Lecture Outline. Target Tracking: Lecture 3 Maneuvering Target Tracking Issues. Maneuver Illustration. Maneuver Illustration. Maneuver Detection

Size: px
Start display at page:

Download "Lecture Outline. Target Tracking: Lecture 3 Maneuvering Target Tracking Issues. Maneuver Illustration. Maneuver Illustration. Maneuver Detection"

Transcription

1 REGLERTEKNIK Lecture Outline AUTOMATIC CONTROL Target Tracking: Lecture 3 Maneuvering Target Tracking Issues Maneuver Detection Emre Özkan emre@isy.liu.se Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden Multiple Model Approaches Non-switching multiple models Switching multiple models Generalized pseudo Bayesian (GPB) methods Interacting multiple model (IMM) algorithm November 2, 24 E. Özkan Target Tracking November 2, 24 / 23 E. Özkan Target Tracking November 2, 24 2 / 23 Maneuver Illustration Maneuver Illustration A simple illustration of the maneuver problem with simplistic parameters. P D =. P G = P F A = KF with CV model We try different process noise standard deviations σ a =.,, m/s Target A simple illustration of the maneuver problem with simplistic parameters. P D =. P G = P F A = KF with CV model We try different process noise standard deviations σ a =.,, m/s Target E. Özkan Target Tracking November 2, 24 3 / 23 E. Özkan Target Tracking November 2, 24 3 / 23

2 Maneuver Illustration Maneuver Illustration 22 σa =.m/s 2 22 σa = m/s 2 22 σa = m/s 2 22 Gates σa =.m/s 2 22 Gates σa = m/s 2 22 Gates σa = m/s E. Özkan Target Tracking November 2, 24 4 / 23 E. Özkan Target Tracking November 2, 24 4 / 23 Maneuvers Maneuver Detection: Low-Pass High-Pass Normalized innovation square again comes into the picture. Maneuvers are the model mismatch problems in tracking. Using a high order kinematic model that allows versatile tracking is not a solution in the case where data origin uncertainty is present. Instead it makes the gates unnecessarily large and makes susceptible to clutter. Hence maneuvers should be detected and compensated. A maneuver should be detected both when the switches to a higher order model than we use in our KF, and when it switches to a lower order model than we use in the KF. We know that ɛỹk χ 2 n y. ɛỹk = ỹ T k S k k ỹk This is also the gating statistics. So we should check this quantity in a window to avoid false alarms. Use a sliding window or a recursive forgetting. ɛ s k = k i=k N+ ɛỹi or ɛ r k = αɛr k + ɛ ỹ k where α <. E. Özkan Target Tracking November 2, 24 5 / 23 E. Özkan Target Tracking November 2, 24 6 / 23

3 Maneuver Detection: Low-Pass High-Pass Maneuver Detection: Low-Pass High-Pass Use one of the statistics ɛ s k = k i=k N+ ɛỹi or ɛ r k = αɛr k + ɛ ỹ k In the case of perfect model match, we have ɛ s k χ2 Nn y and ɛ r k χ2 α ny where the second distribution is an approximation at the steady state (effective window length α ). A maneuver is declared when the maneuver statistics ɛ k exceeds a threshold ɛ max. The threshold ɛ max is adjusted such that in the case of no maneuver P (ɛ k ɛ max ) = PF maneuver A }{{} During a low-pass to high-pass transition detected from an ɛ k that is obtained by summing ɛỹi over a window of length N (or effective window length α ), there accumulates considerable amount of error in the estimates. These should be compensated when such a detection happens. Generally last estimates in the (effective) window are recalculated. For this purpose, some previous history of estimates and measurements are kept in memory. E. Özkan Target Tracking November 2, 24 7 / 23 E. Özkan Target Tracking November 2, 24 8 / 23 Maneuver Detection: High-Pass Low-Pass The decision in the reverse direction (from high-pass to low-pass) can be given with the same statistics if the statistics ɛ k gets lower than a threshold ɛ min. The threshold ɛ min is adjusted such that in the case of correct model P (ɛ k ɛ min ) = P maneuver miss Maneuver Detection: High-Pass Low-Pass The decision in the reverse direction (from high-pass to low-pass) can be given with the same statistics if the statistics ɛ k gets lower than a threshold ɛ min. The threshold ɛ min is adjusted such that in the case of correct model P (ɛ k ɛ min ) = P maneuver miss PFA = Pmiss =.5 pdf of χ 2 4 cdf of χ ɛmin = 4 ɛmax = 8 ɛmin = 4 ɛmax = 8 E. Özkan Target Tracking November 2, 24 9 / ɛk ɛk chi2pdf(.,n) chi2cdf(.,n) E. Özkan Target Tracking November 2, 24 9 / 23

4 Multiple Model Approaches Multiple Model Approaches: JMLS Target motions can generally be classified into a number of predefined number of modes e.g. Constant Coordinated turn (circular motion with constant speed and angular rate) Constant acceleration Using maneuver detection is a type of making a hard decision between these models i.e., serial use of models (use one model first then switch to another one etc.). The soft version uses all the models at the same (parallel use of models) and combines their results to the extent that they suit to the measurements collected probabilistically. Jump Markov linear systems (JMLS): give a useful framework for using multiple models x k =A(r k )x k + B(r k )w k y k =C(r k )x k + D(r k )v k x k is the state that we would like estimate from y k. This state is called as base state. r k {, 2,..., N r } represents model number and is called as mode (or modal) state. Note that r k is also unknown and must be estimated from measurements y k. A( ), B( ), C( ) and D( ) are mode dependent parameters. E. Özkan Target Tracking November 2, 24 / 23 E. Özkan Target Tracking November 2, 24 / 23 Multiple Model Approaches: JMLS Multiple Model Approaches: Optimal Solution Multiple model approaches can be classified into two broad categories as Non-switching models Switching models Non-Switching case: The underlying model r k is unknown but fixed for all s, i.e., r k = r, k =, 2,.... This type of approaches is useful in system identification with finite number of model alternatives but not very suitable for TT. Switching case: The underlying model r k can jump between different values in {, 2,..., N r } The behavior of r k is generally modeled as first order homogeneous Markov chain with a fixed transition probability matrix. Suppose we started estimation at and now we are at k. There are a total of Nr k different model histories r :k that might have occurred in this period. We show these by {r i :k }N k r i=. When a specific model history r:k i is given we can calculate the estimated density of the state x k as p(x k y :k, r i :k ) = N (x k; ˆx i k k, Σi k k ) which is given by a KF that is matched to the model history. The overall MMSE estimate ˆx k k is then given as where µ i k P (ri :k y :k). N k r ˆx k k = µ i k ˆxi k k i= E. Özkan Target Tracking November 2, 24 2 / 23 E. Özkan Target Tracking November 2, 24 3 / 23

5 Multiple Model Approaches: Optimal Solution Multiple Model Approaches: Optimal Solution r 3 = ˆx 3 3 Storage and computation requirements of the optimal increase exponentially. ˆx r = r = 2 ˆx ˆx 2 r 2 = r 2 = 2 r 2 = ˆx ˆx 2 ˆx 3 ˆx 4 r 3 = 2 r 3 = r 3 = 2 r 3 = r 3 = 2 r 3 = r3 = 2 ˆx ˆx ˆx ˆx ˆx ˆx The posterior density of the state at k is given as N k r p(x k y :k ) = µ i k N (x k; ˆx i k k, Σi k k ) i= The number of components in the Gaussian mixture should be decreased. Some approaches use pruning (discarding low probability terms) periodically. ˆx We here will consider the most popular approach merging. 2 3 E. Özkan Target Tracking November 2, 24 4 / 23 E. Özkan Target Tracking November 2, 24 5 / 23 Multiple Model Approaches: Mixture Reduction Multiple Model Approaches: GPB Generalized pseudo Bayesian algorithms (GPB) The Gaussian mixture given by can be approximated as ˆx k N π iˆx i k, i= p(x k ) = N π i N (x k ; ˆx i k, Σi k ) i= p(x k ) N (x k ; ˆx k, Σ k ), Σ k where, N [ π i Σ i k + (ˆx i k ˆx k)(ˆx i k ˆx k) T ] i= This is a moment matching approximation and called as merging. The second term in the covariance approximation (brackets) is called as the spread of the means. The above choice for the mean and the covariance minimizes the Kullback-Leibler divergence between the original mixture and its approximation. E. Özkan Target Tracking November 2, 24 6 / 23 GPB Approximation: p(x k y :k ) N (x k ; ˆx k k, Σ k k ) Storage: mean and covariance Computation: N r Kalman s Merge with probabilities µ i k P (r k = i y :k ). ˆx r = r = 2 ˆx ˆx r2 = ˆx ˆx ˆx 2 ˆx 2 2 E. Özkan Target Tracking November 2, 24 7 / 23

6 Multiple Model Approaches: GPB2 Multiple Model Approaches: GPB2 vs. IMM Generalized pseudo Bayesian algorithms (GPB) GPB2 Approximation: p(x k y :k ) µ i k N (x k; ˆx i k k, Σi k k ) Storage: N r means and covariances Computation: N 2 r Kalman s i= ˆx ˆx 2 r = r = 2 r = r = 2 ˆx ˆx 2 ˆx 2 ˆx GPB2 ˆx 2 r2 = r2 = ˆx ˆx 2 ˆx 2 ˆx ˆx 2 2 ˆx ˆx 2 r = r = 2 r = r = 2 ˆx ˆx 2 ˆx 2 ˆx ˆx 2 r2 = r2 = ˆx ˆx 2 ˆx 2 ˆx ˆx 2 2 E. Özkan Target Tracking November 2, 24 8 / 23 E. Özkan Target Tracking November 2, 24 9 / 23 Multiple Model Approaches: GPB2 vs. IMM Multiple Model Approaches: IMM ˆx ˆx 2 r = r = 2 r = r = 2 ˆx ˆx 2 ˆx 2 ˆx GPB2 ˆx 2 r2 = r2 = ˆx ˆx 2 ˆx 2 ˆx ˆx 2 2 IMM Interacting Multiple Models IMM Approximation: p(x k y :k ) µ i k N (x k; ˆx i k k, Σi k k ) Same approximation as GPB2 Storage: N r means and covariances Computation: N r Kalman s i= ˆx ˆx 2 r = r = 2 ˆx ˆx 2 r 2 = r 2 = 2 ˆx ˆx 2 ˆx ˆx 2 r = r = 2 ˆx ˆx 2 r 2 = r 2 = 2 ˆx ˆx E. Özkan Target Tracking November 2, 24 9 / 23 E. Özkan Target Tracking November 2, 24 2 / 23

7 Multiple Model Approaches: IMM IMM Illustration Gating and Data Association with IMM At each step, one can just calculate the following overall predicted measurement ŷ k k and innovation covariance S k k ŷ k k = µ i k ŷi k k S k k = [S ] k k i + (ŷi k k ŷ k k )( ) T i= i= µ i k We can do the gating and data association with these quantities. An alternative is to do individual gating for each model and then to take the union of the gated measurements from all models. In this case, the overall likelihood for association is formed from individual likelihoods as p(y k y :k ) = i= µ i k p(y k y :k, r k = i) }{{} individual likelihood from ith KF The same illustration with now IMM. P D =. P G = P F A = IMM uses two CV models same except for σ a =.m/s 2. σ 2 a = m/s IMM E. Özkan Target Tracking November 2, 24 2 / 23 E. Özkan Target Tracking November 2, / 23 IMM Illustration References 22 Gates of IMM The same illustration with now IMM. P D =. P G = P F A = IMM uses two CV models same except for σ a =.m/s 2. σ 2 a = m/s Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York: Wiley, 2. X. Rong Li and V.P. Jilkov, Survey of maneuvering tracking. Part I. Dynamic models, IEEE Transactions on Aerospace and Electronic Systems, vol.39, no.4, pp , Oct. 23. X. Rong Li and V.P. Jilkov, Survey of maneuvering tracking. Part V. Multiple-model methods, IEEE Transactions on Aerospace and Electronic Systems, vol.4, no.4, pp , Oct E. Özkan Target Tracking November 2, / 23 E. Özkan Target Tracking November 2, / 23

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Previously on TT, Target Tracking: Lecture 2 Single Target Tracking Issues. Lecture-2 Outline. Basic ideas on track life

Previously on TT, Target Tracking: Lecture 2 Single Target Tracking Issues. Lecture-2 Outline. Basic ideas on track life REGLERTEKNIK Previously on TT, AUTOMATIC CONTROL Target Tracing: Lecture 2 Single Target Tracing Issues Emre Özan emre@isy.liu.se Division of Automatic Control Department of Electrical Engineering Linöping

More information

MULTI-MODEL FILTERING FOR ORBIT DETERMINATION DURING MANOEUVRE

MULTI-MODEL FILTERING FOR ORBIT DETERMINATION DURING MANOEUVRE MULTI-MODEL FILTERING FOR ORBIT DETERMINATION DURING MANOEUVRE Bruno CHRISTOPHE Vanessa FONDBERTASSE Office National d'etudes et de Recherches Aérospatiales (http://www.onera.fr) B.P. 72 - F-92322 CHATILLON

More information

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Simo Särkkä E-mail: simo.sarkka@hut.fi Aki Vehtari E-mail: aki.vehtari@hut.fi Jouko Lampinen E-mail: jouko.lampinen@hut.fi Abstract

More information

Summary of Past Lectures. Target Tracking: Lecture 4 Multiple Target Tracking: Part I. Lecture Outline. What is a hypothesis?

Summary of Past Lectures. Target Tracking: Lecture 4 Multiple Target Tracking: Part I. Lecture Outline. What is a hypothesis? REGLERTEKNIK Summary of Past Lectures AUTOMATIC COROL Target Tracing: Lecture Multiple Target Tracing: Part I Emre Özan emre@isy.liu.se Division of Automatic Control Department of Electrical Engineering

More information

Estimation and Maintenance of Measurement Rates for Multiple Extended Target Tracking

Estimation and Maintenance of Measurement Rates for Multiple Extended Target Tracking FUSION 2012, Singapore 118) Estimation and Maintenance of Measurement Rates for Multiple Extended Target Tracking Karl Granström*, Umut Orguner** *Division of Automatic Control Department of Electrical

More information

Tracking and Identification of Multiple targets

Tracking and Identification of Multiple targets Tracking and Identification of Multiple targets Samir Hachour, François Delmotte, Eric Lefèvre, David Mercier Laboratoire de Génie Informatique et d'automatique de l'artois, EA 3926 LGI2A first name.last

More information

Rao-Blackwellized Particle Filter for Multiple Target Tracking

Rao-Blackwellized Particle Filter for Multiple Target Tracking Rao-Blackwellized Particle Filter for Multiple Target Tracking Simo Särkkä, Aki Vehtari, Jouko Lampinen Helsinki University of Technology, Finland Abstract In this article we propose a new Rao-Blackwellized

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter

Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter Bhashyam Balaji, Christoph Gierull and Anthony Damini Radar Sensing and Exploitation Section, Defence Research

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Maneuvering target tracking using an unbiased nearly constant heading model

Maneuvering target tracking using an unbiased nearly constant heading model Maneuvering target tracking using an unbiased nearly constant heading model P.A. Kountouriotis EEE Department Imperial College London SW7 2AZ, UK Email: pk201@imperial.ac.uk Simon Maskell QinetiQ St. Andrews

More information

Tracking an Accelerated Target with a Nonlinear Constant Heading Model

Tracking an Accelerated Target with a Nonlinear Constant Heading Model Tracking an Accelerated Target with a Nonlinear Constant Heading Model Rong Yang, Gee Wah Ng DSO National Laboratories 20 Science Park Drive Singapore 118230 yrong@dsoorgsg ngeewah@dsoorgsg Abstract This

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

A Tree Search Approach to Target Tracking in Clutter

A Tree Search Approach to Target Tracking in Clutter 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 A Tree Search Approach to Target Tracking in Clutter Jill K. Nelson and Hossein Roufarshbaf Department of Electrical

More information

MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise

MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise I. Bilik 1 and J. Tabrikian 2 1 Dept. of Electrical and Computer Engineering, University

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

On the Reduction of Gaussian inverse Wishart Mixtures

On the Reduction of Gaussian inverse Wishart Mixtures On the Reduction of Gaussian inverse Wishart Mixtures Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University, SE-58 8, Linköping, Sweden Email: karl@isy.liu.se

More information

ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING

ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING A Thesis Presented to The Academic Faculty By Ryan D. Palkki In Partial Fulfillment of the Requirements for the Degree Master

More information

G. Hendeby Target Tracking: Lecture 5 (MHT) December 10, / 36

G. Hendeby Target Tracking: Lecture 5 (MHT) December 10, / 36 REGLERTEKNIK Lecture Outline Target Tracking: Lecture 5 Multiple Target Tracking: Part II Gustaf Hendeby hendeby@isy.liu.se Div. Automatic Control Dept. Electrical Engineering Linköping University December

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS Gustaf Hendeby Fredrik Gustafsson Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-58 83 Linköping,

More information

Gaussian Mixture Filter in Hybrid Navigation

Gaussian Mixture Filter in Hybrid Navigation Digest of TISE Seminar 2007, editor Pertti Koivisto, pages 1-5. Gaussian Mixture Filter in Hybrid Navigation Simo Ali-Löytty Institute of Mathematics Tampere University of Technology simo.ali-loytty@tut.fi

More information

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming Control and Cybernetics vol. 35 (2006) No. 4 State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming by Dariusz Janczak and Yuri Grishin Department

More information

Parameter Estimation in a Moving Horizon Perspective

Parameter Estimation in a Moving Horizon Perspective Parameter Estimation in a Moving Horizon Perspective State and Parameter Estimation in Dynamical Systems Reglerteknik, ISY, Linköpings Universitet State and Parameter Estimation in Dynamical Systems OUTLINE

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Data association uncertainty occurs when remote sensing devices, such as radar,

Data association uncertainty occurs when remote sensing devices, such as radar, The Probabilistic Data Association Filter ESTIMATION IN THE PRESENCE OF MEASUREMENT ORIGIN UNCERTAINTY YAAKOV BAR-SHALOM, FRED DAUM, and JIM HUANG Data association uncertainty occurs when remote sensing

More information

Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother

Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother Simo Särkkä, Aki Vehtari and Jouko Lampinen Helsinki University of Technology Department of Electrical and Communications

More information

Sliding Window Test vs. Single Time Test for Track-to-Track Association

Sliding Window Test vs. Single Time Test for Track-to-Track Association Sliding Window Test vs. Single Time Test for Track-to-Track Association Xin Tian Dept. of Electrical and Computer Engineering University of Connecticut Storrs, CT 06269-257, U.S.A. Email: xin.tian@engr.uconn.edu

More information

Lecture Outline. Target Tracking: Lecture 7 Multiple Sensor Tracking Issues. Multi Sensor Architectures. Multi Sensor Architectures

Lecture Outline. Target Tracking: Lecture 7 Multiple Sensor Tracking Issues. Multi Sensor Architectures. Multi Sensor Architectures Lecture Outline Target Tracing: Lecture 7 Multiple Sensor Tracing Issues Umut Orguner umut@metu.edu.tr room: EZ-12 tel: 4425 Department of Electrical & Electronics Engineering Middle East Technical University

More information

Sequential Bayesian Estimation of the Probability of Detection for Tracking

Sequential Bayesian Estimation of the Probability of Detection for Tracking 2th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 Sequential Bayesian Estimation of the Probability of Detection for Tracking Kevin G. Jamieson Applied Physics Lab University

More information

Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model Approach

Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model Approach 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

Tracking Maneuvering Targets with a Soft Bound on the Number of Maneuvers

Tracking Maneuvering Targets with a Soft Bound on the Number of Maneuvers 4th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 2 Tracking Maneuvering Targets with a Soft Bound on the Number of Maneuvers Daniel Sigalov Technion Israel Institute

More information

Multiple Model Cardinalized Probability Hypothesis Density Filter

Multiple Model Cardinalized Probability Hypothesis Density Filter Multiple Model Cardinalized Probability Hypothesis Density Filter Ramona Georgescu a and Peter Willett a a Elec. and Comp. Engineering Department, University of Connecticut, Storrs, CT 06269 {ramona, willett}@engr.uconn.edu

More information

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel Lecture Notes 4 Vector Detection and Estimation Vector Detection Reconstruction Problem Detection for Vector AGN Channel Vector Linear Estimation Linear Innovation Sequence Kalman Filter EE 278B: Random

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set

A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set 1th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 211 A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set Kathrin Wilkens 1,2 1 Institute

More information

PERFORMANCE COMPARISON OF TRACKING ALGORITHMS FOR A GROUND BASED RADAR GÖKHAN SOYSAL AND MURAT EFE

PERFORMANCE COMPARISON OF TRACKING ALGORITHMS FOR A GROUND BASED RADAR GÖKHAN SOYSAL AND MURAT EFE Commun. Fac. Sci. Univ. Ank. Series A2-A3 V.5() pp -6 (2007) PERFORMANCE COMPARISON OF TRACKING ALGORITHMS FOR A GROUND BASED RADAR Ankara University, Faculty of Engineering, Electronics Engineering Department,

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Target Tracking Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Linear Dynamical System (LDS) Stochastic process governed by is the state vector is the input vector is the process

More information

Properties and approximations of some matrix variate probability density functions

Properties and approximations of some matrix variate probability density functions Technical report from Automatic Control at Linköpings universitet Properties and approximations of some matrix variate probability density functions Karl Granström, Umut Orguner Division of Automatic Control

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

A Novel Maneuvering Target Tracking Algorithm for Radar/Infrared Sensors

A Novel Maneuvering Target Tracking Algorithm for Radar/Infrared Sensors Chinese Journal of Electronics Vol.19 No.4 Oct. 21 A Novel Maneuvering Target Tracking Algorithm for Radar/Infrared Sensors YIN Jihao 1 CUIBingzhe 2 and WANG Yifei 1 (1.School of Astronautics Beihang University

More information

X. F. Wang, J. F. Chen, Z. G. Shi *, and K. S. Chen Department of Information and Electronic Engineering, Zhejiang University, Hangzhou , China

X. F. Wang, J. F. Chen, Z. G. Shi *, and K. S. Chen Department of Information and Electronic Engineering, Zhejiang University, Hangzhou , China Progress In Electromagnetics Research, Vol. 118, 1 15, 211 FUZZY-CONTROL-BASED PARTICLE FILTER FOR MANEUVERING TARGET TRACKING X. F. Wang, J. F. Chen, Z. G. Shi *, and K. S. Chen Department of Information

More information

BAYESIAN ESTIMATION OF UNKNOWN PARAMETERS OVER NETWORKS

BAYESIAN ESTIMATION OF UNKNOWN PARAMETERS OVER NETWORKS BAYESIAN ESTIMATION OF UNKNOWN PARAMETERS OVER NETWORKS Petar M. Djurić Dept. of Electrical & Computer Engineering Stony Brook University Stony Brook, NY 11794, USA e-mail: petar.djuric@stonybrook.edu

More information

Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracking and Data Association Using Data from a LRF

Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracking and Data Association Using Data from a LRF Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracing and Data Association Using Data from a LRF Technical Report Nº ISRLM2005/04 Cristiano Premebida October, 2005. Departamento de Engenharia Electrotécnica

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Combined Particle and Smooth Variable Structure Filtering for Nonlinear Estimation Problems

Combined Particle and Smooth Variable Structure Filtering for Nonlinear Estimation Problems 14th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 2011 Combined Particle and Smooth Variable Structure Filtering for Nonlinear Estimation Problems S. Andrew Gadsden

More information

State Estimation for Hybrid Systems: Applications to Aircraft Tracking

State Estimation for Hybrid Systems: Applications to Aircraft Tracking State Estimation for Hybrid Systems: Applications to Aircraft Tracking Inseok Hwang, Hamsa Balakrishnan, and Claire Tomlin School of Aeronautics and Astronautics, Purdue University, IN 4797 Dept. of Aeronautics

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Particle Filtering for Track Before Detect Applications

Particle Filtering for Track Before Detect Applications Particle Filtering for Track Before Detect Applications Master s Thesis Division of Automatic Control Department of Electrical Engineering Linköping University, Sweden Johan Torstensson Mikael Trieb Reg

More information

A NEW FORMULATION OF IPDAF FOR TRACKING IN CLUTTER

A NEW FORMULATION OF IPDAF FOR TRACKING IN CLUTTER A NEW FRMULATIN F IPDAF FR TRACKING IN CLUTTER Jean Dezert NERA, 29 Av. Division Leclerc 92320 Châtillon, France fax:+33146734167 dezert@onera.fr Ning Li, X. Rong Li University of New rleans New rleans,

More information

A New Prediction for Extended Targets with Random Matrices

A New Prediction for Extended Targets with Random Matrices IEEE TRANSACTINS N AERSPACE AND ELECTRNIC SYSTEMS, VL. 5, N., APRIL 4 A New Prediction for Extended Targets with Random Matrices Karl Granström, Member, IEEE, and Umut rguner, Member, IEEE Abstract This

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Summary of last lecture We know how to do probabilistic reasoning over time transition model P(X t

More information

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences 1 GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences Hyung Keun Lee, Jang-Gyu Lee, and Gyu-In Jee Hyung Keun Lee is with Seoul National University-Korea University Joint Research

More information

Least Squares and Kalman Filtering Questions: me,

Least Squares and Kalman Filtering Questions:  me, Least Squares and Kalman Filtering Questions: Email me, namrata@ece.gatech.edu Least Squares and Kalman Filtering 1 Recall: Weighted Least Squares y = Hx + e Minimize Solution: J(x) = (y Hx) T W (y Hx)

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

A Comparison of Multiple-Model Target Tracking Algorithms

A Comparison of Multiple-Model Target Tracking Algorithms University of New Orleans ScholarWors@UNO University of New Orleans heses and Dissertations Dissertations and heses 1-17-4 A Comparison of Multiple-Model arget racing Algorithms Ryan Pitre University of

More information

CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS

CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS N. Nouar and A.Farrouki SISCOM Laboratory, Department of Electrical Engineering, University of Constantine,

More information

A PCR-BIMM filter For Maneuvering Target Tracking

A PCR-BIMM filter For Maneuvering Target Tracking A PCR-BIMM filter For Maneuvering Target Tracking Jean Dezert Benjamin Pannetier Originally published as Dezert J., Pannetier B., A PCR-BIMM filter for maneuvering target tracking, in Proc. of Fusion 21,

More information

Dynamic models 1 Kalman filters, linearization,

Dynamic models 1 Kalman filters, linearization, Koller & Friedman: Chapter 16 Jordan: Chapters 13, 15 Uri Lerner s Thesis: Chapters 3,9 Dynamic models 1 Kalman filters, linearization, Switching KFs, Assumed density filters Probabilistic Graphical Models

More information

Target tracking and classification for missile using interacting multiple model (IMM)

Target tracking and classification for missile using interacting multiple model (IMM) Target tracking and classification for missile using interacting multiple model (IMM Kyungwoo Yoo and Joohwan Chun KAIST School of Electrical Engineering Yuseong-gu, Daejeon, Republic of Korea Email: babooovv@kaist.ac.kr

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

Bayesian tracking of multiple point targets using expectation maximization

Bayesian tracking of multiple point targets using expectation maximization 450 400 350 300 p y (m) 250 200 150 100 50 0 Measurement data True tracks Track estimates 50 100 150 200 250 300 350 400 450 500 p x (m) Bayesian tracking of multiple point targets using expectation maximization

More information

TARGET TRACKING AND DATA FUSION: How to Get the Most Out of Your Sensors and make a living out of it FUSION 2017

TARGET TRACKING AND DATA FUSION: How to Get the Most Out of Your Sensors and make a living out of it FUSION 2017 TARGET TRACKING AND DATA FUSION: How to Get the Most Out of Your Sensors and make a living out of it AN OVERVIEW OF TRACKING ALGORITHMS FOR CLUTTERED AND MULTITARGET-MULTISENSOR ENVIRONMENTS Yaakov Bar-Shalom,

More information

Linear Optimal State Estimation in Systems with Independent Mode Transitions

Linear Optimal State Estimation in Systems with Independent Mode Transitions Linear Optimal State Estimation in Systems with Independent Mode ransitions Daniel Sigalov, omer Michaeli and Yaakov Oshman echnion Israel Institute of echnology Abstract A generalized state space representation

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

A comparative study of multiple-model algorithms for maneuvering target tracking

A comparative study of multiple-model algorithms for maneuvering target tracking A comparative study of multiple-model algorithms for maneuvering target tracing Ryan R. Pitre Vesselin P. Jilov X. Rong Li Department of Electrical Engineering University of New Orleans New Orleans, LA

More information

Myriad Target Tracking in a Dusty Plasma

Myriad Target Tracking in a Dusty Plasma 4th International Conference on Information Fusion Chicago, Illinois, USA, July -8, 2 Myriad Target Tracking in a Dusty Plasma Neil P. Oxtoby, Jason F. Ralph, Céline Durniak, Dmitry Samsonov Department

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization and Timothy D. Barfoot CRV 2 Outline Background Objective Experimental Setup Results Discussion Conclusion 2 Outline

More information

Tracking of Extended Objects and Group Targets using Random Matrices A New Approach

Tracking of Extended Objects and Group Targets using Random Matrices A New Approach Tracing of Extended Objects and Group Targets using Random Matrices A New Approach Michael Feldmann FGAN Research Institute for Communication, Information Processing and Ergonomics FKIE D-53343 Wachtberg,

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

Heterogeneous Track-to-Track Fusion

Heterogeneous Track-to-Track Fusion Heterogeneous Track-to-Track Fusion Ting Yuan, Yaakov Bar-Shalom and Xin Tian University of Connecticut, ECE Dept. Storrs, CT 06269 E-mail: {tiy, ybs, xin.tian}@ee.uconn.edu T. Yuan, Y. Bar-Shalom and

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Online tests of Kalman filter consistency

Online tests of Kalman filter consistency Tampere University of Technology Online tests of Kalman filter consistency Citation Piché, R. (216). Online tests of Kalman filter consistency. International Journal of Adaptive Control and Signal Processing,

More information

Design of Nearly Constant Velocity Track Filters for Brief Maneuvers

Design of Nearly Constant Velocity Track Filters for Brief Maneuvers 4th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 20 Design of Nearly Constant Velocity rack Filters for Brief Maneuvers W. Dale Blair Georgia ech Research Institute

More information

A Sufficient Comparison of Trackers

A Sufficient Comparison of Trackers A Sufficient Comparison of Trackers David Bizup University of Virginia Department of Systems and Information Engineering P.O. Box 400747 151 Engineer's Way Charlottesville, VA 22904 Donald E. Brown University

More information

An Adaptive Road-Constrained IMM Estimator for Ground Target Tracking in GSM Networks

An Adaptive Road-Constrained IMM Estimator for Ground Target Tracking in GSM Networks An Adaptive Road-Constrained IMM Estimator for Ground Target Tracking in GSM Networks Miao Zhang, Stefan Knedlik, Otmar Loffeld Center for Sensorsystems (ZESS), University of Siegen Paul-Bonatz-Str. 9-11,

More information

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta Recurrent Autoregressive Networks for Online Multi-Object Tracking Presented By: Ishan Gupta Outline Multi Object Tracking Recurrent Autoregressive Networks (RANs) RANs for Online Tracking Other State

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Constrained State Estimation Using the Unscented Kalman Filter

Constrained State Estimation Using the Unscented Kalman Filter 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France June 25-27, 28 Constrained State Estimation Using the Unscented Kalman Filter Rambabu Kandepu, Lars Imsland and

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Machine Learning using Bayesian Approaches

Machine Learning using Bayesian Approaches Machine Learning using Bayesian Approaches Sargur N. Srihari University at Buffalo, State University of New York 1 Outline 1. Progress in ML and PR 2. Fully Bayesian Approach 1. Probability theory Bayes

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Lecture Note 2: Estimation and Information Theory

Lecture Note 2: Estimation and Information Theory Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 2: Estimation and Information Theory Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 2.1 Estimation A static estimation problem

More information

Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data

Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data Taposh Banerjee University of Texas at San Antonio Joint work with Gene Whipps (US Army Research Laboratory) Prudhvi

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Interactive Multiple Model Hazard States Prediction for Unmanned Aircraft Systems (UAS) Detect and Avoid (DAA)

Interactive Multiple Model Hazard States Prediction for Unmanned Aircraft Systems (UAS) Detect and Avoid (DAA) Interactive Multiple Model Hazard States Prediction for Unmanned Aircraft Systems (UAS) Detect and Avoid (DAA) Adriano Canolla Michael B. Jamoom, and Boris Pervan Illinois Institute of Technology This

More information

Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis

Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis Xin Fan 1,2 1 School of Information Engineering Dalian Maritime University, Dalian, China xin.fan@okstate.edu Guoliang

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY GAUSSIAN MIXTURE REDUCTION FOR BAYESIAN TARGET TRACKING IN CLUTTER THESIS David J. Petrucci, Captain, USAF AFIT/GE/ENG/06-01 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

More information