Comments Transient Material Balances

Size: px
Start display at page:

Download "Comments Transient Material Balances"

Transcription

1 Comments Transient aterial Balances Description of cell mass growth Qualitative ubstrates Cells extracelluar Products more Cells Quantitative X P nx i i toichiometry (example, aerobic) CHmO n a O b NH c CH O N d H O e CO subtrate biomass 2 1

2 aterial Balance Batch Reactor Cell Balances: VR VRgXVRk VRnetX 1 net X ubstrate Consumption & Product Growth: q q P 1 d X 1 dp X 3 aterial Balance Batch Reactor If net is constant then get exponential growth phase netx net X X ln net t X X0 exp net t X0 Followed by deceleration growth (unbalanced growth) & stationary (growth equal to death) phases 4 2

3 aterial Balance Batch Reactor Death phase is 1 st order in cell concentration & gives exponential decay kx d X ln k X X0 exp nett X0 5 ome Growth odels ubstrate-limited Growth (oser equation, onod for n=1) n m g K n ubstrate-limited Growth (Contois equation) m g K X X Noncompetitive ubstrate Inhibition m g K 1 1 K1 Competitive ubstrate Inhibition m g K 1 K1 Noncompetitive Product Inhibition m g K P 1 1 K p Competitive Product Inhibition m g P K 1 K p 6 3

4 onod Growth odel ubstrate-limited Growth / m g K g K 1 / K Also: m Limits: Constant growth rate at large substrate concentrations Proportional to substrate concentration at low concentrations m gk g K m g 7 aterial Balances Ideal Chemostat (ection 6.3.2) 8 4

5 aterial Balances Ideal Chemostat (CTR) Cell balance: VR FX0 FXVRgXVRk DX0 g kd DX where: D F/V R Usually feed is cell mass & product free g d net k D X D X 9 aterial Balances Ideal Chemostat (CTR) At steady state & negligible death rate 0 g D X g D Growth rate can be controlled by changing the dilution rate! However, if the dilution rate is too large then the cell mass is washed out the culture cannot reproduce fast enough to grow before it is removed 10 5

6 aterial Balances Ideal Chemostat (CTR) ubstrate balance d gx qx P VR F0 FVR mx s YX/ Y P/ At steady state g q D 0 P g qp 0 D0 m s X m s YX/ YP/ X YX/ YP/ Linear equation of substrate consumption Grow cell mass Create product Provide energy to the cell mass 11 aterial Balances Ideal Chemostat (CTR) If negligible product formation & maintenance, then: D 0 g D X YX/ 0 X YX/ g Y ubstrate (for onod eqn): m K g g K m g X/ 0 K g KD X YX/ 0 Y X/ 0 m g m D 12 6

7 aterial Balances Ideal Chemostat (CTR) Product formation steady state with introduction of cell mass (but no net growth): From cell balance: From substrate balance: 0 DX0 net D X X X0 From product yield definition: g qp 1 qpx 0 D0 ms X 0 YX/ YP/ DYP/ PP Y 0 P/ 0 13 Other Configurations Chemostat with Recycle 14 7

8 Other Configurations ulti-tage Chemostat 15 Other Configurations Fed Batch 16 8

9 Other Configurations Perfusion 17 Use of Batch Data in Flow Reactors For a batch reactor net X For a CTR it makes sense that the outlet concentration is related to the batch reactor s results such that: X X net 0 batch ttextent where t extent is some characteristic batch time that represents the extent of reaction 18 9

10 Use of Batch Data in Flow Reactors For a chemostat the dilution factor D controls the growth factor net You can relate the two systems & show performance by Plot / vs X for the batch data Plot a straight line through X 0 on the horizontal axis with a slope of D The intersection of the batch results curve & the chemostat performance line will give the value of X within the chemostat. The original batch X vs. t data will then give the corresponding t extent. Product composition can be determined either by: Find the corresponding P at t extent, or Do a similar DP/ vs. P analysis 19 Use of Batch Data in Flow Reactors Using data from Example 6.2, ethanol from glucose using. cerevisiae Time derivatives estimated from central differences 20 10

11 Use of Batch Data in Flow Reactors For a chemostat, D=0.05 h Use of Batch Data in Flow Reactors For a batch reactor productivity is the time-derivative increase in concentration vs. time. For a CTR the analogous term is the dilution factor times the concentration, e.g., D P 22 11

12 Details for Other Bioreactor Configurations 23 Other Configurations Chemostat with Recycle 24 12

13 aterial Balances Chemostat with Recycle Cell balance: 1 1 DX0 CX1 1 DX1 netx1 Ratio recycle flowrate to fresh feed rate 1 V FX0 F CX1 FX1VnetX1 C Concentration factor in Cell eparation At steady state with X 0 =0 1 1 C 0 D CX 1 DX X net D 1 1 net 1 25 aterial Balances Chemostat with Recycle Cell balance around Cell steady state: FX1F CX1 FX2 X2 CX1 ince C > 1 then X 2 < X

14 aterial Balances Chemostat with Recycle ubstrate balance d gx1 qx P 1 VR F0 F1FVR msx 1 YX/ YP/ d gx1 qx P 1 D0 m sx1 YX/ YP/ At steady state & growth limited gx1 qx P 1 0 D0 msx1 YX/ YP/ 1 X/ 0 1 g D YX/ 0 X Y X 1 1C 27 Other Configurations ulti-tage Chemostat 28 14

15 aterial Balances ulti-tage Chemostat Cell balance 2 reactors in series 1 V1 FX0 FX1 net,1xv V FX FX FFX net X V , st reactor looks like a single reactor. Focus on the downstream reactor(s) At steady state with X 0 =0 Now growth rate dependent on cell mass compositions F F F X F X 0 FX 1 F F X2 net,2x2v2 net,2 D2 V V X V X aterial Balances ulti-tage Chemostat ubstrate balance focus on 2 nd reactor d2 V 2 F1F0 FF 2 g,2 qp V2 ms X 2 YX/ YP/ At steady state with only cell mass growth: g,2x2 0 F 1 F 0 F F 2 V2 Y 2 X/ F 1 F 0 g X V2 F1 F 0 g X FF Y FF FF D Y,2 2,2 2 X/ 2 X/ 30 15

16 aterial Balances ulti-tage Chemostat ust simultaneously solve the 3 equations for cell mass & substrate concentrations as well as growth rate For onod eqn: F X1 g,2 D2 V2 X2 F 1 F 0 g X 2 F F DY 2 / m2 g,2 K 2,2 2 X 31 aterial Balances ulti-tage Chemostat Care must be taken to specify an iteration technique to solve this set of non-linear equations implest technique would be direct substitution, but it is doubtful that this would be a robust way to solve 32 16

Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9)

Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9) Comments on Productivity of Batch & Continuous Bioreactors (Chapter 9) Topics Definition of productivity Comparison of productivity of batch vs flowing systems Review Batch Reactor Cell Balances (constant

More information

CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION

CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION TERO EERIKÄINEN ROOM D416d tero.eerikainen@aalto.fi COURSE LECTURES AND EXERCISES Week Day Date Time Place Lectures/Execises 37 Mo 12.9.2016 10:15-11:45

More information

Kinetics of Microbial Growth

Kinetics of Microbial Growth Kinetics of Microbial Growth Unlimited growth Assuming t d 0.33 h, in 48 h, one cell would become 2.33 X 10 43 cells If a cell weighs 10-12 g, then the total would be 2.23 X 10 31 g This would be 4000

More information

Introduction. Growth and product formation in reactors. Downstream processing. Fermentation technology. Typical fermentation

Introduction. Growth and product formation in reactors. Downstream processing. Fermentation technology. Typical fermentation Growth and producormation in reactors Introduction Typical fermentation product classes volume ton/year Introduction Batch, chemostat and fed batch Microbial competition / selection Mixed and mixed culture

More information

The simplified model now consists only of Eq. 5. Degrees of freedom for the simplified model: 2-1

The simplified model now consists only of Eq. 5. Degrees of freedom for the simplified model: 2-1 . a) Overall mass balance: d( ρv ) Energy balance: = w + w w () d V T Tref C = wc ( T Tref ) + wc( T Tref ) w C T Because ρ = constant and ( Tref ) V = V = constant, Eq. becomes: () w = + () w w b) From

More information

AP Calculus AB. Review for Test: Applications of Integration

AP Calculus AB. Review for Test: Applications of Integration Name Review for Test: Applications of Integration AP Calculus AB Test Topics: Mean Value Theorem for Integrals (section 4.4) Average Value of a Function (manipulation of MVT for Integrals) (section 4.4)

More information

Stationary phase. Time

Stationary phase. Time An introduction to modeling of bioreactors Bengt Carlsson Dept of Systems and Control Information Technology Uppsala University August 19, 2002 Abstract This material is made for the course Wastewater

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

Modeling Microbial Populations in the Chemostat

Modeling Microbial Populations in the Chemostat Modeling Microbial Populations in the Chemostat Hal Smith A R I Z O N A S T A T E U N I V E R S I T Y H.L. Smith (ASU) Modeling Microbial Populations in the Chemostat MBI, June 3, 204 / 34 Outline Why

More information

Differentiation. 1. What is a Derivative? CHAPTER 5

Differentiation. 1. What is a Derivative? CHAPTER 5 CHAPTER 5 Differentiation Differentiation is a technique that enables us to find out how a function changes when its argument changes It is an essential tool in economics If you have done A-level maths,

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 19 November 2015 Print version CEE 370 Environmental Engineering Principles Lecture #32 Wastewater Treatment III: Process Modeling & Residuals Reading M&Z: Chapter 9 Reading: Davis & Cornwall,

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Comments Transient Energy Balances

Comments Transient Energy Balances Comments Transient Energy Balances General form of the stuff balance equation Rate of Rate Rate Rate of Rate of Accumulation In Out Generation Consumption F1 Q1 F6 F2 Q3 F3 Q2 F4 F5 2 Word form of the

More information

Chapter II.B. The Chain Rule

Chapter II.B. The Chain Rule Chapter IIB The Chain Rule x x Preface: To find the derivative of f (x) = [sin(x)] and g (x) = exp(x) = e = [e ] you could x x view these functions as the products, sin(x) sin(x) or e e With this view

More information

Maths Higher Prelim Content

Maths Higher Prelim Content Maths Higher Prelim Content Straight Line Gradient of a line A(x 1, y 1 ), B(x 2, y 2 ), Gradient of AB m AB = y 2 y1 x 2 x 1 m = tanθ where θ is the angle the line makes with the positive direction of

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Bifurcation Analysis of Continuous Biochemical Reactor Models

Bifurcation Analysis of Continuous Biochemical Reactor Models Biotechnol. Prog. 2001, 17, 647 660 647 Bifurcation Analysis of Continuous Biochemical Reactor Models Yongchun Zhang and Michael A. Henson* Department of Chemical Engineering, Louisiana State University,

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

Derivative formulas. September 29, Derivative formulas

Derivative formulas. September 29, Derivative formulas September 29, 2013 Derivative of a constant function Derivative is the slope of the graph. The graph of a constant function is a horizontal line with the slope 0 everywhere. Derivative of a constant function

More information

TOPIC: Conceptual Flowsheet for Production of Benzene from Toluene. Proposed Solution:

TOPIC: Conceptual Flowsheet for Production of Benzene from Toluene. Proposed Solution: Norwegian University of Science and Technology Course: Energy and Process Department of Energy and Process Engineering No.: TEP 4230 Trondheim, 17.09.04, T. Gundersen Part: Production Systems Task: 5 Year:

More information

Integration, Separation of Variables

Integration, Separation of Variables Week #1 : Integration, Separation of Variables Goals: Introduce differential equations. Review integration techniques. Solve first-order DEs using separation of variables. 1 Sources of Differential Equations

More information

Limited Growth (Logistic Equation)

Limited Growth (Logistic Equation) Chapter 2, Part 2 2.4. Applications Orthogonal trajectories Exponential Growth/Decay Newton s Law of Cooling/Heating Limited Growth (Logistic Equation) Miscellaneous Models 1 2.4.1. Orthogonal Trajectories

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Solutions for Tutorial 5 Dynamic Behavior of Typical Dynamic Systems

Solutions for Tutorial 5 Dynamic Behavior of Typical Dynamic Systems olutions for Tutorial 5 Dynamic Behavior of Typical Dynamic ystems 5.1 First order ystem: A model for a first order system is given in the following equation. dy dt X in X out (5.1.1) What conditions have

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C.

2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C. Facilitated Transport Instructor: Nam un Wang facilitmcd Process escription In facilitated transport, a carrier molecule C binds to the substrate to form a carrier-substrate complex C at the outer side

More information

h(y) dy = g(x) dx h(y)

h(y) dy = g(x) dx h(y) Separable Differential Equations c 2002 Donald Kreider and Dwight Lahr We have already seen that the differential equation dy dx = ky, where k is a constant, has solution y = y 0e kx. We have solved this

More information

Applications of First Order Differential Equation

Applications of First Order Differential Equation Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 39 Orthogonal Trajectories How to Find Orthogonal Trajectories Growth and Decay

More information

2. (Review) Write an equation to describe each linear function based on the provided information. A. The linear function, k(x), has a slope

2. (Review) Write an equation to describe each linear function based on the provided information. A. The linear function, k(x), has a slope Sec 4.1 Creating Equations & Inequalities Building Linear, Quadratic, and Exponential Functions 1. (Review) Write an equation to describe each linear function graphed below. A. B. C. Name: f(x) = h(x)

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X MAT 107 College Algebra Fall 013 Name Final Exam, Version X EKU ID Instructor Part 1: No calculators are allowed on this section. Show all work on your paper. Circle your answer. Each question is worth

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt MATH 1220-03 Exponential Growth and Decay Spring 08 Solutions 1. (#15 from 6.5.) Cesium 137 and strontium 90 were two radioactive chemicals released at the Chernobyl nuclear reactor in April 1986. The

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 3A: - First order ODEs. Created and compiled by Chris Tisdell S1: What is an ODE? S2: Motivation S3: Types and orders

More information

Hypergraphs, Metabolic Networks, Bioreaction Systems. G. Bastin

Hypergraphs, Metabolic Networks, Bioreaction Systems. G. Bastin Hypergraphs, Metabolic Networks, Bioreaction Systems. G. Bastin PART 1 : Metabolic flux analysis and minimal bioreaction modelling PART 2 : Dynamic metabolic flux analysis of underdetermined networks 2

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-010 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

7 Kinetics of Bio-Reactions

7 Kinetics of Bio-Reactions 83 7 Kinetics of Bio-Reactions John Villadsen Summary Mechanistically founded rate expressions are derived for enzyme reactions, and in Linewaever Burk plots of /r versus. /s, it is shown how the kinetic

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,

More information

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods.

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach DEFINITION: As x approaches

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

Bifurcations in the Quadratic Map

Bifurcations in the Quadratic Map Chapter 14 Bifurcations in the Quadratic Map We will approach the study of the universal period doubling route to chaos by first investigating the details of the quadratic map. This investigation suggests

More information

Lecture 2. Derivative. 1 / 26

Lecture 2. Derivative. 1 / 26 Lecture 2. Derivative. 1 / 26 Basic Concepts Suppose we wish to nd the rate at which a given function f (x) is changing with respect to x when x = c. The simplest idea is to nd the average rate of change

More information

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples. . Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB and AD, the other to BC and CD. Compute the length of AB. Answer: + Solution: Observe that the diagonal of the

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review Chapter 4 Test Review Students will be able to (SWBAT): Write an explicit and a recursive function rule for a linear table of values. Write an explicit function rule for a quadratic table of values. Determine

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation Chapter 2 Differentiation 2.1 Tangent Lines and Their Slopes 1) Find the slope of the tangent line to the curve y = 4x x 2 at the point (-1, 0). A) -1 2 C) 6 D) 2 1 E) -2 2) Find the equation of the tangent

More information

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12 AMS/ECON 11A Class Notes 11/6/17 UCSC *) Higher order derivatives Example. If f = x 3 x + 5x + 1, then f = 6x 8x + 5 Observation: f is also a differentiable function... d f ) = d 6x 8x + 5 ) = 1x 8 dx

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

A First Course on Kinetics and Reaction Engineering Example 23.1

A First Course on Kinetics and Reaction Engineering Example 23.1 Example 23.1 parameter. Problem Purpose This problem illustrates the transient analysis of a CSTR following a change in an operating Problem Statement Recall the isothermal 4430 cm 3 steady-state chemostat

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical

More information

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Questions Example Differentiate the function y = ae v + b v + c v 2. Example Differentiate the function y = A + B x

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

6x 2 8x + 5 ) = 12x 8

6x 2 8x + 5 ) = 12x 8 Example. If f(x) = x 3 4x + 5x + 1, then f (x) = 6x 8x + 5 Observation: f (x) is also a differentiable function... d dx ( f (x) ) = d dx ( 6x 8x + 5 ) = 1x 8 The derivative of f (x) is called the second

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

Feed Forward Control of L-Methionine Using Sequential Adaptive Networks

Feed Forward Control of L-Methionine Using Sequential Adaptive Networks Feed Forward Control of L-Methionine Using Sequential Adaptive Networks Rajib Nayak and James Gomes Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India,

More information

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point, 1.2. Direction Fields: Graphical Representation of the ODE and its Solution Section Objective(s): Constructing Direction Fields. Interpreting Direction Fields. Definition 1.2.1. A first order ODE of the

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

Math 132 Information for Test 2

Math 132 Information for Test 2 Math 13 Information for Test Test will cover material from Sections 5.6, 5.7, 5.8, 6.1, 6., 6.3, 7.1, 7., and 7.3. The use of graphing calculators will not be allowed on the test. Some practice questions

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Review for Final Exam Lecturer: Sangwook Kim Office : Science & Tech I, 226D math.gmu.eu/ skim22 Chapter 1. Functions, Graphs, an Limits A function is a rule that assigns to each objects in a set A exactly

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Part I: Multiple Choice Questions (5 points each) d dx (x3 e 4x ) =

Part I: Multiple Choice Questions (5 points each) d dx (x3 e 4x ) = Part I: Multiple Choice Questions (5 points each) 1. d dx (x3 e 4x ) = (a) 12x 2 e 4x (b) 3x 2 e 4x + 4x 4 e 4x 1 (c) x 3 e 4x + 12x 2 e 4x (d) 3x 2 e 4x + 4x 3 e 4x (e) 4x 3 e 4x 1 2. Suppose f(x) is

More information

First order differential equations

First order differential equations First order differential equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. First

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

Oghome, P.I. And Kamalu,C.I.O. Department Of Chemical Engineering, Federal University Of Technology, P. M. B. 1526, Owerri, Imo State, Nigeria.

Oghome, P.I. And Kamalu,C.I.O. Department Of Chemical Engineering, Federal University Of Technology, P. M. B. 1526, Owerri, Imo State, Nigeria. Kinetics Of Ethanol Production From Nypa Palm (Mangroves Palm) Through Fermentation Process Oghome, P.I. And Kamalu,C.I.O. Department Of Chemical Engineering, Federal University Of Technology, P. M. B.

More information

Book 4. June 2013 June 2014 June Name :

Book 4. June 2013 June 2014 June Name : Book 4 June 2013 June 2014 June 2015 Name : June 2013 1. Given that 4 3 2 2 ax bx c 2 2 3x 2x 5x 4 dxe x 4 x 4, x 2 find the values of the constants a, b, c, d and e. 2. Given that f(x) = ln x, x > 0 sketch

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Differentiation Shortcuts

Differentiation Shortcuts Differentiation Shortcuts Sections 10-5, 11-2, 11-3, and 11-4 Prof. Nathan Wodarz Math 109 - Fall 2008 Contents 1 Basic Properties 2 1.1 Notation............................... 2 1.2 Constant Functions.........................

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

Lesson 18: Problem Set Sample Solutions

Lesson 18: Problem Set Sample Solutions Problem Set Sample Solutions Problems 5 7 serve to review the process of computing f(g(x)) for given functions f and g in preparation for work with inverses of functions in Lesson 19. 1. Sketch the graphs

More information

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS Problem Set Assignment #1 Math 3350, Spring 2004 Feb. 6, 2004 ANSWERS i Problem 1. [Section 1.4, Problem 4] A rocket is shot straight up. During the initial stages of flight is has acceleration 7t m /s

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Math 1120 Calculus Final Exam

Math 1120 Calculus Final Exam May 4, 2001 Name The first five problems count 7 points each (total 35 points) and rest count as marked. There are 195 points available. Good luck. 1. Consider the function f defined by: { 2x 2 3 if x

More information

Name: Partners: PreCalculus. Review 5 Version A

Name: Partners: PreCalculus. Review 5 Version A Name: Partners: PreCalculus Date: Review 5 Version A [A] Circle whether each statement is true or false. 1. 3 log 3 5x = 5x 2. log 2 16 x+3 = 4x + 3 3. ln x 6 + ln x 5 = ln x 30 4. If ln x = 4, then e

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

Optimal Feeding Strategy for Bioreactors with Biomass Death

Optimal Feeding Strategy for Bioreactors with Biomass Death Optimal Feeding Strategy for Bioreactors with Biomass Death L. Bodizs, B. Srinivasan, D. Bonvin Laboratoire d Automatique, Ecole Polytechnique Féderale de Lausanne, CH-1015, Lausanne, Switzerland Abstract

More information

Lecture 9 4.1: Derivative Rules MTH 124

Lecture 9 4.1: Derivative Rules MTH 124 Today we will see that the derivatives of classes of functions behave in similar ways. This is nice because by noticing this general pattern we can develop derivative rules which will make taking derivative

More information

Separable Equations (1A) Young Won Lim 3/24/15

Separable Equations (1A) Young Won Lim 3/24/15 Separable Equations (1A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

Continuous cultures in shake flasks

Continuous cultures in shake flasks Continuous cultures in shake flasks March 28 2012 Continuous cultures in shake flasks Nordics Bioprocess Improvement Seminar Innovation in cell culture process development & production Stockholm, March

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Unit 2 Rational Functionals Exercises MHF 4UI Page 1 Unit 2 Rational Functionals Exercises MHF 4UI Page Exercises 2.: Division of Polynomials. Divide, assuming the divisor is not equal to zero. a) x 3 + 2x 2 7x + 4 ) x + ) b) 3x 4 4x 2 2x + 3 ) x 4) 7. *)

More information

On the chaotic behaviour of a Saccharomyces Cerevisiae culture in a turbidostat

On the chaotic behaviour of a Saccharomyces Cerevisiae culture in a turbidostat Nonlinear Dynamics and Applications. Vol. 13 (2006) 29-36 On the chaotic behaviour of a Saccharomyces Cerevisiae culture in a turbidostat Andrea Cammarota, Michele Miccio, and Massimo Poletto Department

More information