Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science.

Size: px
Start display at page:

Download "Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science."

Transcription

1 STC Lecture Series An Introduction to the Kalman Filter Greg Welch and Gary Bishop University of North Carolina at Chapel Hill Department of Computer Science UNC Chapel Hill Computer Science Slide 1

2 Where We re Going Introduction & Intuition The Discrete Kalman Filter A Simple Example Variations of the Filter Relevant Applications & References UNC Chapel Hill Computer Science Slide 2

3 The Kalman filter Seminal paper by R.E. Kalman, 1960 Set of mathematical equations Optimal estimator minimum mean square error Versatile Estimation Filtering Prediction Fusion predict correct UNC Chapel Hill Computer Science Slide 3

4 Why a Kalman Filter? Efficient least-squares implementation Past, present and future estimation Estimation of missing states Measure of estimation quality (variance) Robust forgiving in many ways stable given common conditions UNC Chapel Hill Computer Science Slide 4

5 Some Intuition UNC Chapel Hill Computer Science Slide 5

6 First Estimate Conditional Density Function z σ 2 1, z 1 x ˆ = z 1 1 N(z 1,σ 2 z1 ) σ ˆ 2 = σ 2 1 z UNC Chapel Hill Computer Science Slide 6

7 Second Estimate Conditional Density Function z σ 2 2, z 2 x ˆ =...? 2 N(z 2,σ 2 z2 ) σ ˆ 2 =...? UNC Chapel Hill Computer Science Slide 7

8 Combine Estimates x ˆ = [ σ 2 ( σ 2 + σ 2 )]z + [ σ 2 ( σ 2 +σ 2 )]z 2 z2 z1 z2 1 z1 z1 z2 2 = ˆ x + K [ z x ˆ ] where K 2 = σ 2 z1 ( σ 2 + σ 2) z1 z2 UNC Chapel Hill Computer Science Slide 8

9 Combine Variances 1 σ 2 = ( 1 σ 2 )+ 1σ 2 2 z1 z2 ( ) UNC Chapel Hill Computer Science Slide 9

10 Combined Estimate Density Conditional Density Function x ˆ = x ˆ 2 N( x,ˆ ˆ σ 2 ) σ ˆ 2 = σ UNC Chapel Hill Computer Science Slide 10

11 Add Dynamics dx/dt = v + w where v is the nominal velocity w is a noise term (uncertainty) UNC Chapel Hill Computer Science Slide 11

12 Propagation of Density UNC Chapel Hill Computer Science Slide 12

13 Some Details x= Ax+ w z= Hx... UNC Chapel Hill Computer Science Slide 13

14 Discrete Kalman Filter Maintains first two statistical moments process state (mean) z y x error covariance UNC Chapel Hill Computer Science Slide 14

15 Discrete Kalman Filter The Ingredients A discrete process model change in state over time linear difference equation A discrete measurement model relationship between state and measurement linear function Model Parameters Process noise characteristics Measurement noise characteristics UNC Chapel Hill Computer Science Slide 15

16 Necessary Models previous state state dynamic model measurement model next state image plane (u,v) measurement UNC Chapel Hill Computer Science Slide 16

17 The Process Model Process Dynamics Measurement x k+1 = Ax k + w k z k = Hx k + v k UNC Chapel Hill Computer Science Slide 17

18 Process Dynamics x k+1 = Ax k + w k state vector x k R n contains the states of the process UNC Chapel Hill Computer Science Slide 18

19 Process Dynamics x k+1 = Ax k + w k state transition matrix nxn matrix A relates state at time step k to time step k+1 UNC Chapel Hill Computer Science Slide 19

20 Process Dynamics x k+1 = Ax k + w k process noise w k R n models the uncertainty of the process w k ~ N(0, Q) UNC Chapel Hill Computer Science Slide 20

21 Measurement z k = Hx k + v k measurement vector z k R m is the process measurement UNC Chapel Hill Computer Science Slide 21

22 Measurement z k = Hx k + v k state vector UNC Chapel Hill Computer Science Slide 22

23 Measurement z k = Hx k + v k measurement matrix mxn matrix H relates state to measurement UNC Chapel Hill Computer Science Slide 23

24 Measurement z k = Hx k + v k measurement noise z k R m models the noise in the measurement v k ~ N(0, R) UNC Chapel Hill Computer Science Slide 24

25 State Estimates a priori state estimate x ˆ k a posteriori state estimate xˆ k UNC Chapel Hill Computer Science Slide 25

26 Estimate Covariances a priori estimate error covariance P k = E[(x k - ˆ x k )(x k - ˆ x k ) T ] a posteriori estimate error covariance P k = E[(x k - xˆ k )(x k - ˆ x k ) T ] UNC Chapel Hill Computer Science Slide 26

27 Filter Operation Time update (a priori estimates) Project state and covariance forward to next time step, i.e. predict Measurement update (a posteriori estimates) Update with a (noisy) measurement of the process, i.e. correct UNC Chapel Hill Computer Science Slide 27

28 Time Update (Predict) state error covariance UNC Chapel Hill Computer Science Slide 28

29 Measurement Update (Correct) UNC Chapel Hill Computer Science Slide 29

30 Time Update (Predict) a priori state and error covariance xˆ k+1 = Ax k P k+1 = AP k A + Q UNC Chapel Hill Computer Science Slide 30

31 Measurement Update (Correct) Kalman gain K k = P k H T (HP k H T + R) -1 a posteriori state and error covariance xˆ k = xˆ k + K k (z k - Hxˆ k ) P k = (I - K k H)P k UNC Chapel Hill Computer Science Slide 31

32 Filter Operation Time Update (Predict) Measurement Update (Correct) UNC Chapel Hill Computer Science Slide 32

33 A Simple Example Estimating a Constant UNC Chapel Hill Computer Science Slide 33

34 Estimating a Constant A, H, P k, R, z k, and K k are all scalars. In particular, A = 1 H = 1 UNC Chapel Hill Computer Science Slide 34

35 Process Model Process Dynamics Measurement x k+1 = x k z k = x k + v k UNC Chapel Hill Computer Science Slide 35

36 Time Update a priori state and error covariance xˆ k+1 = x k P k+1 = P k UNC Chapel Hill Computer Science Slide 36

37 Measurement Update Kalman gain K k = P k / (P k + R) a posteriori state and error covariance xˆ k = xˆ k + K k (z k - ˆ x k ) P k = (1 - K k )P k UNC Chapel Hill Computer Science Slide 37

38 Simulations z ˆ k and x k P k UNC Chapel Hill Computer Science Slide 38

39 Variations of the Filter Discrete-Discrete (a.k.a. discrete ) Continuous-Discrete Extended Kalman Filter UNC Chapel Hill Computer Science Slide 39

40 Continuous-Discrete The Process (Model) Continuous model of system dynamics Discrete measurement equation Why, When, How Flexibility in prediction Irregularly spaced (discrete) measurements At measurement, integrate state forward (e.g. Runge-Kutta integrator) UNC Chapel Hill Computer Science Slide 40

41 Extended Kalman Filter Nonlinear Model(s) Process dynamics: A becomes a(x,w) Measurement: H becomes h(x,z) Filter Reformulation Use functions instead of matrices Use Jacobians to project forward, and to relate measurement to state UNC Chapel Hill Computer Science Slide 41

42 Relevant Applications Rebo Rebo, Robert K A Helmet-Mounted Virtual Environment Display System, M.S. Thesis, Air Force Institute of Technology. Azuma Azuma, Ronald Predictive Tracking for Augmented Reality, Ph.D. dissertation, The University of North Carolina at Chapel Hill, TR UNC Chapel Hill Computer Science Slide 42

43 Relevant Applications Friedmann et al. Friedmann, Martin, Thad Starner, and Alex Pentland Device Synchronization Using an Optimal Filter, Proceedings of 1992 Symposium on Interactive 3D Graphics (Cambridge MA) Liang et al. Liang, Jiandong, Chris Shaw, and Mark Green. On Temporal- Spatial Realism in the Virtual Reality Environment, Proceedings of the 4th annual ACM Symposium on User Interface Software & Technology, UNC Chapel Hill Computer Science Slide 43

44 Relevant Applications Van Pabst & Krekel Van Pabst, Joost Van Lawick, and Paul F. C. Krekel. Multi Sensor Data Fusion of Points, Line Segments and Surface Segments in 3D Space, TNO Physics and Electronics Laboratory, The Hague, The Netherlands. [cited 19 November 1995]. UNC Chapel Hill Computer Science Slide 44

45 SCAAT Tracking Latency & Rate Simultaneity Assumption SCAAT Observability Family of unobservable systems Calibration VE Tracking, GPS, etc. UNC Chapel Hill Computer Science Slide 45

46 Kalman Filter Papers... Kalman Kalman, R. E A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME Journal of Basic Engineering, pp (March 1960). Sorenson Sorenson, H. W Least-Squares estimation: from Gauss to Kalman, IEEE Spectrum, vol. 7, pp , July UNC Chapel Hill Computer Science Slide 46

47 Some Books Brown Gelb Jacobs Lewis Introduction to Random Signals and Applied Kalman Filtering (2 nd ) Applied Optimal Estimation Introduction to Control Theory Optimal Estimation with an Introduction to Stochastic Control Theory Maybeck Stochastic Models, Estimation, and Control, Volume 1 UNC Chapel Hill Computer Science Slide 47

48 Further Information Welch & Bishop Welch, Greg and Gary Bishop An Introduction to the Kalman Filter, The University of North Carolina at Chapel Hill, TR UNC Chapel Hill Computer Science Slide 48

An Introduction to the Kalman Filter

An Introduction to the Kalman Filter An Introduction to the Kalman Filter by Greg Welch 1 and Gary Bishop 2 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 275993175 Abstract In 1960, R.E. Kalman

More information

An Introduction to the Kalman Filter

An Introduction to the Kalman Filter SIGGRAPH 2001 Course 8 An Introduction to the Kalman Filter Greg Welch Gary Bishop University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 275993175 http://www.cs.unc.edu/~{welch,

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

An Empirical Study into the Robustness of Split Covariance Addition (SCA) for Human Motion Tracking

An Empirical Study into the Robustness of Split Covariance Addition (SCA) for Human Motion Tracking An Empirical Study into the Robustness of Split Covariance Addition (SCA) for Human Motion Tracking Simon J. Julier and Joseph J. LaViola Jr. Abstract Accurate human body tracking is extremely important

More information

A Matrix Theoretic Derivation of the Kalman Filter

A Matrix Theoretic Derivation of the Kalman Filter A Matrix Theoretic Derivation of the Kalman Filter 4 September 2008 Abstract This paper presents a matrix-theoretic derivation of the Kalman filter that is accessible to students with a strong grounding

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Error reduction in GPS datum conversion using Kalman filter in diverse scenarios Swapna Raghunath 1, Malleswari B.L 2, Karnam Sridhar 3

Error reduction in GPS datum conversion using Kalman filter in diverse scenarios Swapna Raghunath 1, Malleswari B.L 2, Karnam Sridhar 3 INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 3, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4380 Error reduction in GPS

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

SCAAT: Incremental Tracking with Incomplete Information

SCAAT: Incremental Tracking with Incomplete Information SCAAT: Incremental Tracking with Incomplete Information TR96-051 October 1996 Gregory F. Welch Department of Computer Science CB #3175, Sitterson Hall UNC-Chapel Hill Chapel Hill, NC 27599-3175 UNC is

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception.

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception. The Kalman Filter (part 1) HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ March 5, 2007 HCI/ComS 575X: Computational Perception

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

STATE estimation is a fundamental and very important

STATE estimation is a fundamental and very important Reduced Measurement-space Dynamic State Estimation (ReMeDySE) for Power Systems Jinghe Zhang, Student Member, IEEE, Greg Welch, Member, IEEE, Gary Bishop and Zhenyu Huang Senior Member, IEEE Abstract Applying

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II CSE 586, Spring 2015 Computer Vision II Hidden Markov Model and Kalman Filter Recall: Modeling Time Series State-Space Model: You have a Markov chain of latent (unobserved) states Each state generates

More information

Recall: Modeling Time Series. CSE 586, Spring 2015 Computer Vision II. Hidden Markov Model and Kalman Filter. Modeling Time Series

Recall: Modeling Time Series. CSE 586, Spring 2015 Computer Vision II. Hidden Markov Model and Kalman Filter. Modeling Time Series Recall: Modeling Time Series CSE 586, Spring 2015 Computer Vision II Hidden Markov Model and Kalman Filter State-Space Model: You have a Markov chain of latent (unobserved) states Each state generates

More information

Kalman Filter: Multiplying Normal Distributions

Kalman Filter: Multiplying Normal Distributions Kalman Filter: Multiplying Normal Distributions Norbert Freier, mail@norbert-freier.de, ITVS, TU Dresden 7 th October 03 Abstract This publication in the domain of sensor data fusion considers the Kalman

More information

the robot in its current estimated position and orientation (also include a point at the reference point of the robot)

the robot in its current estimated position and orientation (also include a point at the reference point of the robot) CSCI 4190 Introduction to Robotic Algorithms, Spring 006 Assignment : out February 13, due February 3 and March Localization and the extended Kalman filter In this assignment, you will write a program

More information

Application of the Kalman Filtering in Terrestrial Geodesy

Application of the Kalman Filtering in Terrestrial Geodesy Application of the Kalman Filtering in Terrestrial Geodesy Sonja BOGATIN and Dušan KOGOJ, Slovenia Key words: electronic tachymeter, Kalman filter, inematic measurements, measurement noise, process noise

More information

Five Formulations of Extended Kalman Filter: Which is the best for D-RTO?

Five Formulations of Extended Kalman Filter: Which is the best for D-RTO? 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Five Formulations of Extended Kalman Filter: Which is

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

UNCERTAINTY-DRIVEN ADAPTIVE ESTIMATION WITH APPLICATIONS IN ELECTRICAL POWER SYSTEMS

UNCERTAINTY-DRIVEN ADAPTIVE ESTIMATION WITH APPLICATIONS IN ELECTRICAL POWER SYSTEMS UNCERTAINTY-DRIVEN ADAPTIVE ESTIMATION WITH APPLICATIONS IN ELECTRICAL POWER SYSTEMS Jinghe Zhang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

SBE 2006 Dynamics Homework Solutions

SBE 2006 Dynamics Homework Solutions SBE 2006 Dynamics Homework Solutions Preamble Imagine you are a test director at Johnson Space Center (JSC). You are interested in testing a training version of SAFER (Simplified Aid For EVA Rescue) to

More information

REAL TIME MULTISATELLITE ORBIT DETERMINATION FOR CONSTELLATION MAINTENANCE

REAL TIME MULTISATELLITE ORBIT DETERMINATION FOR CONSTELLATION MAINTENANCE Proceedings of OBEM 7 opyright 7 by ABM 9th International ongress of Mechanical Engineering November 5-9, 7, Brasília, DF REAL IME MULISAELLIE ORBI DEERMINAION FOR ONSELLAION MAINENANE Jairo avalcanti

More information

Principles of the Global Positioning System Lecture 11

Principles of the Global Positioning System Lecture 11 12.540 Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Statistical approach to estimation Summary Look at estimation from statistical point

More information

A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS

A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS Matthew B. Rhudy 1, Roger A. Salguero 1 and Keaton Holappa 2 1 Division of Engineering, Pennsylvania State University, Reading, PA, 19610, USA 2 Bosch

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

STATISTICAL ORBIT DETERMINATION

STATISTICAL ORBIT DETERMINATION STATISTICAL ORBIT DETERMINATION Satellite Tracking Example of SNC and DMC ASEN 5070 LECTURE 6 4.08.011 1 We will develop a simple state noise compensation (SNC) algorithm. This algorithm adds process noise

More information

Course 11. Tracking: Beyond 15 Minutes of Thought

Course 11. Tracking: Beyond 15 Minutes of Thought Course 11 Tracking: Beyond 15 Minutes of Thought Introductions Danette Allen Greg Welch Gary Bishop Why thinking about tracking is so fun It s s a simple problem to state It has a little of everything

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

A MULTI-SENSOR FUSION TRACK SOLUTION TO ADDRESS THE MULTI-TARGET PROBLEM

A MULTI-SENSOR FUSION TRACK SOLUTION TO ADDRESS THE MULTI-TARGET PROBLEM Approved for public release; distribution is unlimited. A MULTI-SENSOR FUSION TRACK SOLUTION TO ADDRESS THE MULTI-TARGET PROBLEM By Dr. Buddy H. Jeun, Jay Jayaraman Lockheed Martin Aeronautical Systems,

More information

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1 ROUST CONSTRINED ESTIMTION VI UNSCENTED TRNSFORMTION Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a a Department of Chemical Engineering, Clarkson University, Potsdam, NY -3699, US.

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Extended Kalman Filter Tutorial

Extended Kalman Filter Tutorial Extended Kalman Filter Tutorial Gabriel A. Terejanu Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 terejanu@buffalo.edu 1 Dynamic process Consider the following

More information

Solving Linear Systems Problems Using Discrete Kalman Filter

Solving Linear Systems Problems Using Discrete Kalman Filter Solving Linear Systems Problems Using Discrete Kalman Filter Yasin Yousif Mohammed Al-Mustansirya University, College of Engineering, Electrical Engineering Department Abstract his paper deals with the

More information

Partitioned Covariance Intersection

Partitioned Covariance Intersection Partitioned Covariance Intersection Arne Petersen Christian Albrechts University Kiel, Germany E-Mail: apetersen@mip.informati.uni-iel.de Phone: +49 ()431 88 1418 Marc-André Beyer Raytheon Anschütz GmbH

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Riccati difference equations to non linear extended Kalman filter constraints

Riccati difference equations to non linear extended Kalman filter constraints International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Riccati difference equations to non linear extended Kalman filter constraints Abstract Elizabeth.S 1 & Jothilakshmi.R

More information

Nonlinear Identification of Backlash in Robot Transmissions

Nonlinear Identification of Backlash in Robot Transmissions Nonlinear Identification of Backlash in Robot Transmissions G. Hovland, S. Hanssen, S. Moberg, T. Brogårdh, S. Gunnarsson, M. Isaksson ABB Corporate Research, Control Systems Group, Switzerland ABB Automation

More information

IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges

IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges Arne Wahrburg (*), 2016-10-14 Cartesian Contact Force and Torque Estimation for Redundant Manipulators IROS 16 Workshop: The Mechatronics behind Force/Torque Controlled Robot Actuation Secrets & Challenges

More information

Nonlinear State Estimation! Extended Kalman Filters!

Nonlinear State Estimation! Extended Kalman Filters! Nonlinear State Estimation! Extended Kalman Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Deformation of the probability distribution!! Neighboring-optimal

More information

Regression. James D Emery. Last Addition or Modification 7/4/ Linear Regression 2. 2 The Covariance Matrix 4. 3 The Correlation Coefficient 4

Regression. James D Emery. Last Addition or Modification 7/4/ Linear Regression 2. 2 The Covariance Matrix 4. 3 The Correlation Coefficient 4 Regression James D Emery Last Addition or Modification 7/4/2014 Contents 1 Linear Regression 2 2 The Covariance Matrix 4 3 The Correlation Coefficient 4 4 The Kalman Filter 6 5 Kalman 6 6 Norbert Wiener

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS Frédéric Mustière e-mail: mustiere@site.uottawa.ca Miodrag Bolić e-mail: mbolic@site.uottawa.ca Martin Bouchard e-mail: bouchard@site.uottawa.ca

More information

AQuasi-steady-state assumption is typically applied to. A Two-stage Kalman Filtering Approach for Robust and Real-time Power Systems State Tracking

AQuasi-steady-state assumption is typically applied to. A Two-stage Kalman Filtering Approach for Robust and Real-time Power Systems State Tracking A Two-stage Kalman Filtering Approach for Robust and Real-time Power Systems State Tracing Jinghe Zhang, Student Member, IEEE, Greg Welch, Member, IEEE, Gary Bishop, and Zhenyu Huang Senior Member, IEEE

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 12 Dynamical Models CS/CNS/EE 155 Andreas Krause Homework 3 out tonight Start early!! Announcements Project milestones due today Please email to TAs 2 Parameter learning

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model Approach

Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model Approach 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 Fault Detection and Diagnosis of an Electrohydrostatic Actuator Using a Novel Interacting Multiple Model

More information

NONLINEAR BAYESIAN FILTERING FOR STATE AND PARAMETER ESTIMATION

NONLINEAR BAYESIAN FILTERING FOR STATE AND PARAMETER ESTIMATION NONLINEAR BAYESIAN FILTERING FOR STATE AND PARAMETER ESTIMATION Kyle T. Alfriend and Deok-Jin Lee Texas A&M University, College Station, TX, 77843-3141 This paper provides efficient filtering algorithms

More information

Hand Written Digit Recognition using Kalman Filter

Hand Written Digit Recognition using Kalman Filter International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 4 (2012), pp. 425-434 International Research Publication House http://www.irphouse.com Hand Written Digit

More information

Data Fusion Kalman Filtering Self Localization

Data Fusion Kalman Filtering Self Localization Data Fusion Kalman Filtering Self Localization Armando Jorge Sousa http://www.fe.up.pt/asousa asousa@fe.up.pt Faculty of Engineering, University of Porto, Portugal Department of Electrical and Computer

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors 1 Quantitative Trendspotting Rex Yuxing Du and Wagner A. Kamakura Web Appendix A Inferring and Projecting the Latent Dynamic Factors The procedure for inferring the latent state variables (i.e., [ ] ),

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Sensor Fusion, 2014 Lecture 1: 1 Lectures

Sensor Fusion, 2014 Lecture 1: 1 Lectures Sensor Fusion, 2014 Lecture 1: 1 Lectures Lecture Content 1 Course overview. Estimation theory for linear models. 2 Estimation theory for nonlinear models 3 Sensor networks and detection theory 4 Nonlinear

More information

The Discrete Kalman Filtering of a Class of Dynamic Multiscale Systems

The Discrete Kalman Filtering of a Class of Dynamic Multiscale Systems 668 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL 49, NO 10, OCTOBER 2002 The Discrete Kalman Filtering of a Class of Dynamic Multiscale Systems Lei Zhang, Quan

More information

Design of Adaptive Filtering Algorithm for Relative Navigation

Design of Adaptive Filtering Algorithm for Relative Navigation Design of Adaptive Filtering Algorithm for Relative Navigation Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sung Jin Kang, Sebum Chun, and Hyung Keun Lee Abstract Recently, relative navigation

More information

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS Gustaf Hendeby Fredrik Gustafsson Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-58 83 Linköping,

More information

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS CHAPMAN & HALL/CRC APPLIED MATHEMATICS -. AND NONLINEAR SCIENCE SERIES OPTIMAL ESTIMATION of DYNAMIC SYSTEMS John L Crassidis and John L. Junkins CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London

More information

Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes

Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes Fernando V. Lima, James B. Rawlings and Tyler A. Soderstrom Department

More information

Gaussian Filters for Nonlinear Filtering Problems

Gaussian Filters for Nonlinear Filtering Problems 910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 5, MAY 2000 Gaussian Filters for Nonlinear Filtering Problems Kazufumi Ito Kaiqi Xiong Abstract In this paper we develop analyze real-time accurate

More information

Research Article Extended and Unscented Kalman Filtering Applied to a Flexible-Joint Robot with Jerk Estimation

Research Article Extended and Unscented Kalman Filtering Applied to a Flexible-Joint Robot with Jerk Estimation Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 21, Article ID 482972, 14 pages doi:1.1155/21/482972 Research Article Extended and Unscented Kalman Filtering Applied to a

More information

Understanding and Application of Kalman Filter

Understanding and Application of Kalman Filter Dept. of Aerospace Engineering April 2, 2016 Contents I Introduction II Kalman Filter Algorithm III Simulation IV Future plans Kalman Filter? Rudolf E.Kálmán(1930 ) 1960 년대루돌프칼만에의해 개발 Nosie 가포함된역학시스템 상태를재귀필터를이용해

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information

Dual Estimation and the Unscented Transformation

Dual Estimation and the Unscented Transformation Dual Estimation and the Unscented Transformation Eric A. Wan ericwan@ece.ogi.edu Rudolph van der Merwe rudmerwe@ece.ogi.edu Alex T. Nelson atnelson@ece.ogi.edu Oregon Graduate Institute of Science & Technology

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

Constrained State Estimation Using the Unscented Kalman Filter

Constrained State Estimation Using the Unscented Kalman Filter 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France June 25-27, 28 Constrained State Estimation Using the Unscented Kalman Filter Rambabu Kandepu, Lars Imsland and

More information

On Underweighting Nonlinear Measurements

On Underweighting Nonlinear Measurements On Underweighting Nonlinear Measurements Renato Zanetti The Charles Stark Draper Laboratory, Houston, Texas 7758 Kyle J. DeMars and Robert H. Bishop The University of Texas at Austin, Austin, Texas 78712

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming Control and Cybernetics vol. 35 (2006) No. 4 State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming by Dariusz Janczak and Yuri Grishin Department

More information

Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm

Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm Robert L Cooperman Raytheon Co C 3 S Division St Petersburg, FL Robert_L_Cooperman@raytheoncom Abstract The problem of

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture State space models, 1st part: Model: Sec. 10.1 The

More information

VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL

VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL 1/10 IAGNEMMA AND DUBOWSKY VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL K. IAGNEMMA S. DUBOWSKY Massachusetts Institute of Technology, Cambridge, MA

More information

Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations

Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations SEBASTIÁN OSSANDÓN Pontificia Universidad Católica de Valparaíso Instituto de Matemáticas Blanco Viel 596, Cerro Barón,

More information

Extended Object and Group Tracking with Elliptic Random Hypersurface Models

Extended Object and Group Tracking with Elliptic Random Hypersurface Models Extended Object and Group Tracing with Elliptic Random Hypersurface Models Marcus Baum Benjamin Noac and Uwe D. Hanebec Intelligent Sensor-Actuator-Systems Laboratory ISAS Institute for Anthropomatics

More information

Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination

Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination F. Landis Markley, NASA s Goddard Space Flight Center, Greenbelt, MD, USA Abstract The absence of a globally nonsingular three-parameter

More information

Kalman filtering with intermittent heavy tailed observations

Kalman filtering with intermittent heavy tailed observations Kalman filtering with intermittent heavy tailed observations Sabina Zejnilović Abstract In large wireless sensor networks, data can experience loss and significant delay which from the aspect of control

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information