PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS

Size: px
Start display at page:

Download "PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS"

Transcription

1 PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS M. Navarro, O.P. Le Maître,2, O.M. Knio,3 CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, KSA. 2 ion Logo Center Lock-up for Uncertainty LIMSI-CNRS, UPR-325, Orsay, France. Logo Lock-up 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. SAMO 26 VIII International Conference on Sensitivity Analysis of Model Output, 3 Nov 3 Dec 26, Le Tampon, Réunion, France.

2 OUTLINE NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY NUMERICAL EXAMPLES CONCLUSIONS ion Logo Center Lock-up for Uncertainty Logo Lock-up

3 NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY NUMERICAL EXAMPLES CONCLUSIONS ion Logo Center Lock-up for Uncertainty Logo Lock-up

4 MODEL DEFINITION Let (Ω, Σ, P) be a probability space in which we consider the following SDE: dx(t, ω) = C(X(t, ω))dt + D(X(t, ω))dw (t, ω) X(t =, ω) = X () () where: X : (t, ω) T Ω R is a stochastic process defined in the time interval T = [, Tf ] with T f > W (t, ω) is a Wiener process C : R R is the drift coefficient and D : R R is the diffusion coefficient Note that there is only one source of randomness in SDE (), the Wiener process. We consider uncertain drift and diffusion coefficients through the introduction of random parameters ξ(ω) ion Logo Center Lock-up for dx(t, Uncertainty ω) = C(X(t, ω), ξ(ω))dt + D(X(t, ω), ξ(ω))dw Logo (t, Lock-up ω) X(t =, ξ(ω)) = X () (ξ(ω)) (2) Note that there are two sources of randomness in SDE (2), the Wiener process and the uncertain parameters.

5 VARIANCE DECOMPOSITION The variance-based GSA of X relies on its Sobol-Hoeffding (SH) decomposition: X = X + X par(ξ) + X noise (W ) + X mix (ξ, W ), (3) where: X = E {X} Xpar(ξ) = E {X ξ} X Xnoise (W ) = E {X W } X Xmix (ξ, W ) = X X E {X ξ} E {X W } Since the SH functions on the rhs of (3) are orthogonal, V {X} can be decomposed as: V {X} = V par + V noise + V mix, where:. V par is the variance due to the parametric uncertainty 2. ion Logo Center VLock-up noise is the variance for Uncertainty due to the Wiener noise Logo Lock-up 3. V mix is the variance due their interactions Finally the sensitivity indices (SI) are computed: S par = Vpar V {X}, S noise = V noise V {X}, S mix = V mix V {X}.

6 POLYNOMIAL CHAOS EXPANSION (PCE) Assumptions:. The Wiener noise and the uncertain parameters are considered as independent random variables 2. The solution of SDE (2), X(t, W, ξ), is a second order random variable for almost any trajectory of W (t) X(t, W, ξ) admits a truncated PC expansion of the form []: X(t, W, ξ) X(t, W, ξ) = α A [X α](t, W )Ψ α(ξ) where: ξ(ω) ξ = {ξ,, ξ N } where ξ i is a real-valued independent random variable (rv) with pdf p i (ξ i ) α = (α,..., α N ) is a multi-index Ψα(ξ) are multivariate orthonormal polynomials defined through, Ψ. α(ξ) = N i= ψα i (ξ i i ), where ion Logo Center Lock-up for Uncertainty Logo Lock-up {ψ i α, α N } is a complete orthonormal set with respect to p i (ξ i ) The random processes [Xα] are the modes of the expansion.

7 NON-INTRUSIVE PSEUDO SPECTRAL PROJECTION (PSP) To compute the modes, [X α](t, W ) for α A, we rely on non-intrusive PSP [X α](t, W ) = obtained through: ion Logo Center Lock-up for Uncertainty Logo Lock-up N Q j= P PSP αj X(t, W, ξ j ), where: P PSP is a non-intrusive operator that uses sparse tensorization of one-dimensional projection operators at different levels NQ is the number of sparse grids points ξj are the quadrature points In particular, one SDE at each N Q is solved for a particular trajectory W (i) = W (ω i ). The expansion coefficients of the corresponding trajectory of X(t) are finally [X α] (i) (t) = N Q j= P PSP αj X (i) (t, ξ j )

8 PC-BASED EXPRESSIONS FOR SENSITIVITY INDICES PC expansion of X: X(t, W, ξ) X(t, W, ξ) = α A [X α](t, W )Ψ α(ξ) The approximated expressions of the statistic of the SDE solution can be obtained using the PC coefficients: X α A E {[Xα](W )} E {Ψα} = E {[X ](W )} V {X} = E { X 2} X 2 α A E {[X α] 2} E {[X ]} 2 S par = Vpar V{X} and Vpar = α A \ E {[Xα]}2 S noise = V noise V{X} and V noise = V {[X ]} ion Logo Center Lock-up for Uncertainty Logo Lock-up S mix = V mix V{X} and V mix = α A \ V {[Xα]} For a detailed proof see [2]

9 NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY NUMERICAL EXAMPLES CONCLUSIONS ion Logo Center Lock-up for Uncertainty Logo Lock-up

10 TEST PROBLEM Let us consider the process governed by the following SDE dx(w, ξ) = (ξ X(W, ξ))dt + (νx(w, ξ) + )ξ 2 dw X(t = ) = almost surely (4) where: ξ and ξ 2 are independent and uniformly distributed random variables ξ U ([.95,.5]) and ξ 2 U ([.2,.22]) ν =.2 so the problem has multiplicative noise Note that for ν =, X is the Ornstein-Uhlenbeck (OU) process ion Logo Center Lock-up for Uncertainty Logo Lock-up

11 TEST PROBLEM X(t,W,ξ) X(t,W,ξ) t (A) Sampling W t (B) Sampling ξ ion Logo Center Lock-up for Uncertainty Logo Lock-up FIGURE: Samples trajectories of X computed using the PC expansion. (A) Trajectories for samples of W at a fixed value of the parameters ξ =.5 and ξ 2 =.2. (B) Trajectories for samples of ξ and a fixed realization of W. ξ U [.95,.5] and ξ 2 U [.2,.22].

12 CASE OF SMOOTH QOI Assuming that we are not interested in X(t, W, ξ), but in some derived quantity such as the integral of X over t [, ]: A(W, ξ) =. X(t, W, ξ)dt..4 X(t,W (i),ξ).6 A(W (i),ξ) ion Logo Center 2 Lock-up for 4Uncertainty 6 8 Logo.5 Lock-up t ξ (A) Trajectories of X(W (i), ξ) (B) Response surface of A(W (i), ξ) FIGURE: (A) Different trajectories of X, for a fixed noise W (i) and different realizations of ξ. (b) A (i) (ξ) versus ξ and ξ 2 for fixed W (i).

13 CONVERGENCE OF THE DIRECT NI PROJECTION A Â A Â A Â ξ.5.5 ξ.5.5 ξ.5 (A) Approximation error in Â. L2-error -5 - L2-error -5 - ion Logo Center Lock-up for Uncertainty Logo Lock-up Level log(nq) (B) L 2 -norm of approximation error. FIGURE: (A) A Â versus ξ for fixed W (i). Plotted are 2D surfaces for l =, 2 and 3 arranged from left to right. (B) Normalized L 2 error versus l (left) and log(n Q ) (right).

14 CONVERGENCE OF THE SENSITIVITY INDICES Spar Snoise.5 Smix PSP l= PSP l=2 MC PSP l= PSP l=2 MC NW NW NW FIGURE: S par, S noise and S mix versus N W for different PSP levels. Also shown for comparison are the estimators for a direct MC approach (without PSP approximation, labeled MC). The solid lines correspond to the settings ion Logo Center of the Test problem, Lock-up for Uncertainty whereas dashed lines correspond to results obtained using Logo PSP with Lock-up a reduced diffusion coefficient ξ 2 U [.2,.3].

15 ERROR OF THE SENSITIVITY INDICES SE(Spar) -2-3 SE(Snoise) -2-3 SE(Smix) PSP l= -6 MC PSP l= MC NW NW NW (A) SE (bootstrapping) versus N W SE(Spar) -2-3 SE(Snoise) -2-3 SE(Smix) -4-4 MC ion Logo Center Lock-up -5 for costuncertainty Logo Lock-up cost cost reduced diffusion coefficient ξ 2 U [.2,.3] PSP l= MC PSP l= (B) SE versus computational cost which is estimated as N Q N W. FIGURE: Standard Errors in the sensitivity indices of A, using the direct PSP with N Q = 5 and standard MC methods. The solid lines correspond to the settings of Test problem, whereas the dashed lines correspond to the

16 CASE OF NON-SMOOTH QOI We continue to consider the solution, X, of the SDE in (4), but focus on the variance decomposition of the exit time, T, corresponding to the exit boundary X = c: T (W, ξ) = min{x(t, W, ξ) > c} we set c =. t>.8 6 X(t,W (i),ξ) ion Logo Center Lock-up 5 for Uncertainty t ξ Logo Lock-up (A) Trajectories of X(W (i), ξ) T(W, ξ) (B) Response surface of T (W (i), ξ) FIGURE: (A) Different trajectories of X, for a fixed noise W (i) and different realizations of ξ. (B) T (i) (ξ) versus ξ and ξ 2 for fixed W (i).

17 DIRECT NI PROJECTION OF NON-SMOOTH QOI Exact (l = ) l = l = T(W,ξ) 4 ˆT(W,ξ) 2 ˆT(W,ξ) ξ.5.5 ξ.5.5 ξ.5 l = 3 l = 4 l = ˆT(W,ξ) 3 ˆT(W,ξ) 4 ˆT(W,ξ) ion Logo Center ξ Lock-up for Uncertainty ξ Logo ξ Lock-up FIGURE: Direct PSP approximation of T (W (i), ξ) for different levels l as indicated. Also shown as circles are the sparse grid points used in the PSP constructions.

18 INDIRECT NON-INTRUSIVE PSP PROJECTION KEY IDEA: the exact exit time T (or its direct non-intrusive approximation) is substituted with the surrogate T = T ( ˆX), indirectly constructed through T (W, ξ) T (W, ξ) = min t> { ˆX(t, W, ξ) > c = }, where: ˆX(t, W, ξ) = α A [Xα](t, W )Ψα(ξ) ion Logo Center Lock-up for Uncertainty Logo Lock-up

19 CONVERGENCE OF THE INDIRECT NON-INTRUSIVE PSP PROJECTION l = l = 2 l = T(W,ξ) 4 T(W,ξ) 4 T(W,ξ) ξ.5.5 ξ.5.5 ξ.5 l = l = 2 l = T T.5.5 T T ion Logo Center Lock-up for Uncertainty Logo.5 Lock-up.5 ξ ξ ξ T T FIGURE: Indirect approximation T of the exit time (top row) and absolute indirect approximation error T T (bottom row). The plots correspond to a fixed trajectory W of the noise and different PSP levels l as indicated.

20 CONVERGENCE OF THE INDIRECT NON-INTRUSIVE PSP PROJECTION L2-error -5 - T ˆT L2-error -5 - T ˆT Level -5 2 log(nq) FIGURE: L 2 error norms of the direct and indirect PSP approximations of T. ion Logo Center Lock-up for Uncertainty Logo Lock-up

21 CONVERGENCE OF THE SENSITIVITY INDICES High noise Spar NW Snoise NW Smix PSP l= PSP l=2.28 PSP l=3 MC NW Low noise PSP l= MC Spar ion Logo Center.46 Lock-up for Uncertainty.5.4 Logo Lock-up Snoise NW NW NW Smix FIGURE: Sensitivity indices S par, S noise and S mix versus the number, N W, of noise samples for different PSP levels. Also shown for comparison are the standard MC estimators (labeled MC). High noise: ξ U [.95,.5], ξ 2 U [.2,.22] and ν =.2. Low noise: ξ U [.95,.5], ξ 2 U [.2,.3] and ν =.

22 NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY NUMERICAL EXAMPLES CONCLUSIONS ion Logo Center Lock-up for Uncertainty Logo Lock-up

23 CONCLUSIONS Very efficient for large S par or smooth QoIs with respect to ξ It is trivially implemented in parallel (see [4]) It can be generalized to any sensitivity indices Extension to complex problems and acceleration to MLMC Extension to stochastic simulators (see [3]) ion Logo Center Lock-up for Uncertainty Logo Lock-up

24 BIBLIOGRAPHY R. H. Cameron and W. T. Martin. The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Annals of Mathematics, 48: , 947. O. P. Le Maître and O. M. Knio. Pc analysis of stochastic differential equations driven by wiener noise. Reliability Engineering & System Safety, 35:7 24, 25. M. Navarro, O. P. Le Maître, and O. M. Knio. Global sensitivity analysis in stochastic simulators of uncertain reaction networks. The Journal of Chemical Physics (accepted), 26. M. Navarro, O. P. Le Maître, and O. M. Knio. Non-intrusive polynomial chaos expansions for sensitivity analysis in stochastic differential equations. SIAM/ASA Journal on Uncertainty (JUQ)-(Feb 26 First submission, Minor revision August 26 submitted revised version), 26. ion Logo Center Lock-up for Uncertainty Logo Lock-up

Sobol-Hoeffding Decomposition with Application to Global Sensitivity Analysis

Sobol-Hoeffding Decomposition with Application to Global Sensitivity Analysis Sobol-Hoeffding decomposition Application to Global SA Computation of the SI Sobol-Hoeffding Decomposition with Application to Global Sensitivity Analysis Olivier Le Maître with Colleague & Friend Omar

More information

Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification

Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification Noname manuscript No. (will be inserted by the editor) Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification J. Winokur D. Kim F. Bisetti O.P. Le Maître O.M.

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM.

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Mohamed Iskandarani Matthieu Le Hénaff Carlisle Thacker University

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

Local and Global Sensitivity Analysis

Local and Global Sensitivity Analysis Omar 1,2 1 Duke University Department of Mechanical Engineering & Materials Science omar.knio@duke.edu 2 KAUST Division of Computer, Electrical, Mathematical Science & Engineering omar.knio@kaust.edu.sa

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

Uncertainty Quantification in Computational Models

Uncertainty Quantification in Computational Models Uncertainty Quantification in Computational Models Habib N. Najm Sandia National Laboratories, Livermore, CA, USA Workshop on Understanding Climate Change from Data (UCC11) University of Minnesota, Minneapolis,

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Stochastic structural dynamic analysis with random damping parameters

Stochastic structural dynamic analysis with random damping parameters Stochastic structural dynamic analysis with random damping parameters K. Sepahvand 1, F. Saati Khosroshahi, C. A. Geweth and S. Marburg Chair of Vibroacoustics of Vehicles and Machines Department of Mechanical

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Multiscale stochastic preconditioners in non-intrusive spectral projection

Multiscale stochastic preconditioners in non-intrusive spectral projection Multiscale stochastic preconditioners in non-intrusive spectral projection Alen Alenxanderian a, Olivier P. Le Maître b, Habib N. Najm c, Mohamed Iskandarani d, Omar M. Knio a, a Department of Mechanical

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty

Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty Engineering, Test & Technology Boeing Research & Technology Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty ART 12 - Automation Enrique Casado (BR&T-E) enrique.casado@boeing.com

More information

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Noname manuscript No. (will be inserted by the editor) Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Umamaheswara Konda Puneet Singla Tarunraj Singh Peter Scott Received: date

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Shi Jin University of Wisconsin-Madison, USA Kinetic equations Different Q Boltmann Landau

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Sampling and low-rank tensor approximation of the response surface

Sampling and low-rank tensor approximation of the response surface Sampling and low-rank tensor approximation of the response surface tifica Alexander Litvinenko 1,2 (joint work with Hermann G. Matthies 3 ) 1 Group of Raul Tempone, SRI UQ, and 2 Group of David Keyes,

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders

Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders Dr. Mohamed El-Beltagy 1,2 Joint Wor with Late Prof. Magdy El-Tawil 2 1 Effat University, Engineering College, Electrical

More information

Polynomial chaos expansions for structural reliability analysis

Polynomial chaos expansions for structural reliability analysis DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for structural reliability analysis B. Sudret & S. Marelli Incl.

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 6, No., pp. 578 59 c Society for Industrial and Applied Mathematics STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION XIAOLIANG WAN, DONGBIN XIU, AND GEORGE

More information

arxiv: v2 [physics.comp-ph] 15 Sep 2015

arxiv: v2 [physics.comp-ph] 15 Sep 2015 On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC 6 /LiCoO 2 cell arxiv:1505.07776v2 [physics.comp-ph] 15 Sep 2015 Mohammad Hadigol a, Kurt Maute a, Alireza Doostan a, a Aerospace

More information

Stochastic Spectral Methods for Uncertainty Quantification

Stochastic Spectral Methods for Uncertainty Quantification Stochastic Spectral Methods for Uncertainty Quantification Olivier Le Maître 1,2,3, Omar Knio 1,2 1- Duke University, Durham, North Carolina 2- KAUST, Saudi-Arabia 3- LIMSI CNRS, Orsay, France 38th Conf.

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion EU-US-Asia workshop on hybrid testing Ispra, 5-6 October 2015 G. Abbiati, S. Marelli, O.S.

More information

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS Puneet Singla Assistant Professor Department of Mechanical & Aerospace Engineering University at Buffalo, Buffalo, NY-1426 Probabilistic Analysis

More information

Stochastic Dimension Reduction

Stochastic Dimension Reduction Stochastic Dimension Reduction Roger Ghanem University of Southern California Los Angeles, CA, USA Computational and Theoretical Challenges in Interdisciplinary Predictive Modeling Over Random Fields 12th

More information

arxiv: v2 [math.pr] 27 Oct 2015

arxiv: v2 [math.pr] 27 Oct 2015 A brief note on the Karhunen-Loève expansion Alen Alexanderian arxiv:1509.07526v2 [math.pr] 27 Oct 2015 October 28, 2015 Abstract We provide a detailed derivation of the Karhunen Loève expansion of a stochastic

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO. An Empirical Chaos Expansion Method for Uncertainty Quantification

UNIVERSITY OF CALIFORNIA, SAN DIEGO. An Empirical Chaos Expansion Method for Uncertainty Quantification UNIVERSITY OF CALIFORNIA, SAN DIEGO An Empirical Chaos Expansion Method for Uncertainty Quantification A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

FUNDAMENTAL LIMITATIONS OF POLYNOMIAL CHAOS FOR UNCERTAINTY QUANTIFICATION IN SYSTEMS WITH INTERMITTENT INSTABILITIES

FUNDAMENTAL LIMITATIONS OF POLYNOMIAL CHAOS FOR UNCERTAINTY QUANTIFICATION IN SYSTEMS WITH INTERMITTENT INSTABILITIES COMMUN. MATH. SCI. Vol., No., pp. 55 3 3 International Press FUNDAMENTAL LIMITATIONS OF POLYNOMIAL CHAOS FOR UNCERTAINTY QUANTIFICATION IN SYSTEMS WITH INTERMITTENT INSTABILITIES MICHAL BRANICKI AND ANDREW

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Uncertainty quantification for sparse solutions of random PDEs

Uncertainty quantification for sparse solutions of random PDEs Uncertainty quantification for sparse solutions of random PDEs L. Mathelin 1 K.A. Gallivan 2 1 LIMSI - CNRS Orsay, France 2 Mathematics Dpt., Florida State University Tallahassee, FL, USA SIAM 10 July

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Intro BCS/Low Rank Model Inference/Comparison Summary References. UQTk. A Flexible Python/C++ Toolkit for Uncertainty Quantification

Intro BCS/Low Rank Model Inference/Comparison Summary References. UQTk. A Flexible Python/C++ Toolkit for Uncertainty Quantification A Flexible Python/C++ Toolkit for Uncertainty Quantification Bert Debusschere, Khachik Sargsyan, Cosmin Safta, Prashant Rai, Kenny Chowdhary bjdebus@sandia.gov Sandia National Laboratories, Livermore,

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf 1 Foreword This report presents the final thesis of the Master of Science programme in Applied

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Overview of sparse system identification

Overview of sparse system identification Overview of sparse system identification J.-Ch. Loiseau 1 & Others 2, 3 1 Laboratoire DynFluid, Arts et Métiers ParisTech, France 2 LIMSI, Université d Orsay CNRS, France 3 University of Washington, Seattle,

More information

Steps in Uncertainty Quantification

Steps in Uncertainty Quantification Steps in Uncertainty Quantification Challenge: How do we do uncertainty quantification for computationally expensive models? Example: We have a computational budget of 5 model evaluations. Bayesian inference

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Long Time Propagation of Stochasticity by Dynamical Polynomial Chaos Expansions. Hasan Cagan Ozen

Long Time Propagation of Stochasticity by Dynamical Polynomial Chaos Expansions. Hasan Cagan Ozen Long Time Propagation of Stochasticity by Dynamical Polynomial Chaos Expansions Hasan Cagan Ozen Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate

More information

Identification of multi-modal random variables through mixtures of polynomial chaos expansions

Identification of multi-modal random variables through mixtures of polynomial chaos expansions Identification of multi-modal random variables through mixtures of polynomial chaos expansions Anthony Nouy To cite this version: Anthony Nouy. Identification of multi-modal random variables through mixtures

More information

Dynamic response of structures with uncertain properties

Dynamic response of structures with uncertain properties Dynamic response of structures with uncertain properties S. Adhikari 1 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK International

More information

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 6t 7 - April 28, Schaumburg, IL AIAA 28-892 Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized

More information

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies TECHNISCHE UNIVERSITÄT MÜNCHEN Bachelor s Thesis in Engineering Science Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies Jan Sültemeyer DEPARTMENT OF INFORMATICS MUNICH SCHOOL

More information

Non-Intrusive Solution of Stochastic and Parametric Equations

Non-Intrusive Solution of Stochastic and Parametric Equations Non-Intrusive Solution of Stochastic and Parametric Equations Hermann G. Matthies a Loïc Giraldi b, Alexander Litvinenko c, Dishi Liu d, and Anthony Nouy b a,, Brunswick, Germany b École Centrale de Nantes,

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Original Research. Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem

Original Research. Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem To appear in the International Journal of Computer Mathematics Vol. xx, No. xx, xx 2014, 1 9 Original Research Sensitivity Analysis and Variance Reduction in a Stochastic NDT Problem R. H. De Staelen a

More information

Nonlinear Filtering Revisited: a Spectral Approach, II

Nonlinear Filtering Revisited: a Spectral Approach, II Nonlinear Filtering Revisited: a Spectral Approach, II Sergey V. Lototsky Center for Applied Mathematical Sciences University of Southern California Los Angeles, CA 90089-3 sergey@cams-00.usc.edu Remijigus

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations

Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations Yan Zhang Advisor: Nick Sahinidis Department of Chemical Engineering Carnegie Mellon

More information

Addressing high dimensionality in reliability analysis using low-rank tensor approximations

Addressing high dimensionality in reliability analysis using low-rank tensor approximations Addressing high dimensionality in reliability analysis using low-rank tensor approximations K Konakli, Bruno Sudret To cite this version: K Konakli, Bruno Sudret. Addressing high dimensionality in reliability

More information

Spectral Propagation of Parameter Uncertainties in Water Distribution Networks

Spectral Propagation of Parameter Uncertainties in Water Distribution Networks Spectral Propagation of Parameter Uncertainties in Water Distribution Networks M. Braun, O. Piller, J. Deuerlein, I. Mortazavi To cite this version: M. Braun, O. Piller, J. Deuerlein, I. Mortazavi. Spectral

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

arxiv: v3 [math.na] 7 Dec 2018

arxiv: v3 [math.na] 7 Dec 2018 A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness Huan Lei, 1, Jing Li, 1, Peiyuan Gao, 1 Panos Stinis, 1, 2 1, 3, and Nathan A. Baker 1 Pacific Northwest

More information

arxiv: v1 [math.na] 14 Sep 2017

arxiv: v1 [math.na] 14 Sep 2017 Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis arxiv:1709.04584v1 [math.na] 14 Sep 2017 Anindya Bhaduri a, Yanyan He 1b, Michael D. Shields a, Lori Graham-Brady

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Adaptive wavelet decompositions of stochastic processes and some applications

Adaptive wavelet decompositions of stochastic processes and some applications Adaptive wavelet decompositions of stochastic processes and some applications Vladas Pipiras University of North Carolina at Chapel Hill SCAM meeting, June 1, 2012 (joint work with G. Didier, P. Abry)

More information

A framework for global reliability sensitivity analysis in the presence of multi-uncertainty

A framework for global reliability sensitivity analysis in the presence of multi-uncertainty A framework for global reliability sensitivity analysis in the presence of multi-uncertainty Max Ehre, Iason Papaioannou, Daniel Straub Engineering Risk Analysis Group, Technische Universität München,

More information

Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs

Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs 2th AIAA Computational Fluid Dynamics Conference 27-3 June 211, Honolulu, Hawaii AIAA 211-369 Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs Sriram General

More information

S. Lototsky and B.L. Rozovskii Center for Applied Mathematical Sciences University of Southern California, Los Angeles, CA

S. Lototsky and B.L. Rozovskii Center for Applied Mathematical Sciences University of Southern California, Los Angeles, CA RECURSIVE MULTIPLE WIENER INTEGRAL EXPANSION FOR NONLINEAR FILTERING OF DIFFUSION PROCESSES Published in: J. A. Goldstein, N. E. Gretsky, and J. J. Uhl (editors), Stochastic Processes and Functional Analysis,

More information

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Tim Wildey Sandia National Laboratories Center for Computing Research (CCR) Collaborators: E. Cyr,

More information

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media M.Köppel, C.Rohde Institute for Applied Analysis and Numerical Simulation Inria, Nov 15th, 2016 Porous Media Examples: sponge,

More information

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA Uncertainty Quantification for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Where do kinetic equations sit in physics Kinetic equations with applications

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator

Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator Hung Mac, Stéphane Clenet, Karim Beddek, Loic Chevallier, Julien Korecki, Olivier Moreau, Pierre Thomas To cite this

More information

Spacecraft Uncertainty Propagation using. Gaussian Mixture Models and Polynomial Chaos. Expansions

Spacecraft Uncertainty Propagation using. Gaussian Mixture Models and Polynomial Chaos. Expansions Spacecraft Uncertainty Propagation using Gaussian Mixture Models and Polynomial Chaos Expansions Vivek Vittaldev 1 and Ryan P. Russell 2 The University of Texas at Austin, Austin, Texas, 78712 Richard

More information

Lecture on Parameter Estimation for Stochastic Differential Equations. Erik Lindström

Lecture on Parameter Estimation for Stochastic Differential Equations. Erik Lindström Lecture on Parameter Estimation for Stochastic Differential Equations Erik Lindström Recap We are interested in the parameters θ in the Stochastic Integral Equations X(t) = X(0) + t 0 µ θ (s, X(s))ds +

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES

EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES 9 th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability EFFICIENT SHAPE OPTIMIZATION USING POLYNOMIAL CHAOS EXPANSION AND LOCAL SENSITIVITIES Nam H. Kim and Haoyu Wang University

More information

Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach

Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach Computational Geosciences manuscript No. (will be inserted by the editor) Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach Alen Alexanderian Justin

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems

Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Quantifying conformation fluctuation induced uncertainty in bio-molecular systems Guang Lin, Dept. of Mathematics & School of Mechanical Engineering, Purdue University Collaborative work with Huan Lei,

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Eveline Rosseel Herbert De Gersem Stefan Vandewalle Report TW 541, July 29 Katholieke

More information

Introduction to uncertainty quantification An example of application in medicine

Introduction to uncertainty quantification An example of application in medicine Introduction to uncertainty quantification An example of application in medicine Laurent Dumas Laboratoire de Mathématiques de Versailles (LMV) Versailles University Short course, University of Mauritius,

More information

Fast Parameter Sensitivity Analysis of PDE-based Image Processing Methods

Fast Parameter Sensitivity Analysis of PDE-based Image Processing Methods Fast Parameter Sensitivity Analysis of PDE-based Image Processing Methods Torben Pätz 1,2 and Tobias Preusser 1,2 1 School of Engineering and Science, Jacobs University Bremen 2 Fraunhofer MEVIS, Bremen,

More information

Generalized Spectral Decomposition for Stochastic Non Linear Problems

Generalized Spectral Decomposition for Stochastic Non Linear Problems Generalized Spectral Decomposition for Stochastic Non Linear Problems Anthony Nouy O.P. Le Maître Preprint submitted to Journal of Computational Physics Abstract We present an extension of the Generalized

More information

Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation

Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation V. Yaghoubi, S. Marelli, B. Sudret, T. Abrahamsson, To cite this version: V. Yaghoubi, S. Marelli,

More information

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations ScientifiComputing Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institute of Scientific Computing Technical University

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information