(Generalized) Polynomial Chaos representation

Size: px
Start display at page:

Download "(Generalized) Polynomial Chaos representation"

Transcription

1 (Generalized) Polynomial Chaos representation Didier Lucor Laboratoire de Modélisation en Mécanique UPMC Paris VI

2 Outline Context & Motivation Polynomial Chaos and generalized Polynomial Chaos Expansions Limitations & Difficulties of the method Possible applications

3 Interaction of model and data Roger Ghanem (University of Southern California, USA)

4 Interaction of model and data Roger Ghanem (University of Southern California, USA)

5 Interaction of model and data Roger Ghanem (University of Southern California, USA)

6 Interaction of model and data Roger Ghanem (University of Southern California, USA)

7 Interaction of model and data Roger Ghanem (University of Southern California, USA)

8 Uncertainty Quantification (UQ) Modeling errors/uncertainties, numerical errors and data errors/uncertainties can interact. This brings the need for uncertainty quantification. Need to access the impact of uncertain data on simulation outputs. In case of the lack of a reference solution, the validity of the model can be established only if uncertainty in numerical predictions due to uncertain input parameters can be quantified. Difficulty: instead of looking for the unique solution of a single deterministic problem, one is now interested in finding and parameterizing the space of all possible solutions spanned by the uncertain parameters.

9 Sources d incertitudes Ecoulement au bord incertain (processus stochastique) paramètres/constantes de simulation, conditions d'opération paramètres structure incertains coefficients de transport, propriétés physiques géométrie conditions aux bords, conditions initiales conditions aux limites incertaines lois de comportement, schéma numériques

10 Représentation des Processus Aléatoires Méthodes statistiques (non déterministes) Monte-Carlo: convergence en 1/ N, taux de convergence ne depends pas du nombre de variables aleatoires. Monte-Carlo et ses variantes: tirages descriptifs, hypercube, optimal Latin hypercube (Latin Hypercube Sampling, Quasi-Monte Carlo [QMC] method, Markov Chain Monte Carlo method [MCMC], importance sampling, correlated sampling, conditional sampling, Variance reduction technique, Response Surface Method [RSM]). Méthodes non-statistiques (directes) Développement en séries de Taylor ou méthode des perturbations (1 er ou 2 nd ordre). Méthode itérative ou séries de Neumann et méthode d intégrale pondérée. Méthode spectrale et méthode de développements orthogonaux: Polynômes de Chaos (PC-Chaos Homogène-Chaos Hermite, Generalized Polynomial Chaos [gpc]-chaos Askey), expansion de Karhunen Loève. Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938). Ghanem & Spanos, Stochastic Finite Elements: a Spectral Approach, Springer-Verlag, (1991). Loève, Probability Theory, Fourth edition, Springer-Verlag, (1977).

11 Modélisation spectrale de l incertitude Concept: Approche probabiliste qui considère que l incertitude génère de nouvelles dimensions et que la solution dépend de ces dimensions. Représentation de la solution sous forme d expansion convergente construite grâce à une projection sur une base spectrale; les coefficients sont calculés par le biais de projections. Avantages: Mesure efficace de la sensibilité de la solution aux paramètres d'entrée incertains Obtention d une forme explicite de la solution + moments + PDF Applications: Mécanique des structures élastiques stochastiques, écoulement en milieu poreux, équations de Navier-Stokes, problèmes thermiques, combustion et fluides réactifs, séismologie, micro-fluides et électrochimie.

12 Polynômes de Chaos (Wiener 1938) Soit l espace probabilisé: (Ω, A, P) Event space asure. σ-algebra of Ω Probability measure polyno X(ω) he eve X : Ω V peut s exprimer en fonction de Theoreme de Cameron & Martin (1947): PC-homogène converge pour toute fonctionnelle de L2 E X 2 = E(X, X) < EY = Y (ω)dp (ω). ω Ω Processus stochastique du second ordre si: nd-order sto rametri X(ω) = a 0 Φ i 1 =1 i 1 =1 +, {ξ j (ω)} N j=1 i 1 i 2 =1 i 1 i 2 =1 Y L 1 (Ω, R) i 1 =1 avec a i1 Φ 1 (ξ i1 (ω)) a i1 i 2 Φ 2 (ξ i1 (ω), ξ i2 (ω)) i 2 i 3 =1 ω Ω: et chas- N a i1 i 2 i 3 Φ 3 (ξ i1 (ω), ξ i2 (ω), ξ i3 (ω)) tic N,

13 Polynômes de Chaos (continued) X(ω) = a k Φ k (ξ(ω)) k=0 Spectral expansion on orthogonal (in the mean sense <Φi,Φj >=0 if i j) Hermite polynomial basis Φk. ξ is here a random array of independent Gaussian random variables of the random event ω. Once computed, the knowledge of the coefficients ak fully determines the random process X(ω). This concept can be generalized to other non-normal measures.

14 Polynômes de Chaos (truncated form) M X(x, t, ξ) = X(x, t, ξ 1, ξ 2,... ξ N ) X j (x, t)φ j (ξ) j=0 (M + 1) = (N + P )!/(N!P!) ν = {Φ j, j = 0,..., M} is the set of vectors spanning the process and the orthogonal basis Φj is a set of polynomials with degree at most equal to P. The orthogonality relation gives: < Φ i (ξ), Φ j (ξ) >= with the inner product f(ξ)g(ξ) = defined as: Φ i (ξ)φ j (ξ)dξ = 0 if i j ω Ω f(ξ)g(ξ)dp (ω) = f(ξ)g(ξ)w(ξ)dξ

15 N Example of multi-dimensional homogeneous PC expansion ond-order stochases {ξ j (ω)} N j=1, N here N =2 Here {Φ j (ξ(ω))} are orthog ξ := {ξ j (ω)} N j=1, = satisfying {ξ 1, ξ 2 } The weight function is: w(ξ 1, ξ 2 ) = 1 2 2π exp ξ 1 /2 exp ξ2 2 /2 Zero & 1 st order Hermite polynomials (2.1) Ψ ean random vector ξ ξ Ψ 1-3 where δ ij is the Kronecker d Ψ of random variables N N ξ ξ ξ however, we need to ξ 2 retain N <, and a finite-term t 2 nd order Hermite polynomials 8 (2.2) ξ rage. The number 3-3 (2.1). In practice, Ψ ξ Ψ 4-3 The inner product in (2 Ψ the random variables ξ ξ ξ ξ 2 f(ξ)g(ξ) =

16 Example of multi-dimensional homogeneous PC expansion 3 rd order Hermite polynomials Ψ Ψ ξ ξ ξ ξ 2 Ψ 8 Ψ ξ ξ ξ ξ 2

17 Hermite-Chaos Expansion of Beta Distribution Uniform distribution : Exact PDF and PDF of 1 st, 3 rd, 5 th -order Hermite-Chaos Expansions

18 Hermite-Chaos Expansion of Gamma Distribution : exponential distribution PDF of exponential distribution and 1 st, 3 rd and 5 th -order Hermite-Chaos

19 Exponential Input: Laguerre (optimal) vs. Hermite Convergence w.r.t. number of expansion terms

20 Polynômes de Chaos (Généralisés) Représentation spectrale d un processus stochastique du second ordre: X(ω) = k=0 a k Φ k (ξ(ω)) { } ξ := {ξ j (ω)} N j=1 n est pas limité à une distribution gaussienne! Φ i Φ j = Φ 2 i δ ij produit interne: f(ξ)g(ξ) = ω Ω f(ξ)g(ξ)dp (ω) = f(ξ)g(ξ)w(ξ)dξ f(ξ)g(ξ) = ξ f(ξ)g(ξ)w(ξ)

21 Polynômes de Chaos (Généralisés) Coefficients spectraux déterministes à calculer et qui déterminent complètement le processus X(ω) = k=0 a k Φ k (ξ(ω)) { } ξ := {ξ j (ω)} N j=1 n est pas limité à une distribution gaussienne! Φ i Φ j = Φ 2 i δ ij produit interne: f(ξ)g(ξ) = ω Ω f(ξ)g(ξ)dp (ω) = f(ξ)g(ξ)w(ξ)dξ f(ξ)g(ξ) = ξ f(ξ)g(ξ)w(ξ)

22 Polynômes de Chaos (Généralisés) { } ξ := {ξ j (ω)} N j=1 X(ω) = k=0 a k Φ k (ξ(ω)) Fonctions orthogonales (trigonométriques, wavelets,... polynômes) n est pas limité à une distribution gaussienne! Φ i Φ j = Φ 2 i δ ij produit interne: f(ξ)g(ξ) = ω Ω f(ξ)g(ξ)dp (ω) = f(ξ)g(ξ)w(ξ)dξ f(ξ)g(ξ) = ξ f(ξ)g(ξ)w(ξ)

23 Polynômes de Chaos (Généralisés) Variables aléatoires indépendantes (distribution statistiques prescrites) { } ξ := {ξ j (ω)} N j=1 X(ω) = a k Φ k (ξ(ω)) k=0 n est pas limité à une distribution gaussienne! Φ i Φ j = Φ 2 i δ ij produit interne: f(ξ)g(ξ) = ω Ω f(ξ)g(ξ)dp (ω) = f(ξ)g(ξ)w(ξ)dξ f(ξ)g(ξ) = ξ f(ξ)g(ξ)w(ξ)

24 Polynômes de Chaos (Généralisés) X(ω) = k=0 a k Φ k (ξ(ω)) { } ξ := {ξ j (ω)} N j=1 n est pas limité à une distribution gaussienne! produit interne: f(ξ)g(ξ) = f(ξ)g(ξ)dp (ω) = ω Ω Etroite correspondance entre la fonction de poids du polynôme choisi et la densité de probabilité de l incertitude f(ξ)g(ξ)w(ξ)dξ f(ξ)g(ξ) = ξ f(ξ)g(ξ)w(ξ)

25 Hypergeometric Orthogonal Polynomials Generalized hypergeometric series: Pochhammer symbol: Infinite series converge under certain conditions: Examples: 0 F 0 is exponential series; 1 F 0 is binomial series. If one of the a i s is a negative integer (-n), the series terminate at n th- term and become hypergeometric orthogonal polynomials: Limit relations: e.g.

26 The Askey scheme of Hypergeometric Polynomials Askey-scheme

27 Hypergeometric Orthogonal Polynomials Orthogonal polynomials Three-term recurrence: Favard s inverse theorem Orthogonality: Weighting functions and PDFs: Continuous: Discrete:

28 Orthogonal Polynomials and Probability Distributions Continuous Cases: Hermite Polynomials Laguerre Polynomials Jacobi Polynomials Legendre Polynomials Gaussian Distribution Gamma Distribution (special case: exponential distribution) Beta Distribution Uniform Distribution Gaussian distribution Gamma distribution Beta distribution

29 Orthogonal Polynomials and Probability Distributions Discrete Cases : Charlier Polynomials Krawtchouk Polynomials Hahn Polynomials Meixner Polynomials Poisson Distribution Binomial Distribution Hypergeometric Distribution Pascal Distribution Poisson distribution Binomial distribution Hypergeometric distribution

30 Polynômes de Chaos (Résumé) X(x, t, ξ) = X(x, t, ξ 1, ξ 2,... ξ N ) M X j (x, t)φ j (ξ) j=0 (M + 1) = (N + P )!/(N!P!) avec ξ = (ξ 1,, ξ N ) T n est pas limité à une distribution gaussienne! all 1. N : dimension de l espace probabiliste de : ordre le plus élevé du polynôme P Exemple: (ξ( Moyenne: Variance: : distribution gaussienne Φ j : Polynômes d Hermite N=2; P=2 X(ω) =< X(ω) >= a 0 var(x(ω)) =< ( X(ω) X(ω) ) 2 >= P Φ 0 (ξ) = 1.0 Φ 1 (ξ) = ξ 1 Φ 2 (ξ) = ξ 2 Φ 3 (ξ) = ξ1 2 1 Φ 4 (ξ) = ξ Φ 5 (ξ) = ξ 1 ξ 2 j=1 a 2 j < Φ 2 j >

31 Technique d utilisation du PC pour la résolution d équation différentielle stochastique Approche INTRUSIVE (method of weighted residuals) L(x, t, ω; u) = f(x, t; ω), x D(Λ), t (0, T ), ω Ω, a differential operator, (Λ) R ( = 1 2 3) a bounded 1/ Discrétiser le processus aléatoire à l aide de variables Express the rand aléatoires (indépendantes). ξ(ω) = {ξ 1 (ω),, ξ N (ω)} L(x, t, ξ; u(x, t; ξ)) = f(x, t; ξ) when the random inputs already 2/ Ecrire la solution et les paramètres d entrée incertains sous forme de sommes finies de PC et substituer dans l équation. L ( ( x, t, ξ(ω); M i=0 u i Φ i (ξ(ω) ) ) = f(x, t; ξ(ω)) alerkin projection onto each of the polynomial b ) ( ) M L x, t, ξ; u i Φ i (ξ), Φ k (ξ) = f, Φ k (ξ), k = 0, 1,, M 3/ Projeter (type Galerkin) sur la base des polynômes orthogonaux considérés. Obtention d un système linéaire. i=0 - les modes PC sont couplés de façon implicite - nécessite l adaptation du solver déterministe as

32 Technique d utilisation du PC pour la résolution d équation différentielle stochastique Approche NON-INTRUSIVE (collocation method) L(x, t, ω; u) = f(x, t; ω), x D(Λ), t (0, T ), ω Ω, a differential operator, (Λ) R ( = 1 2 3) a bounded 1/ Discrétiser le processus aléatoire à l aide de variables Express the rand aléatoires (indépendantes). ξ(ω) = {ξ 1 (ω),, ξ N (ω)} L(x, t, ξ; u(x, t; ξ)) = f(x, t; ξ) when the random inputs already 2/ Obtenir les coefficients PC en projetant la solution sur la base polynomiale. as ( k {0,..., P }) J = < J(ω) Φ k(ξ(ω)) > u k < Φ 2 k (ξ(ω)) >. Finalement on a: u = ; M i=0 u u i Φ i (ξ(ω) on onto each of - revient au calcul de nombreuses quadratures numériques - risque d aliasing - simplicité d utilisation ne nécessite pas l adaptation du solver déterministe (boite noire)

33 Example: 1 st order linear ODE dy dt (t, ω) = k(ω)y, y(0) = ŷ, t (0, T ) y(t, ω) = ŷe k(ω)t Galerkin projection: y(t, ω) = dy l dt = 1 < Φ 2 l > M i=0 M i=0 M j=0 y i (t)φ i (ξ(ω)), k(ω) = k = k + σ k ξ 2 M i=0 k i Φ i (ξ(ω)). < Φ i Φ j Φ l > k i y j for l = 0, 1,..., M &"# f(k; α, β) = (1 k) α (1 + k) β 2 α+β+1, 1 < k < 1, α, β > 1 B(α + 1, β + 1)!"( &! '&!") &! '* Solution! Error &! '$ '!") '!"( y 0 (mean) y 1 y 2 y 3 y 4 Deterministic!!"#$!"$!"%$ & Time &! '% &! '+ Mean (!=0, "=0) Variance (!=0, "=0) Mean (!=1, "=3) Variance (!=1, "=3) &! '&&! & # * ) $ P

34 Avantages des méthodes gpc Méthode efficace qui fournit une estimation quantitative de la sensibilité de la solution aux incertitudes des parametres d entrée Convergence spectrale et représentation optimale (compacité et précision) de l incertitude grâce à un choix de polynômes appropriés. Possibilité de représentation non-intrusive par projection de la solution sur la base du chaos polynomial. Non limitée aux distributions gaussiennes d incertitude ou à des incertitudes faibles. Tous les moments + pdf de la solution sont disponibles. Coût de calcul en général très inférieur aux méthodes de type Monte-Carlo (distribution gaussienne: 1 à 2 ordres de grandeur, distribution uniforme: 3 à 4 ordres de grandeur).

35 Difficulty of the method dy (t, ω) = k(ω)y, y(0) = ŷ, t (0, T ) dt y(t, ω) = ŷe k(ω)t f(k; α, β) = y(t, ω) = M i=0 y i (t)φ i (ξ(ω)), k(ω) = k = k + σ k ξ 2 M i=0 (1 k) α (1 + k) β 2 α+β+1, 1 < k < 1, α, β > 1 B(α + 1, β + 1) k i Φ i (ξ(ω)). &"# &! '&!"(!") &! '* Solution! Error &! '$ '!") '!"( y 0 (mean) y 1 y 2 y 3 y 4 Deterministic!!"#$!"$!"%$ & Time &! '% &! '+ Mean (!=0, "=0) Variance (!=0, "=0) Mean (!=1, "=3) Variance (!=1, "=3) &! '&&! & # * ) $ P

36 Effect of GPC variable order P on the convergence rate in time k is a random variable with zero mean and constant variance and a certain probability distribution f(k) : Uniform distribution (Legendre) Mean solution: Variance solution:

37 Difficulty of the method distributions. T ɛ P = (y(t) llowing results y P (t)) 2 / y 2 (t) have been obtai ɛ P Gaussian/Hermite +1) (σt)2(p e (σt)2 1 [ (P + 1)! [ ( )] 1 (1 (σt)2 P + 1 exponential random variable with zero mean an *! )! (! '! &! !7829:;<=>9?5?,@2A+B@:,6@C4,@9? D56E@,5!7829:;F24::@2?+B@:,6@C4,@9? 1535?B65!7829:;G?@H96E+B@:,6@C4,@9? "/"0!+!+"!!( Exponential/Laguerre -." %! ɛ P = ( σt ) 2P 1 + σt $! #! "!!! " # $ % & ' ( ) * "!!+,

38 Problems and possible remedies... Spectral estimation of non-linear terms when no closed-forms are available use pseudo-spectral approximation. Low convergence for non-gaussian process: use the appropriate measure with Generalized PC. Convergence failure for discontinuous or non-smooth processes (stochastic bifurcation) develop adapted (non-smooth or local) bases: multi-wavelets or multi-elements gpc. CPU cost for large scale problems design new solvers, use different types of (sparse) numerical quadratures, sparse tensor products. Challenge: development of bases and techniques to improve convergence and robustness of spectral expansions for processes with steep/discontinuous dependences to uncertain parameters or processes depending on a large number of random variables.

39 Possible applications so far... Solid mechanics (Ghanem & Spanos ). Flow through porous media (Ghanem & Dham 1998, Zhang & Lu 2004). Heat diffusion in stochastic media (Hien & Kleiber , Xiu & Karniadakis 2003). Incompressible flows (Le Maître et al, Karniadakis et al, Hou et al). Fluid-Structure interaction (Karniadakis et al). Micro-fluid systems (Debusschere et al 2001). Reacting flows & combustion (Reagan et al 2001). 0-Mach flows & thermo-fluid problems (Le Maître et al 2003).

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 6, No., pp. 578 59 c Society for Industrial and Applied Mathematics STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION XIAOLIANG WAN, DONGBIN XIU, AND GEORGE

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Uncertainty Quantification in Computational Models

Uncertainty Quantification in Computational Models Uncertainty Quantification in Computational Models Habib N. Najm Sandia National Laboratories, Livermore, CA, USA Workshop on Understanding Climate Change from Data (UCC11) University of Minnesota, Minneapolis,

More information

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Dongbin Xiu and George Em Karniadakis Division of Applied Mathematics Brown University Providence, RI 9 Submitted to Journal of

More information

Apprentissage automatique Méthodes à noyaux - motivation

Apprentissage automatique Méthodes à noyaux - motivation Apprentissage automatique Méthodes à noyaux - motivation MODÉLISATION NON-LINÉAIRE prédicteur non-linéaire On a vu plusieurs algorithmes qui produisent des modèles linéaires (régression ou classification)

More information

Identification of multi-modal random variables through mixtures of polynomial chaos expansions

Identification of multi-modal random variables through mixtures of polynomial chaos expansions Identification of multi-modal random variables through mixtures of polynomial chaos expansions Anthony Nouy To cite this version: Anthony Nouy. Identification of multi-modal random variables through mixtures

More information

Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos Dongbin Xiu and George Em Karniadakis Division of Applied Mathematics Brown University Providence, RI 09 Submitted

More information

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications PI: George Em Karniadakis Division of Applied Mathematics, Brown University April 25, 2005 1 Objectives

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES

MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES SIAM J. SCI. COMPUT. Vol. 8, No. 3, pp. 9 98 c 6 Society for Industrial and Applied Mathematics MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES XIAOLIANG WAN AND GEORGE EM

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Fast Numerical Methods for Stochastic Computations: A Review

Fast Numerical Methods for Stochastic Computations: A Review COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 242-272 Commun. Comput. Phys. February 2009 REVIEW ARTICLE Fast Numerical Methods for Stochastic Computations: A Review Dongbin Xiu Department

More information

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018 Random variables Florence Perronnin Univ. Grenoble Alpes, LIG, Inria September 28, 2018 Florence Perronnin (UGA) Random variables September 28, 2018 1 / 42 Variables aléatoires Outline 1 Variables aléatoires

More information

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Shi Jin University of Wisconsin-Madison, USA Kinetic equations Different Q Boltmann Landau

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with Multiple Uncertain Input Variables

Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with Multiple Uncertain Input Variables Missouri University of Science and Technology Scholars' Mine Mechanical and Aerospace Engineering Faculty Research & Creative Works Mechanical and Aerospace Engineering 4-1-2007 Efficient Sampling for

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos J. Fluid Mech. (2007), vol. 585, pp. 255 279. c 2007 Cambridge University Press doi:10.1017/s0022112007006751 Printed in the United Kingdom 255 Sensitivity analysis of large-eddy simulations to subgrid-scale-model

More information

Stochastic Solvers for the Euler Equations

Stochastic Solvers for the Euler Equations 43rd AIAA Aerospace Sciences Meeting and Exhibit 1-13 January 5, Reno, Nevada 5-873 Stochastic Solvers for the Euler Equations G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Spectral element schemes for the. Korteweg-de Vries and Saint-Venant equations

Spectral element schemes for the. Korteweg-de Vries and Saint-Venant equations Spectral element schemes for the Korteweg-de Vries and Saint-Venant equations R. PASQUETTI a a. Université Côte d Azur, CNRS, Inria, LJAD, France, richard.pasquetti@unice.fr... Résumé : Les sytèmes hyperboliques

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Analyse de la réponse dynamique d'un système de suspension avec paramètres incertains

Analyse de la réponse dynamique d'un système de suspension avec paramètres incertains Analyse de la réponse dynamique d'un système de suspension avec paramètres incertains Dynamic Response Analysis of a Quarter Car Systems With Uncertainties Parameters Fatma ABID 1, Abdelkhalak ELHAMI,

More information

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Noname manuscript No. (will be inserted by the editor) Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Umamaheswara Konda Puneet Singla Tarunraj Singh Peter Scott Received: date

More information

An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations

An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations Xiaoliang Wan and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence,

More information

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty?

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with

More information

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters C. F. Jeff Wu H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute

More information

Optimisation par réduction d incertitudes : application à la recherche d idéotypes

Optimisation par réduction d incertitudes : application à la recherche d idéotypes : application à la recherche d idéotypes Victor Picheny 1, D. Da Silva et E. Costes 2 Rencontres du réseau Mexico, Toulouse 23 mai 2014 1. INRA MIAT 2. INRA GAP Plan de l exposé 1 Introduction : recherche

More information

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs. Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Shanghai Jiao Tong University,

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

Polynomial chaos expansions for structural reliability analysis

Polynomial chaos expansions for structural reliability analysis DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for structural reliability analysis B. Sudret & S. Marelli Incl.

More information

Uncertainty quantification for flow in highly heterogeneous porous media

Uncertainty quantification for flow in highly heterogeneous porous media 695 Uncertainty quantification for flow in highly heterogeneous porous media D. Xiu and D.M. Tartakovsky a a Theoretical Division, Los Alamos National Laboratory, Mathematical Modeling and Analysis Group

More information

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA Uncertainty Quantification for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Where do kinetic equations sit in physics Kinetic equations with applications

More information

Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos

Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos Dongbin Xiu Didier Lucor C.-H. Su George Em Karniadakis 1 Division of Applied Mathematics, Brown University, rovidence, RI 02912 Stochastic Modeling of Flow-Structure Interactions Using Generalized olynomial

More information

Keywords: Sonic boom analysis, Atmospheric uncertainties, Uncertainty quantification, Monte Carlo method, Polynomial chaos method.

Keywords: Sonic boom analysis, Atmospheric uncertainties, Uncertainty quantification, Monte Carlo method, Polynomial chaos method. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm SONIC BOOM ANALYSIS UNDER ATMOSPHERIC UNCERTAINTIES BY A NON-INTRUSIVE POLYNOMIAL CHAOS

More information

Stokes-Darcy coupling for periodically curved interfaces

Stokes-Darcy coupling for periodically curved interfaces Stokes-Darcy coupling for periodically curved interfaces Sören Dobberschütz sdobber@nano.ku.dk February 21, 2014 Abstract We investigate the boundary condition between a free fluid and a porous medium,

More information

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Olivier Le Maître 1 Lorenzo Tamellini 2 and Anthony Nouy 3 1 LIMSI-CNRS, Orsay, France 2 MOX, Politecnico Milano, Italy 3 GeM,

More information

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf 1 Foreword This report presents the final thesis of the Master of Science programme in Applied

More information

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Prof Nathan L Gibson Department of Mathematics Joint Math Meeting Jan 9, 2011 Prof Gibson (OSU) Inverse Problems for Distributions

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Predictability of Chemical Systems

Predictability of Chemical Systems Predictability of Chemical Systems Habib N. Najm Sandia National Laboratories, Livermore, CA, USA Collaborators: M.T. Reagan & B.J. Debusschere O.M. Knio, A. Matta, & R.G. Ghanem O.P. Le Maitre Sandia

More information

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media M.Köppel, C.Rohde Institute for Applied Analysis and Numerical Simulation Inria, Nov 15th, 2016 Porous Media Examples: sponge,

More information

Uncertainty Quantification in MEMS

Uncertainty Quantification in MEMS Uncertainty Quantification in MEMS N. Agarwal and N. R. Aluru Department of Mechanical Science and Engineering for Advanced Science and Technology Introduction Capacitive RF MEMS switch Comb drive Various

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits. and Domenico Spina

Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits. and Domenico Spina electronics Review Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits Arun Kaintura *, Tom Dhaene ID and Domenico Spina IDLab, Department of Information

More information

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS DONGBIN XIU AND JIE SHEN Abstract. We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We

More information

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps A metod of Lagrange Galerkin of second order in time Une métode de Lagrange Galerkin d ordre deux en temps Jocelyn Étienne a a DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, Great-Britain.

More information

EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES

EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES 9 th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES Nam H. Kim and Haoyu Wang University

More information

New issues in LES of turbulent flows: multiphysics and uncertainty modelling

New issues in LES of turbulent flows: multiphysics and uncertainty modelling New issues in LES of turbulent flows: multiphysics and uncertainty modelling Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France http://www.lmm.jussieu.fr/~sagaut

More information

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 6t 7 - April 28, Schaumburg, IL AIAA 28-892 Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized

More information

Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su and George Em Karniadakis Division of Applied Mathematics Brown University Providence,

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

arxiv: v1 [math.na] 14 Sep 2017

arxiv: v1 [math.na] 14 Sep 2017 Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis arxiv:1709.04584v1 [math.na] 14 Sep 2017 Anindya Bhaduri a, Yanyan He 1b, Michael D. Shields a, Lori Graham-Brady

More information

Stochastic Spectral Methods for Uncertainty Quantification

Stochastic Spectral Methods for Uncertainty Quantification Stochastic Spectral Methods for Uncertainty Quantification Olivier Le Maître 1,2,3, Omar Knio 1,2 1- Duke University, Durham, North Carolina 2- KAUST, Saudi-Arabia 3- LIMSI CNRS, Orsay, France 38th Conf.

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Accepted Manuscript. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. R. Ahlfeld, B. Belkouchi, F.

Accepted Manuscript. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. R. Ahlfeld, B. Belkouchi, F. Accepted Manuscript SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos R. Ahlfeld, B. Belkouchi, F. Montomoli PII: S0021-9991(16)30151-6 DOI: http://dx.doi.org/10.1016/j.jcp.2016.05.014

More information

Error Budgets: A Path from Uncertainty Quantification to Model Validation

Error Budgets: A Path from Uncertainty Quantification to Model Validation Error Budgets: A Path from Uncertainty Quantification to Model Validation Roger Ghanem Aerospace and Mechanical Engineering Civil Engineering University of Southern California Los Angeles Advanced Simulation

More information

PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS

PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS M. Navarro, O.P. Le Maître,2, O.M. Knio,3 mariaisabel.navarrojimenez@kaust.edu.sa

More information

Uncertainty Quantification and Apportionment in Air Quality. Models using the Polynomial Chaos Method

Uncertainty Quantification and Apportionment in Air Quality. Models using the Polynomial Chaos Method Uncertainty Quantification and Apportionment in Air Quality Models using the Polynomial Chaos Method Haiyan Cheng and Adrian Sandu Virginia Polytechnic Institute and State University, Computer Science

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Application of a Stochastic Finite Element Procedure to Reliability Analysis

Application of a Stochastic Finite Element Procedure to Reliability Analysis Application of a Stochastic Finite Element Procedure to Reliability Analysis Bruno Sudret & Marc Berveiller Electricité de France, R&D Division, Site des Renardières, F-77818 Moret-sur-Loing Maurice Lemaire

More information

Apprentissage automatique Machine à vecteurs de support - motivation

Apprentissage automatique Machine à vecteurs de support - motivation Apprentissage automatique Machine à vecteurs de support - motivation RÉGRESSION À NOYAU régression à noyau Algorithme de régression à noyau entraînement : prédiction : a = (K + λi N ) 1 t. y(x) =k(x) T

More information

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion Mathematical Problems in Engineering Volume 2012, Article ID 215109, 15 pages doi:10.1155/2012/215109 Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based

More information

Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides. Wietze Herreman

Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides. Wietze Herreman Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides Wietze Herreman 19ième Colloque Alain Bouyssy!!"#$%&'()*+(,#-*.#*+( )/01+"2(!!!!!!! Origine des champs

More information

Stochastic structural dynamic analysis with random damping parameters

Stochastic structural dynamic analysis with random damping parameters Stochastic structural dynamic analysis with random damping parameters K. Sepahvand 1, F. Saati Khosroshahi, C. A. Geweth and S. Marburg Chair of Vibroacoustics of Vehicles and Machines Department of Mechanical

More information

Quasi-invariant measures on the path space of a diffusion

Quasi-invariant measures on the path space of a diffusion Quasi-invariant measures on the path space of a diffusion Denis Bell 1 Department of Mathematics, University of North Florida, 4567 St. Johns Bluff Road South, Jacksonville, FL 32224, U. S. A. email: dbell@unf.edu,

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire Outils de Recherche Opérationnelle en Génie MTH 8414 Astuce de modélisation en Programmation Linéaire Résumé Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.

More information

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 2 1999 LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY R. Bunoiu and J. Saint Jean Paulin Abstract: We study the classical steady Stokes equations with homogeneous

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ALEX BIJLSMA A note on elliptic functions approximation by algebraic numbers of bounded degree Annales de la faculté des sciences de Toulouse 5 e série, tome

More information

Original Research. Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem

Original Research. Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem To appear in the International Journal of Computer Mathematics Vol. xx, No. xx, xx 2014, 1 9 Original Research Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem R. H. De Staelen a

More information

Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter

Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter Emmanuel D. Blanchard (eblancha@vt.edu) Advanced Vehicle Dynamics Lab Center for Vehicle Systems and Safety, Virginia Tech, Blacksburg,

More information

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Y. Huang 1,2, and X.S. Qin 1,2* 1 School of Civil & Environmental Engineering, Nanyang Technological University,

More information

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Guang Lin, Dept. of Mathematics & School of Mechanical Engineering, Purdue University Collaborative work with Huan Lei,

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3 ESAIM: PROCEEDINGS AND SURVEYS, September 014, Vol. 45, p. 379-389 J.-S. Dhersin, Editor HYPERBOLIC APPROXIMATION OF THE FOURIER TRANSFORMED VLASOV EQUATION Nhung Pham 1, Philippe Helluy and Laurent Navoret

More information

Mesurer des déplacements ET des contraintes par correlation mécanique d images

Mesurer des déplacements ET des contraintes par correlation mécanique d images Mesurer des déplacements ET des contraintes par correlation mécanique d images J. RÉTHORÉ a, A. LEYGUE a, M. CORET a, L. STAINIER a, E. VERRON a a. Institut de Recherche en Génie Civil et Mécanique (GeM)

More information

The Stochastic Piston Problem

The Stochastic Piston Problem The Stochastic Piston Problem G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics 18 George Street Brown University Providence, RI 91 Classification: Physical Sciences: Applied Mathematics

More information

Sparse polynomial chaos expansions based on an adaptive Least Angle Regression algorithm

Sparse polynomial chaos expansions based on an adaptive Least Angle Regression algorithm Sparse polynomial chaos expansions based on an adaptive Least Angle Regression algorithm G. BLATMAN a,b, B. SUDRET b,c a. IFMA-LaMI, Campus des Cézeaux, BP 265, 63175 Aubière cedex b. EDF R&D, Site des

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS Puneet Singla Assistant Professor Department of Mechanical & Aerospace Engineering University at Buffalo, Buffalo, NY-1426 Probabilistic Analysis

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information