A Matrix Theoretic Derivation of the Kalman Filter

Size: px
Start display at page:

Download "A Matrix Theoretic Derivation of the Kalman Filter"

Transcription

1 A Matrix Theoretic Derivation of the Kalman Filter 4 September 2008 Abstract This paper presents a matrix-theoretic derivation of the Kalman filter that is accessible to students with a strong grounding in matrix theory and multi-variable calculus. 1 Introduction The Kalman filter is a data analysis method used in a wide range of engineering and applied mathematics problems. Standard derivations of the filter mae use of probability theory and can be difficult to follow for those not well-versed in probabilistic techniques and notation. In this paper, we present a derivation of the Kalman filter that is accessible to undergraduates with a strong grounding in matrix theory and multi-variable calculus. With this development, the Kalman filter can be presented as a part of a senior-level, undergraduate matrix theory or numerical analysis course. Of ey interest to us are stochastic linear systems of the form b = Ax + e, (1) where b R m is measured data; A R m n is a nown observation matrix; x R n is the unnown parameter vector to be estimated; e R m is a zero-mean Gaussian random vector; and x R n is the unnown vector that is to be estimated. The standard technique for estimating x, nown as least squares estimation, was developed by Gauss in his study of planetary motion [3]. The extension of least squares estimation to the case when the unnown x is also assumed to be a Gaussian random vector is nown as minimum variance estimation [6]. In the study of time varying phenomena, it is natural to generalize (1) as follows: x = M x 1 + E, (2) b = A x + e, (3) where equation (3) is analogous to (1); and in (2), M R n is the nown evolution matrix, x 1 is a Gaussian random vector, and E R n is a zero-mean Gaussian random vector. The Kalman filter [4, 7] is the extension of minimum variance (and hence least squares) estimation to the problem of sequentially estimating {x 1, x 2,...} given data {b 1, b 2,...} in (2), (3). For the interested reader, a discussion of the progression of ideas from Gauss to Kalman is the subject of the excellent paper [5]. Mathematics Subject Classifications: 15A99, 65C60. 1

2 This paper is organized as follows. First, in Section 2, we present the basic statistical definitions and results that we will need in our later discussion. Then in Section 3, we derive the minimum variance estimator of x given model (1). We then derive the Kalman filter in Section 4, using the minimum variance theory applied to model (2), (3). Finally, we present an equivalent formulation of the Kalman filter, which we call the variational Kalman filter, as well as the extended Kalman filter for the case when (2), (3) contain nonlinear evolution and/or observation operators. 2 Statistical Preliminaries Let x = (x 1,..., x n ) T be a random vector with E(x i ) the mean of x i and E((x i µ i ) 2 ), where µ i = E(x i ), its variance. The mean of x is then defined E(x) = (E(x 1 ),..., E(x n )) T, while the n n covariance matrix of x is defined [cov(x)] ij = E((x i µ i )(x j µ j )), 1 i, j n. Note that the diagonal of cov(x) contains the variances of x 1,..., x n, while the off diagonal elements contain the covariance values. Thus if x i and x j are independent [cov(x)] ij = 0 for i j. The n m cross correlation matrix of the random n-vector x and m-vector y, which we will denote Γ xy, is defined Γ xy = E(xy T ), (4) where [E(xy T )] ij = E(x i y j ). If x and y are independent, then Γ xy is the zero matrix. Furthermore, E(x) = 0 implies Γ xx = cov(x). (5) Finally, given an m n matrix A and a random n-vector x, it is not difficult to show that cov(ax) = Acov(x)A T. (6) We end these preliminary comments with the probability density function of primary interest to us in this paper, the Gaussian distribution. If b is an n 1 Gaussian random vector, then its probability density function has the form 1 p b (b; µ, C) = ( (2π)n det(c) exp 1 ) 2 (b µ)t C 1 (b µ), (7) where µ R n, C is an n n symmetric positive definite matrix, and det( ) denotes matrix determinant. Then E(b) = µ and cov(b) = C. We will use the notation b N(µ, C) in this case. For more details on introductory mathematical statistics, see one of many introductory mathematics statistics texts, including [2]. 3 Minimum Variance Estimation First, we consider model (1). When x is assumed to be deterministic, it is a standard exercise to show that the least squares estimator is given by x ls = (A T A) 1 A T b. 2

3 However, we are interested in the case in which x N(0, C φ ) with C φ a symmetric positive definite matrix. We assume, furthermore, that x and e are independent random variables. The problem of estimating φ is statistical, however as we will see, the minimum variance estimator can be the solution of a linear system of equations. We now define the minimum variance estimator of φ. Definition 1. Suppose x and b are random vectors defined on the same probability space whose components have finite expected squares. The minimum variance estimator of x from b is given by where = ˆBb, ˆB = arg min E ( Bb x 2 ) B R n n 2. We now state and prove a theorem that gives us the minimum variance estimator in an elegant closed form. Theorem 1. If Γ bb (defined in (4)) is invertible, then the minimum variance estimator of x from b is given by = (Γ φb Γ bb 1 )b. Proof. First, we note that E( Bb x 2 ) = trace ( E[(Bb x)(bb x) T ] ), = trace ( BE[bb T ]B T BE[bx T ] E[xb T ]B T + E[xx T ] ). Then, using the distributive property of the trace function and the identity we see that de( Bb x 2 )/db = 0 when which establishes the result. ( ) T d d db trace(bt C) = db trace(bc) = C, ˆB = Γ φb Γ bb 1, In the context of (1), and given our assumptions stated above, we can obtain a more concrete form for the minimum variance estimator. In particular, we note that since x and e are assumed to be independent, Γ φe = Γ eφ = 0. Hence, using (1), we obtain Similarly, Γ φb = E[x(Ax + e) T ], = Γ φφ A T. Γ bb = E[(Ax + e)(ax + e) T ], = AΓ φφ A T + Γ ee. 3

4 Thus, since Γ φφ = C φ and Γ ee = C e, the minimum variance estimator has the form = ˆBb = C φ A T (AC φ A T + C e ) 1 b, We note, in passing, that (8) can also be expressed as { = arg min Ax b 2 x C 1 e = (A T C 1 e A + C 1 φ ) 1 A T C 1 e b. (8) + x 2 C 1 φ }, (9) def where arg min denotes argument of the minimum and x C = x T Cx. This establishes a clear connection between minimum variance estimation and generalized Tihonov regularization [6]. Note in particular that if C e = σ1i 2 and C φ = σ2i, 2 problem (9) can be equivalently expressed as { = arg min Ax b (σ 2 x 1/σ2) x 2 2 } 2, which has classical Tihonov form. Note that this is also equivalent to the maximum a posteriori (MAP) estimator. 4 The Kalman Filter In the previous section, we considered the stationary linear model (1), but suppose that what we wish to estimate (x above) changes in time. More specifically, suppose our model now has the form (2), (3). Equation (2) is the equation of evolution for x with M the n n linear evolution matrix, and E N(0, C E ). In equation (3), b denotes the m 1 observed data, A the m n linear observation matrix, and e N(0, C e ). In both equations, denotes the time index. The problem is to estimate x at time from b and an estimate 1 of the state at time 1. We assume 1 N(x 1, C est 1 ). To facilitate a more straightforward application of the result of Theorem 1, we rewrite (2), (3). First, define x a = M 1 (10) z = x x a, (11) r = b A x a. (12) Then, subtracting (10) from (2) and A x a from both sides of (3), and dropping the dependence for notational simplicity, we obtain the stochastic linear equations z = M(x ) + E, (13) r = Az + e. (14) The minimum variance estimator of z from r given (13), (14) is then given, via Theorem 1, by z est = Γ zr Γ rr 1 r. 4

5 We assume that x is independent of E, and that z = x x a is independent of e. We note, furthermore, that by assumption both of these random vectors have zero mean. Then, from (4), (5), (6), (13) and (14), we obtain Γ zz = MC est M T + C E def = C a, (15) Γ zr = C a A T, Γ rr = AC a A T + C e. where C est and C a are the covariance matrices for and x a respectively. minimum variance estimator of z is given by Thus, finally, the z est = C a A T (AC a A T + C e ) 1 r, (16) From (16) and (11) we then immediately obtain the Kalman Filter estimate of x given by where + = x a + H(b Ax a ). (17) H = C a A T (AC a A T + C e ) 1 (18) is nown as the Kalman Gain matrix. Finally, in order to compute the covariance of +, we note that by (17) and (3), + = (I HA)x a + He + HAx, where x is the true state. Given our assumptions and using (6), the covariance then taes the form C est + = (I HA)C a (I HA) T + HC e H T, which can be rewritten, using the identity HC e H T = (I HA)C a A T H T, in the simplified form C est + = C a HAC a. (19) Incorporating the dependence again leads directly to the Kalman filter iteration. The Kalman Filter Algorithm Step 0: Select initial guess 0 and covariance C est 0, and set = 1. Step 1: Compute the evolution model estimate and covariance: A. Compute x a = M 1 ; B. Compute C a = M C est 1 MT + C E := C a. Step 2: Compute the Kalman filter estimate and covariance: A. Compute the Kalman Gain H = C a AT (A C a AT + C e) 1 ; B. Compute the estimate = x a + H (b A x a ); C. Compute the estimate covariance C est = C a H A C a. Step 3: Update := + 1 and return to Step 1. 5

6 4.1 A Variational Formulation of the Kalman Filter As in the stationary case (see (8), (9)), we can rewrite equation (16) in the form z est = (AC 1 e A T + (C a ) 1 ) 1 A T C 1 e r, which, yields, using (11), the Kalman filter estimate + = x a + [A T C 1 e = arg min x A + (C a ) 1 ] 1 A T C 1 e (b Ax a ), { l(x) def = 1 2 (b Ax)T C 1 e (b Ax) (x xa ) T (C a ) 1 (x x a ) It can be shown using a Taylor series argument that }. + = x a 2 l(x a ) 1 l(x a ), (20) where l and 2 l denote the gradient and Hessian of l respectively, and are given by By the matrix inversion lemma, we have l(x) = A T C 1 e (b Ax) + (C a ) 1 (x x a ), 2 l(x) = A T C 1 e A + (C a ) 1. (A T C 1 e A + (C a ) 1 ) 1 = C a C a A T (A T C a A T + C e ) 1 AC a. Then from equations (18) and (19), we obtain the very useful fact that This allows us to define an iteration equivalent to that given above. The Variational Kalman Filter Algorithm C est + = 2 l(x) 1. (21) Step 0: Select initial guess 0 and covariance C est 0, and set = 1. Step 1: Compute the evolution model estimate and covariance: A. Compute x a = M 1 ; B. Compute C a = M C est MT + C E := C a. Step 2: Compute the Kalman filter estimate and covariance: A. Compute the estimate = arg min x l(x); C. Compute the estimate covariance C est = 2 l(x) 1. Step 3: Update := + 1 and return to Step 1. A natural question is, what is the use of this equivalent formulation of the Kalman filter? Theoretically there is no benefit gained in using the variational Kalman filter if the estimate and its covariance are computed exactly. However, with the variational approach, the filter estimate, and even its covariance [1], can be computed approximately using an iterative minimization method. This is particularly important for large-scale problems where the exact Kalman filter is prohibitively expensive to compute. 6

7 4.2 The Extended Kalman Filter The extended Kalman filter (EKF) is the extension of the Kalman filter when (2), (3) are replaced by x = M(x 1 ) + E, (22) b = A(x ) + e, (23) where M and A are (possibly) nonlinear functions. EKF is obtained by the following simple modification of either of the above algorithms: in Step 1, A use, instead, x a = M(xest ), and define where x denotes the Jacobian. 5 Conclusions 1 ) M = M(xest x, and A = A(xa ) x, (24) We have presented a derivation of the Kalman filter that utilizes matrix analysis techniques as well as the Bayesian statistical approach of minimum variance estimation. In addition, we presented an equivalent variational formulation of the Kalman filter, as well as the extended Kalman filter for nonlinear problems. References [1] A. Auvinen, J. Bardsley, H. Haario, and T. Kauranne, Large-Scale Kalman Filtering Using the Limited Memory BFGS Method, submitted. [2] Peter Bicel and Kjell Dosum, Mathematical Statistics: Basic Ideas and Selected Topics, Vol. 1, Prentice Hall, New Jersey, [3] K. G. Gauss, Theory of Motion of the Heavenly Bodies, New Yor: Dover, [4] Rudolph E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME Journal of Basic Engineering, 82, Series D, pp , [5] H. W. Sorenson, Least Squares Estimation: From Gauss to Kalman, IEEE Spectrum, vol. 7, pp , July [6] Curtis R. Vogel, Computational Methods for Inverse Problems, SIAM [7] Greg Welch and Gary Bishop, An Introduction to the Kalman Filter, UNC Chapel Hill, Dept. of Computer Science Tech. Report, TR

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science.

Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science. STC Lecture Series An Introduction to the Kalman Filter Greg Welch and Gary Bishop University of North Carolina at Chapel Hill Department of Computer Science http://www.cs.unc.edu/~welch/kalmanlinks.html

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part II: Observability and Stability James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of Wisconsin

More information

AN ENSEMBLE KALMAN FILTER USING THE CONJU- GATE GRADIENT SAMPLER

AN ENSEMBLE KALMAN FILTER USING THE CONJU- GATE GRADIENT SAMPLER International Journal for Uncertainty Quantification,?(?):xxx xxx, 0 AN ENSEMBLE KALMAN FILTER USING THE CONJU- GATE GRADIENT SAMPLER Johnathan M. Bardsley, Antti Solonen,, Albert Parer, Heii Haario, &

More information

An Introduction to the Kalman Filter

An Introduction to the Kalman Filter An Introduction to the Kalman Filter by Greg Welch 1 and Gary Bishop 2 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 275993175 Abstract In 1960, R.E. Kalman

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence 1 EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence Jean Walrand I. SUMMARY Here are the key ideas and results of this important topic. Section II reviews Kalman Filter. A system is observable

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Polynomial accelerated MCMC... and other sampling algorithms inspired by computational optimization

Polynomial accelerated MCMC... and other sampling algorithms inspired by computational optimization Polynomial accelerated MCMC... and other sampling algorithms inspired by computational optimization Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley Fore-words Motivation: an inverse oceanography

More information

Properties of Summation Operator

Properties of Summation Operator Econ 325 Section 003/004 Notes on Variance, Covariance, and Summation Operator By Hiro Kasahara Properties of Summation Operator For a sequence of the values {x 1, x 2,..., x n, we write the sum of x 1,

More information

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density Marginal density If the unknown is of the form x = x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density πx 1 y) = πx 1, x 2 y)dx 2 = πx 2 )πx 1 y, x 2 )dx 2 needs to be

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 Jinglin Zhou Hong Wang, Donghua Zhou Department of Automation, Tsinghua University, Beijing 100084, P. R. China Control Systems Centre,

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Dual Estimation and the Unscented Transformation

Dual Estimation and the Unscented Transformation Dual Estimation and the Unscented Transformation Eric A. Wan ericwan@ece.ogi.edu Rudolph van der Merwe rudmerwe@ece.ogi.edu Alex T. Nelson atnelson@ece.ogi.edu Oregon Graduate Institute of Science & Technology

More information

A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS

A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS A KALMAN FILTERING TUTORIAL FOR UNDERGRADUATE STUDENTS Matthew B. Rhudy 1, Roger A. Salguero 1 and Keaton Holappa 2 1 Division of Engineering, Pennsylvania State University, Reading, PA, 19610, USA 2 Bosch

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

The Hilbert Space of Random Variables

The Hilbert Space of Random Variables The Hilbert Space of Random Variables Electrical Engineering 126 (UC Berkeley) Spring 2018 1 Outline Fix a probability space and consider the set H := {X : X is a real-valued random variable with E[X 2

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

ESTIMATION THEORY. Chapter Estimation of Random Variables

ESTIMATION THEORY. Chapter Estimation of Random Variables Chapter ESTIMATION THEORY. Estimation of Random Variables Suppose X,Y,Y 2,...,Y n are random variables defined on the same probability space (Ω, S,P). We consider Y,...,Y n to be the observed random variables

More information

The Kalman filter is arguably one of the most notable algorithms

The Kalman filter is arguably one of the most notable algorithms LECTURE E NOTES «Kalman Filtering with Newton s Method JEFFREY HUMPHERYS and JEREMY WEST The Kalman filter is arguably one of the most notable algorithms of the 0th century [1]. In this article, we derive

More information

Stability of Ensemble Kalman Filters

Stability of Ensemble Kalman Filters Stability of Ensemble Kalman Filters Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley, Heikki Haario and Tuomo Kauranne Lappeenranta University of Technology University of

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Solutions for Econometrics I Homework No.1

Solutions for Econometrics I Homework No.1 Solutions for Econometrics I Homework No.1 due 2006-02-20 Feldkircher, Forstner, Ghoddusi, Grafenhofer, Pichler, Reiss, Yan, Zeugner Exercise 1.1 Structural form of the problem: 1. q d t = α 0 + α 1 p

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGS METHOD

LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGS METHOD LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGS METHOD H. AUVINEN, J. M. BARDSLEY, H. HAARIO, AND T. KAURANNE. Abstract. The standard formulations of the Kalman filter (KF) and extended Kalman

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

STAT Homework 8 - Solutions

STAT Homework 8 - Solutions STAT-36700 Homework 8 - Solutions Fall 208 November 3, 208 This contains solutions for Homework 4. lease note that we have included several additional comments and approaches to the problems to give you

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Multivariate Gaussians. Sargur Srihari

Multivariate Gaussians. Sargur Srihari Multivariate Gaussians Sargur srihari@cedar.buffalo.edu 1 Topics 1. Multivariate Gaussian: Basic Parameterization 2. Covariance and Information Form 3. Operations on Gaussians 4. Independencies in Gaussians

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

A Theoretical Overview on Kalman Filtering

A Theoretical Overview on Kalman Filtering A Theoretical Overview on Kalman Filtering Constantinos Mavroeidis Vanier College Presented to professors: IVANOV T. IVAN STAHN CHRISTIAN Email: cmavroeidis@gmail.com June 6, 208 Abstract Kalman filtering

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Optimal Control of Linear Systems with Stochastic Parameters for Variance Suppression: The Finite Time Case

Optimal Control of Linear Systems with Stochastic Parameters for Variance Suppression: The Finite Time Case Optimal Control of Linear Systems with Stochastic Parameters for Variance Suppression: The inite Time Case Kenji ujimoto Soraki Ogawa Yuhei Ota Makishi Nakayama Nagoya University, Department of Mechanical

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations

Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations PREPRINT 1 Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations Simo Särä, Member, IEEE and Aapo Nummenmaa Abstract This article considers the application of variational Bayesian

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

A NEW NONLINEAR FILTER

A NEW NONLINEAR FILTER COMMUNICATIONS IN INFORMATION AND SYSTEMS c 006 International Press Vol 6, No 3, pp 03-0, 006 004 A NEW NONLINEAR FILTER ROBERT J ELLIOTT AND SIMON HAYKIN Abstract A discrete time filter is constructed

More information

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method 446 CHAP. 8 NUMERICAL OPTIMIZATION Newton's Search for a Minimum of f(xy) Newton s Method The quadratic approximation method of Section 8.1 generated a sequence of seconddegree Lagrange polynomials. It

More information

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 +  1 y 2 = + x 2 +  2 :::::::: :::::::: y N = + x N +  N 1 Economics 620, Lecture 4: The K-Variable Linear Model I Consider the system y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N or in matrix form y = X + " where y is N 1, X is N

More information

Information, Covariance and Square-Root Filtering in the Presence of Unknown Inputs 1

Information, Covariance and Square-Root Filtering in the Presence of Unknown Inputs 1 Katholiee Universiteit Leuven Departement Eletrotechnie ESAT-SISTA/TR 06-156 Information, Covariance and Square-Root Filtering in the Presence of Unnown Inputs 1 Steven Gillijns and Bart De Moor 2 October

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Model-building and parameter estimation

Model-building and parameter estimation Luleå University of Technology Johan Carlson Last revision: July 27, 2009 Measurement Technology and Uncertainty Analysis - E7021E MATLAB homework assignment Model-building and parameter estimation Introduction

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

Partitioned Covariance Intersection

Partitioned Covariance Intersection Partitioned Covariance Intersection Arne Petersen Christian Albrechts University Kiel, Germany E-Mail: apetersen@mip.informati.uni-iel.de Phone: +49 ()431 88 1418 Marc-André Beyer Raytheon Anschütz GmbH

More information

Regression. James D Emery. Last Addition or Modification 7/4/ Linear Regression 2. 2 The Covariance Matrix 4. 3 The Correlation Coefficient 4

Regression. James D Emery. Last Addition or Modification 7/4/ Linear Regression 2. 2 The Covariance Matrix 4. 3 The Correlation Coefficient 4 Regression James D Emery Last Addition or Modification 7/4/2014 Contents 1 Linear Regression 2 2 The Covariance Matrix 4 3 The Correlation Coefficient 4 4 The Kalman Filter 6 5 Kalman 6 6 Norbert Wiener

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Multivariate probability distributions and linear regression

Multivariate probability distributions and linear regression Multivariate probability distributions and linear regression Patrik Hoyer 1 Contents: Random variable, probability distribution Joint distribution Marginal distribution Conditional distribution Independence,

More information

Multivariate Distributions

Multivariate Distributions Copyright Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/adafaepov/ Appendix E Multivariate Distributions E.1 Review of Definitions Let s review

More information

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION 1 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 3 6, 1, SANTANDER, SPAIN RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

Perception: objects in the environment

Perception: objects in the environment Zsolt Vizi, Ph.D. 2018 Self-driving cars Sensor fusion: one categorization Type 1: low-level/raw data fusion combining several sources of raw data to produce new data that is expected to be more informative

More information

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models Volume 30, Issue 3 A note on Kalman filter approach to solution of rational expectations models Marco Maria Sorge BGSE, University of Bonn Abstract In this note, a class of nonlinear dynamic models under

More information

Sample-based UQ via Computational Linear Algebra (not MCMC) Colin Fox Al Parker, John Bardsley March 2012

Sample-based UQ via Computational Linear Algebra (not MCMC) Colin Fox Al Parker, John Bardsley March 2012 Sample-based UQ via Computational Linear Algebra (not MCMC) Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley March 2012 Contents Example: sample-based inference in a large-scale problem Sampling

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit I: Data Fitting Lecturer: Dr. David Knezevic Unit I: Data Fitting Chapter I.4: Nonlinear Least Squares 2 / 25 Nonlinear Least Squares So far we have looked at finding a best

More information

Kalman Filter: Multiplying Normal Distributions

Kalman Filter: Multiplying Normal Distributions Kalman Filter: Multiplying Normal Distributions Norbert Freier, mail@norbert-freier.de, ITVS, TU Dresden 7 th October 03 Abstract This publication in the domain of sensor data fusion considers the Kalman

More information

Probability Lecture III (August, 2006)

Probability Lecture III (August, 2006) robability Lecture III (August, 2006) 1 Some roperties of Random Vectors and Matrices We generalize univariate notions in this section. Definition 1 Let U = U ij k l, a matrix of random variables. Suppose

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type.

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type. Expectations of Sums of Random Variables STAT/MTHE 353: 4 - More on Expectations and Variances T. Linder Queen s University Winter 017 Recall that if X 1,...,X n are random variables with finite expectations,

More information

CS281A/Stat241A Lecture 17

CS281A/Stat241A Lecture 17 CS281A/Stat241A Lecture 17 p. 1/4 CS281A/Stat241A Lecture 17 Factor Analysis and State Space Models Peter Bartlett CS281A/Stat241A Lecture 17 p. 2/4 Key ideas of this lecture Factor Analysis. Recall: Gaussian

More information

ECE 650 Lecture 4. Intro to Estimation Theory Random Vectors. ECE 650 D. Van Alphen 1

ECE 650 Lecture 4. Intro to Estimation Theory Random Vectors. ECE 650 D. Van Alphen 1 EE 650 Lecture 4 Intro to Estimation Theory Random Vectors EE 650 D. Van Alphen 1 Lecture Overview: Random Variables & Estimation Theory Functions of RV s (5.9) Introduction to Estimation Theory MMSE Estimation

More information

Gaussian random variables inr n

Gaussian random variables inr n Gaussian vectors Lecture 5 Gaussian random variables inr n One-dimensional case One-dimensional Gaussian density with mean and standard deviation (called N, ): fx x exp. Proposition If X N,, then ax b

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Synthesis of Gaussian and non-gaussian stationary time series using circulant matrix embedding

Synthesis of Gaussian and non-gaussian stationary time series using circulant matrix embedding Synthesis of Gaussian and non-gaussian stationary time series using circulant matrix embedding Vladas Pipiras University of North Carolina at Chapel Hill UNC Graduate Seminar, November 10, 2010 (joint

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Lecture 6: April 19, 2002

Lecture 6: April 19, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2002 Lecturer: Jeff Bilmes Lecture 6: April 19, 2002 University of Washington Dept. of Electrical Engineering Scribe: Huaning Niu,Özgür Çetin

More information

NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES

NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES Simo Särä Aalto University, 02150 Espoo, Finland Jouni Hartiainen

More information

ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions

ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions Problem Solutions : Yates and Goodman, 9.5.3 9.1.4 9.2.2 9.2.6 9.3.2 9.4.2 9.4.6 9.4.7 and Problem 9.1.4 Solution The joint PDF of X and Y

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix: Joint Distributions Joint Distributions A bivariate normal distribution generalizes the concept of normal distribution to bivariate random variables It requires a matrix formulation of quadratic forms,

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

Economics 620, Lecture 4: The K-Varable Linear Model I

Economics 620, Lecture 4: The K-Varable Linear Model I Economics 620, Lecture 4: The K-Varable Linear Model I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I 1 / 20 Consider the system

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information