e 1 d + e csc ξ ( ξ ) = d + e e d + e cot ξ where ξ = x + dy + et, nd 1, d, nd e re rbitrry constnts nd d + (/)e > 0. By using eq. (), we obtin: 1 1 ln 1tnh d e U = e + e1 + 1 d e tnh d e ξ 1 ln tnh d e ξ U 1 = ln e tnh d + e + ξ 1

4 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek 1550 THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp d e tnh d e 1 ln tnh d e U ln e1 1 d e tn d e = ξ 1 U ln tg d e ln e1tn d e = d + e nd solution of eq. (1) with w = u x. Substituting eq. (9) with z(ξ) in [11] into eq. (6) yields the exct trveling wve solution of eq. (5) s the sme wy s the former cse. Symmetry group trnsformtion of the (+1)-dimensionl Julent-Miodek eqution nd its new exct solutions The ppliction of Lie theory hs been plying n importnt role since it ws demonstrted by Lie [17]. In 1989, Clrkson nd Kruskl [18] developed the CK direct method tht cn be used to find symmetry reduction. Recently, Lou nd M [19] introduced modified CK direct method to obtin symmetry trnsformtion group of given PDE. To get symmetry trnsformtion of eq. (), we suppose: u = α + βu( ξ, η, τ) (10) where α = α(x, y, t), β = β(x, y, t), ξ = ξ(x, y, t), η = η(x, y, t), τ = τ(x, y, t) re rbitrry functions of x, y, nd t to be determined by restricting U(ξ, η, τ) to stisfy the sme eqution s u under the trnsformtion {u, x, y, t} {U, ξ, η, τ}. Restrict U to stisfy the sme eqution s u, sy: 1 Uξτ + Uξξξξ UξUξξ + Uηη + UξξUη (11) 16 Substituting eq. (10) with eq. (11) into eq. () nd setting the coefficients of U nd its derivtives equl to zero, we rrive t some equtions to be determined. After some tedious clcultion, we hve: 8 τ 8 p ξ = τ x y y+ q, η = τ y+ p, β = 1, τ = τ( t) (1) 1/ tt t / t / 1/ t 9 τ t τt t τtt tτtt t τtt / 5/ / t τt t t t px xy p y 8 p y y α = τ 9 7 τ 9τ 81 τ + τttt y qt y 16 ptt y mt () (1) 1/ / 81 τ τ 9 τ t t t where p = p(t), q = q(t), τ = τ(t) nd m(t) re the rbitrry function of t. By using eq. (1), we hve:

5 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp u = α + βu( ξ, η, τ) where α, β, ξ, η, re τ re determined by eq. (1) nd (1). We lso get the symmetry: σ ( U) = y ftt nt y+ h+ ft xux + n+ yft Uy + fut + s ftt xy y f xn yh + y n 81 9 The generl elements of Lie lgebr cn be written s: ttt t t tt = ( f) + ( h) + ( n) + ( s) ( f ) = y ftt + ftx + yft + f + fttxy + y fttt 9 x y t 9 81 U ( ) = x h h yh t U 8 16 ( n) = nty + n + xnt + y ntt x y 9 U () s s = U To our knowledge, the symmetry groups of eq. () hve not been studied in literture. Summry We hve presented the uxiliry eqution method nd Lie symmetry trnsformtion to construct more generl exct solutions of NLPDE with the id of Mple. We hve successfully obtined mny new exct trveling wve solutions which my be useful for describing certin non-liner physicl phenomen in fluid. It is shown tht the lgorithm cn be lso pplied to other NLPDE in mthemticl physics. Hence, the further study is needed. Acknowledgments The work is supported by the Ntionl Nturl Science Foundtion of Chin (project No ), the Fund of Science nd Technology Commission of Shnghi Municiplity (project No. ZX ) nd the Fundmentl Reserch Funds for the Centrl Universities. References [1] Prkes, E. J., Duffy, B. R., An Automted Tnh-Function Method for Finding Solitry Wve Solutions to Non-Liner Evolution Equtions, Computer Physics Communictions, 98 (1996),, pp [] Go, Y. T., Tin, B., Generlized Hyperbolic-Function Method with Computerized Symbolic Computtion to Construct the Solitonic Solutions to Non-liner Equtions of Mthemticl Physics, Computer Physics Communictions, 1 (001),, pp [] Wng, M. L., et l., Appliction of Homogeneous Blnce Method to Exct Solutions of Non-liner Equtions in Mthemticl Physics, Physics Letters A, 16 (1996), 1, pp

6 M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek 155 THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp [] Liu, S., et l., Jcobi Elliptic Function Expnsion Method nd Periodic Wve Solutions of Non-liner Wve Equtions, Physics Letters A, 89 (001), 1, pp [5] He, J.-H., Wu, X.-H., Exp-Function Method for Non-liner Wve Equtions, Chos, Solitons & Frctls, 0 (006),, pp [6] Sirendoreji, New Exct Trvelling Wve Solutions for the Kwhr nd Modified Kwhr Equtions, Chos, Solitons & Frctls, 19 (00), 1, pp [7] M, H. C., Generting Lie Point Symmetry Groups of (+1)-Dimensionl Broer-Kup Eqution vi Simple Direct Method, Communictions in Theoreticl Physics, (005), 6, pp [8] M, H. C., et l., Lie Symmetry Groups of (+1)-Dimensionl BKP Eqution nd Its New Solutions, Communictions in Theoreticl Physics, 50 (008),, pp [9] Sirendoreji, Sun, J., Auxiliry Eqution Method for Solving Non-liner Prtil Differentil Equtions, Physics Letters A, 09 (00), 5, pp [10] M, H. C., et l., The Auxiliry Eqution Method for Solving the Zkhrov-Kuznetsov (ZK) Eqution, Computers & Mthemtics with Applictions, 58 (009), 11, pp [11] Geng, X. G., et l., Qusi-Periodic Solutions for Some (+1)-Dimensionl Integrble Models Generted by the Julent-Miodek Hierrchy, Journl of Physics A: Mthemticl nd Generl, (001), 5, pp [1] Julent, M., Miodek, I., Non-liner Evolution Equtions Associted with Energy-Dependent Schrodinger Potentils, Letters in Mthemticl Physics, 1 (1976),, pp. -50 [1] Wu, J., N-Soliton Solution, Generlized Double Wronskin Determinnt Solution nd Rtionl Solution for (+1)-Dimensionl Non-liner Evolution Eqution, Physics Letters A, 7 (008), 1, pp [1] Liu, H., Yn, F., The Bifurction nd Exct Trvelling Wve Solutions for (+1)-Dimensionl Nonliner Models Generted by the Julent-Miodek Hierrchy, Interntionl Journl of Non-liner Science, 11 (011), 1, pp [15] Wzwz, A. M., Multiple Kink Solutions nd Multiple Singulr Kink Solutions for (+1)-Dimensionl Non-liner Models Generted by the Julent Miodek Hierrchy, Physics Letters A, 7 (009), 1, pp [16] Lie, S., Lectures on Differentil Equtions with Known Infinitesiml Trnsformtions, Teubner, Leipzig, Germny, 1891 [17] Clrkson, P. A., Kruskl, M. D., New Similrity Reductions of the Boussinesq Eqution, Journl of Mthemticl Physics, 0 (1989), 10, pp [18] Lou, S., M, H. C., Non-Lie Symmetry Groups of (+1)-Dimensionl Non-liner Systems Obtined From Simple Direct Method, Journl of Physics A: Mthemticl nd Generl, 8 (005), 7, pp. L19-L17 [19] M, H. C., et l., Symmetry Trnsformtion nd New Exct Multiple Kink nd Singulr Kink Solutions for (+1)-Dimensionl Non-liner Models Generted by the Julent-Miodek Hierrchy, Communictions in Theoreticl Physics, 59 (01),, pp Pper submitted: Mrch 10, 01 Pper revised: April 0, 01 Pper ccepted: July 1, 01

New exact travelling wave solutions of bidirectional wave equations

New exact travelling wave solutions of bidirectional wave equations Shirz University of Technology From the SelectedWorks of Hbiboll Ltifizdeh June, 0 New exct trvelling wve solutions of bidirectionl wve equtions Hbiboll Ltifizdeh, Shirz University of Technology Avilble

More information

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient * Interntionl Mthemticl Forum, 4, 9, no., 7-3 Appliction of Exp-Function Method to Huxley Eqution with Vrible Coefficient * Li Yo, Lin Wng nd Xin-Wei Zhou. Deprtment of Mthemtics, Kunming College Kunming,Yunnn,

More information

Application of Kudryashov method for the Ito equations

Application of Kudryashov method for the Ito equations Avilble t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 12, Issue 1 June 2017, pp. 136 142 Applictions nd Applied Mthemtics: An Interntionl Journl AAM Appliction of Kudryshov method for the Ito

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

Solving the (3+1)-dimensional potential YTSF equation with Exp-function method

Solving the (3+1)-dimensional potential YTSF equation with Exp-function method Journl of Physics: Conference Series Solving the (3+-dimensionl potentil YTSF eqution with Exp-function method To cite this rticle: Y-P Wng 8 J. Phys.: Conf. Ser. 96 86 View the rticle online for updtes

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Research Article On Compact and Noncompact Structures for the Improved Boussinesq Water Equations

Research Article On Compact and Noncompact Structures for the Improved Boussinesq Water Equations Mthemticl Problems in Engineering Volume 2013 Article ID 540836 6 pges http://dx.doi.org/10.1155/2013/540836 Reserch Article On Compct nd Noncompct Structures for the Improved Boussinesq Wter Equtions

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation Interntionl Jornl of Mthemticl Anlysis nd Applictions ; (): 9-9 Plished online Mrch, (http://www.scit.org/jornl/ijm) Extended tn-cot method for the solitons soltions to the (+)-dimensionl Kdomtsev-Petvishvili

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Fractional Riccati Equation Rational Expansion Method For Fractional Differential Equations

Fractional Riccati Equation Rational Expansion Method For Fractional Differential Equations Appl. Mth. Inf. Sci. 7 No. 4 1575-1584 (2013) 1575 Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dx.doi.org/10.12785/mis/070443 Frctionl Riccti Eqution Rtionl Expnsion Method For

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

Undergraduate Research

Undergraduate Research Undergrdute Reserch A Trigonometric Simpson s Rule By Ctherine Cusimno Kirby nd Sony Stnley Biogrphicl Sketch Ctherine Cusimno Kirby is the dughter of Donn nd Sm Cusimno. Originlly from Vestvi Hills, Albm,

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

SCIFED. Publishers. Keywords Antibodies; Richards Equation; Soil Moisture;

SCIFED. Publishers. Keywords Antibodies; Richards Equation; Soil Moisture; Reserch Article SCIFED Publishers Bin Zho,, 7, : SciFed Journl of Applied Microbiology Open Access Bio mthemticl Modeling on the Assocition between Presence of Antibodies nd Soil Wter Physicochemicl Properties

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel Int. J. Contemp. Mth. Sciences, Vol. 6, 2011, no. 11, 535-543 Solution to Fredholm Fuzzy Integrl Equtions with Degenerte Kernel M. M. Shmivnd, A. Shhsvrn nd S. M. Tri Fculty of Science, Islmic Azd University

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 6, 2012, no. 26, 1267-1273 A Modified ADM for Solving Systems of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi nd T. Dmercheli Deprtment of Mthemtics,

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı Mthemticl nd Computtionl Applictions, Vol., No., pp. 37-5, 5 http://dx.doi.org/.99/mc-5- SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD Mehmet Pkdemirli nd Gözde

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION

SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 3, Number 3/, pp. 5 4 SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION Ghodrt EBADI, A. H. KARA,

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing Applied Mthemtics E-Notes 8(8) - c IN 67-5 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ Trvelling Profile olutions For Nonliner Degenerte Prbolic Eqution And Contour Enhncement In Imge

More information

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) = Norwegin University of Science nd Technology Deprtment of Mthemticl Sciences Pge 1 of 5 Contct during the exm: Elen Celledoni, tlf. 73593541, cell phone 48238584 PLESE NOTE: this solution is for the students

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

An improvement to the homotopy perturbation method for solving integro-differential equations

An improvement to the homotopy perturbation method for solving integro-differential equations Avilble online t http://ijimsrbiucir Int J Industril Mthemtics (ISSN 28-5621) Vol 4, No 4, Yer 212 Article ID IJIM-241, 12 pges Reserch Article An improvement to the homotopy perturbtion method for solving

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL Electronic Journl of Differentil Equtions, Vol. 2018 (2018, No. 36, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS

More information

APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL

APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL ROMAI J, 4, 228, 73 8 APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL Adelin Georgescu, Petre Băzăvn, Mihel Sterpu Acdemy of Romnin Scientists, Buchrest Deprtment of Mthemtics nd Computer Science, University

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES Filomt 27:4 (2013) 649 658 DOI 10.2298/FIL1304649M Published by Fculty of Sciences nd Mthemtics University of Niš Serbi Avilble t: http://www.pmf.ni.c.rs/filomt CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED

More information

Mathematic Model of Green Function with Two-Dimensional Free Water Surface *

Mathematic Model of Green Function with Two-Dimensional Free Water Surface * Applied Mthemtics, 23, 4, 75-79 http://d.doi.org/.4236/m.23.48a Published Online August 23 (http://www.scirp.org/journl/m) Mthemtic Model of Green Function with Two-Dimensionl Free Wter Surfce * Sujing

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry

More information

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

More information

Remark on boundary value problems arising in Ginzburg-Landau theory

Remark on boundary value problems arising in Ginzburg-Landau theory Remrk on boundry vlue problems rising in Ginzburg-Lndu theory ANITA KIRICHUKA Dugvpils University Vienibs Street 13, LV-541 Dugvpils LATVIA nit.kiricuk@du.lv FELIX SADYRBAEV University of Ltvi Institute

More information

GENERALIZED ABSTRACTED MEAN VALUES

GENERALIZED ABSTRACTED MEAN VALUES GENERALIZED ABSTRACTED MEAN VALUES FENG QI Abstrct. In this rticle, the uthor introduces the generlized bstrcted men vlues which etend the concepts of most mens with two vribles, nd reserches their bsic

More information

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 2, 28, no. 2, 57-62 On the Decomposition Method for System of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi 1 nd M. Mokhtri Deprtment of Mthemtics, Shhr-e-Rey

More information

Research Article Moment Inequalities and Complete Moment Convergence

Research Article Moment Inequalities and Complete Moment Convergence Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 2009, Article ID 271265, 14 pges doi:10.1155/2009/271265 Reserch Article Moment Inequlities nd Complete Moment Convergence Soo Hk

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Chpter 6 Lecture Notes Review nd Two New Sections Sprint 17 Net Distnce nd Totl Distnce Trvelled Suppose s is the position of prticle t time t for t [, b]. Then v dt = s (t) dt = s(b) s(). s(b) s() is

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 9811 015, 43 49 DOI: 10.98/PIM15019019H ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We estblish soe uniqueness results ner 0 for ordinry differentil equtions of the

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 920 926 ON THE UNUSUAL FUČÍK SPECTRUM Ntlij Sergejev Deprtment of Mthemtics nd Nturl Sciences Prdes 1 LV-5400

More information

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Fourier Series and Their Applications

Fourier Series and Their Applications Fourier Series nd Their Applictions Rui iu My, 006 Abstrct Fourier series re of gret importnce in both theoreticl nd pplied mthemtics. For orthonorml fmilies of complex vlued functions {φ n}, Fourier Series

More information

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications Applied Mthemticl Sciences, Vol. 8, 04, no. 38, 889-90 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ms.04.4 A Generlized Inequlity of Ostrowski Type for Twice Differentile Bounded Mppings nd Applictions

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Research Article Mixed Initial-Boundary Value Problem for Telegraph Equation in Domain with Variable Borders

Research Article Mixed Initial-Boundary Value Problem for Telegraph Equation in Domain with Variable Borders Advnces in Mthemticl Physics Volume 212, Article ID 83112, 17 pges doi:1.1155/212/83112 Reserch Article Mixed Initil-Boundry Vlue Problem for Telegrph Eqution in Domin with Vrible Borders V. A. Ostpenko

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1) TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

More information

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions Geometriclly Convex Function nd Estimtion of Reminder Terms in Tylor Series Expnsion of some Functions Xioming Zhng Ningguo Zheng December 21 25 Abstrct In this pper two integrl inequlities of geometriclly

More information

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12 Jordn Journl of Mthemtics nd Sttistics (JJMS) 11(1), 218, pp 1-12 HOMOTOPY REGULARIZATION METHOD TO SOLVE THE SINGULAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND MOHAMMAD ALI FARIBORZI ARAGHI (1) AND

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method Discrete Dynmics in Nture nd Society Volume 202, Article ID 57943, 0 pges doi:0.55/202/57943 Reserch Article Numericl Tretment of Singulrly Perturbed Two-Point Boundry Vlue Problems by Using Differentil

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

arxiv: v1 [math.gm] 30 Dec 2015

arxiv: v1 [math.gm] 30 Dec 2015 A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL: APPLICATION TO THE MODELLING OF THE STEADY HEAT FLOW rxiv:161.1623v1 [mth.gm] 3 Dec 215 by Xio-Jun YANG, H. M. SRIVASTAVA b,c, J. A. Tenreiro MACHADO

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journl of Differentil Equtions, Vol. 01 (01), No. 15, pp. 1. ISSN: 107-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu SUPERSTABILITY OF DIFFERENTIAL

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions THIELE CENTRE for pplied mthemtics in nturl science Liner stochstic differentil equtions with nticipting initil conditions Nrjess Khlif, Hui-Hsiung Kuo, Hbib Ouerdine nd Benedykt Szozd Reserch Report No.

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders Open Journl of Applied Sciences, 7, 7, 57-7 http://www.scirp.org/journl/ojpps ISSN Online: 65-395 ISSN Print: 65-397 Numericl Solutions for Qudrtic Integro-Differentil Equtions of Frctionl Orders Ftheh

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pn.pl/ tzielins/ Tble of Contents 1 Introduction 1 1.1 Motivtion nd generl concepts.............

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System Pure nd Applied Mthemtics Journl 017; 6(1): 5-13 http://www.sciencepublishinggroup.com/j/pmj doi: 10.11648/j.pmj.0170601.1 ISSN: 36-9790 (Print); ISSN: 36-981 (Online) Liner nd Non-liner Feedbck Control

More information

Research Article Improved (G /G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations

Research Article Improved (G /G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations Abstrct nd Applied Anlysis Volume 213, Article ID 414353, 7 pges http://dx.doi.org/1.1155/213/414353 Reserch Article Improved (G /G)-Expnsion Method for the Spce nd Time Frctionl Fom Dringe nd KdV Equtions

More information

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation Americn Journl of Engineering Reserch (AJER) 13 Americn Journl of Engineering Reserch (AJER) e-issn : 3-847 p-issn : 3-936 Volume-, Issue-1, pp-388-393 www.jer.org Reserch Pper Open Access A Brief Note

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information