PHYS 301 HOMEWORK #4

Size: px
Start display at page:

Download "PHYS 301 HOMEWORK #4"

Transcription

1 PHYS HOMEWORK #4 Due : February 7 Do all integrals by hand; you may check your answers via Mathematica but must show all work.. Show for m, n integers :, m n sin (m x) sin (n x) dx = -, m = n - sin (n x) cos (m x) dx = - cos (m x) cos (n x) dx =, m n, m = n, m = n = Solution : We will rewrite each integrand using the sin and cos addition formulae : sin (m ± n) x = sin (m x) cos (n x) ± sin (n x) cos (m x) cos (m ± n) x = cos (m x) cos (n x) sin (m x) sin (n x) a) Adding the sin addition/subtraction formulae gives: sin (m + n) x + sin (m - n) x = sin (m x) cos ( n x) () This allows us to write the second integral above as: - sin (n x) cos (m x) dx = - sin (m + n) x dx + - sin (m - n) x dx () These integrals return cos(p x) where p is an integer evaluated at and -. Since cos is an even function, each integral evaluates to zero when m n. In the case where m = n, the integrals become:. - sin ( m x) dx and dx both of which are easily (or trivially) shown to be zero. b) If we add the cos addition/subtraction formulae, we get: - cos (m x) cos (n x) dx = - cos (m + n) x + cos (m - n) x dx These integrals return sin(p x) (where p is an integer) evaluted at and -; since sin is zero at those values, the integral is zero for all m n. If m = n, the integral becomes

2 phys-7hw4s.nb - cos (m x) dx = - + cos ( x)) dx = (we use the trig identities cos(x) = cos x - sin x and sin x = - cos x) If m = n =, cos (m x) = cos (n x) =, and the integral of on this interval is. c) We subtract the subtraction/addition cos formulae and get : - sin (m x) sin (n x) dx = - (cos (m - n) x - cos (m + n) x) dx Using prior reasining, each integral on the right returns sin(p x) on [-,], so all these terms are zero for m n. If m = n, we have: If m = n =, the integral is zero since sin () =. - sin (m x) dx = For the remaining problems we will use these definitions of the Fourier series: a o = f (x) dx - a n = - f (x) cos (n x) dx b n = - f (x) sin (n x) dx and for the Fourier series:. Consider the function : f (x) = a + Σ an cos (n x) + Σ bn sin (n x) n= n= f (x) =, - < x < x, < x < Find the Fourier coefficients and then write the Fourier series both in closed form and by writing out the first three non zero terms of each series. Solution : We find the Fourier coefficients, using integration by parts where needed : a n = a o = x dx = 4 x cos (n x) dx = - sin (n x) dx = b n = n x sin (n x) n = n (cos (n ) - ) =, n even - n, n odd x sin (n x) = - n x cos (n x) + n cos (n x) dx n cos (n x)

3 phys-7hw4s.nb The last integral goes to zero since it returns sin(n x), so we are left with: The Fourier series is: The first three terms yield: f (x) = 4 - b n = - - ( cos (n ) - ) = n n (-)n f (x) = 4 - cos x + cos ( x) 9 Σ cos (n x) n=odd n cos (5 x) + 5 Plotting two cycles and verifying with Mathematica: In[]:= g = Plot / 4 - SumCos[n x] n, {n,,, } + sin (n x) + Σ (-) n+ n= n sin x - sin x Sum-^n + Sin[n x] / n, {n,, }, {x, -, } sin ( x) Out[]= Just to be sure, we overlay the line y = x in red : In[5]:= g = Plot[x, {x,, }, PlotStyle Red]; Show[g, g] Out[6]= Consider the function :

4 4 phys-7hw4s.nb f (x) =, - < x < x, < x < Find the Fourier coefficients and write the Fourier series both in closed form and by writing out the first three non-zero terms of each series. Solution : We find the Fourier coefficients by making use of integration by parts where needed. a o = x dx = o 6 a n = x cos (n x) dx = n x sin (n x) = - n - n x cos(n x) - n x sin (n x) dx + n cos(n x) dx The final integral above is zero since it returns sin(n x) to be evaluated at and, so the a n coefficients are: or : b n = = - n The Fourier series can be written: or : a n = cos (n ) - n = (-)n n x sin (n x) dx = - n x cos (n x) + n x cos (n x) dx cos (n ) + n - x cos (n x) dx = n (-)n + n n x sin (n x) n - sin (n x) dx = n (-)n - n cos (n x) = - n (-)n + n ( - (-)n ) b n = - / n, n even -4 - n n, n odd f (x) = 6 - Σ (-) n cos (n x) sin (n x) - Σ n= n n=even n f (x) = 6 - cos x - cos ( x) 4 cos ( x) + -,,, sin x sin ( x) n sin (n x) + Σ n=od n sin ( x) sin (4 x) sin (5 x)

5 phys-7hw4s.nb 5 Verifying with Mathematica: Clear[a, a, bodd, beven] a = ^ 6; a[n_] := - n n beven[n_] := - / n bodd[n_] := -4 - n n g = Plot[a + Sum[a[n] Cos[n x], {n,, }] + Sum[beven[n] Sin[n x], {n,,, }] + Sum[bodd[n] Sin[n x], {n,,, }], {x, -, }]; g = Plot[x^, {x,, }, PlotStyle Red]; Show[g, g] Find the Fourier coefficients and write the Fourier series in closed form and also the first three non - zero terms of each series for : f (x) =, - < x < sin ( x), < x < Solution : The danger here is to assume that orthogonality will apply since f (x) = sin ( x). However, since the limits of integration are [, ] and not [-, ], we must do the evaluations explicitly. a o = sin ( x) dx = - cos ( x) We use eqs. ( and ) from problem one to help with the evaluation of a n and b n. sin ( x) cos (n x) dx = = sin (n + ) x - sin (n - ) x dx a n = = cos (n + ) x cos (n - ) x - + = n + n -, n even -4 / n - 4, n odd

6 6 phys-7hw4s.nb b n = = sin (n - ) x sin (n + ) x - n - n + It is common for students to get to this point and conclude that all the b n values are zero since our integrals return sin(n x) where n is an integer on [,]. And this is true for all values of n except n =. In this case, our integral becomes: sin ( x) dx = sin ( x) sin (n x) dx = (cos (n - ) x - cos (n + ) x) dx b = and our Fourier series is: = Verifying with Mathematica: f (x) = sin ( x) Sin ( x) + 4 cos x cos (n x) - 4 Σ n=odd n cos x 5 - cos 5 x -... In[47]:= PlotSin[ x] - (4 / ) SumCos[n x] n^ - 4, {n,,, }, {x, -, }..5 Out[47]= Find the Fourier coefficients and Fourier series for the function : f (x) = Write out the first three non-zero terms of each series. Solution : -, - < x <, < x < This is a relief after all the integration by parts we ve just done. And if we look a litltle more closely, our problem can be simplified even more. Note that f is an odd function, this means that the only non-zero coefficients will be the b n terms. Moreover since the function is odd, we know that:

7 phys-7hw4s.nb 7 In[48]:= In our case, this becomes: b n = and we have simply: b n = - sin (n x) dx = - f (x) = 4 n cos (n x) sin x + sin x Plot[(4 / ) Sum[Sin[n x] / n, {n,,, }], {x, -, }] = n ( - (-)n ) = 4 / n, n odd, n even + sin 5 x f (x) sin (n x) dx = f (x) sin (n x) dx..5 Out[48]= Now, is the problem even simpler than this. Could we have used another Fourier series that we have computed and deduced this one without ever taking an integral? (Hint : compare this series with the first example in class; f (x) = for < x < and f (x) = for - < x < ), see how they compare.)

PHYS 301 First Hour Exam

PHYS 301 First Hour Exam PHYS 30 First Hour Exam Spring 20 This is a closed book, closed note exam. You will not need nor be allowed to use calculators or other electronic devices on this test. Do all your writing in your blue

More information

Math 3150 HW 3 Solutions

Math 3150 HW 3 Solutions Math 315 HW 3 Solutions June 5, 18 3.8, 3.9, 3.1, 3.13, 3.16, 3.1 1. 3.8 Make graphs of the periodic extensions on the region x [ 3, 3] of the following functions f defined on x [, ]. Be sure to indicate

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

PHYSICS 301/MATH 355 HOMEWORK #8

PHYSICS 301/MATH 355 HOMEWORK #8 PHYSICS 3/MATH 355 HOMEWORK #8 Solutions Question # We consider the integral : where m and n are both integers. We can evaluate this integral : Integrate@Cos@m xd Cos@n xd, 8x, π, π

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

PHYS 301 HOMEWORK #5

PHYS 301 HOMEWORK #5 PHY 3 HOMEWORK #5 olutions On this homework assignment, you may use Mathematica to compute integrals, but you must submit your Mathematica output with your assignment.. For f x = -, - < x

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

first define colors for future graphics red RGBColor 1, 0, 0 ; green RGBColor 0, 1, 0 ; blue RGBColor 0, 0, 1 ; black RGBColor 0, 0, 0 ;

first define colors for future graphics red RGBColor 1, 0, 0 ; green RGBColor 0, 1, 0 ; blue RGBColor 0, 0, 1 ; black RGBColor 0, 0, 0 ; In[1]:= note: to simplifynotations all periodic functions of x are expected to have a period of 2 Pi, as Ch. 11.1 by KR. If a function has a period "2L" as in his later sections, one can always switch

More information

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities 5.2 Verifying Trigonometric Identities Verifying Identities by Working With One Side Verifying Identities by Working With Both Sides November 30, 2012 Mrs. Poland Objective #4: Students will be able to

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

TOPIC 3. Taylor polynomials. Mathematica code. Here is some basic mathematica code for plotting functions.

TOPIC 3. Taylor polynomials. Mathematica code. Here is some basic mathematica code for plotting functions. TOPIC 3 Taylor polynomials Main ideas. Linear approximating functions: Review Approximating polynomials Key formulas: P n (x) =a 0 + a (x x )+ + a n (x x ) n P n (x + x) =a 0 + a ( x)+ + a n ( x) n where

More information

Calculus. Integration (III)

Calculus. Integration (III) Calculus Integration (III) Outline 1 Other Techniques of Integration Partial Fractions Integrals Involving Powers of Trigonometric Functions Trigonometric Substitution 2 Using Tables of Integrals Integration

More information

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( )

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( ) Problem Let f be the π-periodic functions defined by f() = cos ( ) hen [ π, π]. Make a draing of the function f for the interval [ 3π, 3π], and compute the Fourier series of f. Use the result to compute

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 433 BLECHER NOTES. As in earlier classnotes. As in earlier classnotes (Fourier series) 3. Fourier series (continued) (NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE

More information

PHYS 301 HOMEWORK #8

PHYS 301 HOMEWORK #8 PHYS 301 HOMEWORK #8 Due : 5 April 2017 1. Find the recursion relation and general solution near x = 2 of the differential equation : In this case, the solution will be of the form: y'' - (x - 2) y' +

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

ORTHOGONAL FUNCTIONS

ORTHOGONAL FUNCTIONS ORTHOGONAL FUNCTIONS Overview Throughout the first half of the semester we have become familiar with the concept of orthogonal coordinate systems. A coordinate system is orthogonal if its base vectors

More information

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Questions Example Differentiate the function y = ae v + b v + c v 2. Example Differentiate the function y = A + B x

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

The AP exams will ask you to find derivatives using the various techniques and rules including

The AP exams will ask you to find derivatives using the various techniques and rules including Student Notes Prep Session Topic: Computing Derivatives It goes without saying that derivatives are an important part of the calculus and you need to be able to compute them. You should know the derivatives

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions Math 0: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 30 Homework 4 Solutions Please write neatly, and show all work. Caution: An answer with no work is wrong! Problem A. Use Weierstrass (ɛ,δ)-definition

More information

Fourier series

Fourier series 11.1-11.2. Fourier series Yurii Lyubarskii, NTNU September 5, 2016 Periodic functions Function f defined on the whole real axis has period p if Properties f (t) = f (t + p) for all t R If f and g have

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

Computing Taylor series

Computing Taylor series TOPIC 9 Computing Taylor series Exercise 9.. Memorize the following x X e x cos x sin x X X X +x + x + x 3 +... xk +x + x + 6 x3 +... ( ) k (k)! xk ( ) k (k + )! xk+ x x +! x... For which values of x do

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

Solutions Serie 1 - preliminary exercises

Solutions Serie 1 - preliminary exercises D-MAVT D-MATL Prof. A. Iozzi ETH Zürich Analysis III Autumn 08 Solutions Serie - preliminary exercises. Compute the following primitive integrals using partial integration. a) cos(x) cos(x) dx cos(x) cos(x)

More information

Summing Series: Solutions

Summing Series: Solutions Sequences and Series Misha Lavrov Summing Series: Solutions Western PA ARML Practice December, 0 Switching the order of summation Prove useful identity 9 x x x x x x Riemann s zeta function ζ is defined

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

HW2 Solutions

HW2 Solutions 8.024 HW2 Solutions February 4, 200 Apostol.3 4,7,8 4. Show that for all x and y in real Euclidean space: (x, y) 0 x + y 2 x 2 + y 2 Proof. By definition of the norm and the linearity of the inner product,

More information

Math Exam II Review

Math Exam II Review Math 114 - Exam II Review Peter A. Perry University of Kentucky March 6, 2017 Bill of Fare 1. It s All About Series 2. Convergence Tests I 3. Convergence Tests II 4. The Gold Standards (Geometric Series)

More information

4.4 Uniform Convergence of Sequences of Functions and the Derivative

4.4 Uniform Convergence of Sequences of Functions and the Derivative 4.4 Uniform Convergence of Sequences of Functions and the Derivative Say we have a sequence f n (x) of functions defined on some interval, [a, b]. Let s say they converge in some sense to a function f

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: January 2011 Analysis I Time Allowed: 1.5 hours Read carefully the instructions on the answer book and make sure that the particulars required are entered

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Name: ANSWER KEY Math 155B Test 3, Thurs 3 Nov 2011, 4 pages, 50 points, 75 minutes.

Name: ANSWER KEY Math 155B Test 3, Thurs 3 Nov 2011, 4 pages, 50 points, 75 minutes. Name: ANSWER KEY Math 55B Test 3, Thurs 3 Nov 20, 4 pages, 50 points, 75 minutes. Class results Median score, 34/50 = 68% Mean score, 34.06/50 = 68.2% High score, 50/50 ( person) Note: In this answer key,

More information

Review Sol. of More Long Answer Questions

Review Sol. of More Long Answer Questions Review Sol. of More Long Answer Questions 1. Solve the integro-differential equation t y (t) e t v y(v)dv = t; y()=. (1) Solution. The key is to recognize the convolution: t e t v y(v) dv = e t y. () Now

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

Lesson 2. When the exponent is a positive integer, exponential notation is a concise way of writing the product of repeated factors.

Lesson 2. When the exponent is a positive integer, exponential notation is a concise way of writing the product of repeated factors. Review of Exponential Notation: Lesson 2 - read to the power of, where is the base and is the exponent - if no exponent is denoted, it is understood to be a power of 1 - if no coefficient is denoted, it

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Instructor: Koshal Dahal Test 4 date: Fri, May 1

Instructor: Koshal Dahal Test 4 date: Fri, May 1 Rec/Sec: Review Test (Math1650:500) Instructor: Koshal Dahal Test date: Fri, May 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the equivalent

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information

Integration by Triangle Substitutions

Integration by Triangle Substitutions Integration by Triangle Substitutions The Area of a Circle So far we have used the technique of u-substitution (ie, reversing the chain rule) and integration by parts (reversing the product rule) to etend

More information

Homework 12; Due Monday, 4/9/2018

Homework 12; Due Monday, 4/9/2018 Homework 2; Due Monday, 4/9/28 Answer-Only Questions Credit based solely on the answer Question For each of the following relations, determine whether each one is symmetric, transitive, or refleive If

More information

6 Lecture 6b: the Euler Maclaurin formula

6 Lecture 6b: the Euler Maclaurin formula Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 March 26, 218 6 Lecture 6b: the Euler Maclaurin formula

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes DIFFERENTIATION AND INTEGRATION PART 1 Mr C s IB Standard Notes In this PDF you can find the following: 1. Notation 2. Keywords Make sure you read through everything and the try examples for yourself before

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA

A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA In "Getting Started with Mathematica" we learned the basics of plotting and doing computations in this platform. In this document, I will delve a little

More information

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Math 601 Solutions to Homework 3

Math 601 Solutions to Homework 3 Math 601 Solutions to Homework 3 1 Use Cramer s Rule to solve the following system of linear equations (Solve for x 1, x 2, and x 3 in terms of a, b, and c 2x 1 x 2 + 7x 3 = a 5x 1 2x 2 x 3 = b 3x 1 x

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

December 18, 2017 Section W Nandyalam

December 18, 2017 Section W Nandyalam Mathematica Gift #11 Problem Complete the following 15 exercises in a Mathematica notebook. You should write the problem in a text cell and show your work below the question. Questions Question 1 Compute

More information

MATH 1271 Monday, 21 November 2018

MATH 1271 Monday, 21 November 2018 MATH 1271 Monday, 21 November 218 Today: Section 5.4 - Indefinite Integrals and the Theorem Homework: 5-17 odd, 21-45 odd, 51-63 odd, 67, 71 1/13 Def Total displacement is the integral of the velocity

More information

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4.

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4. 10.5 Separation of Variables; Heat Conduction in a Rod 579 u 20 15 10 5 10 50 20 100 30 150 40 200 50 300 x t FIGURE 10.5.5 Example 1. Plot of temperature u versus x and t for the heat conduction problem

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

f(f 1 (x)) = x HOMEWORK DAY 2 Due Thursday, August 23rd Online: 6.2a: 1,2,5,7,9,13,15,16,17,20, , # 8,10,12 (graph exponentials) 2.

f(f 1 (x)) = x HOMEWORK DAY 2 Due Thursday, August 23rd Online: 6.2a: 1,2,5,7,9,13,15,16,17,20, , # 8,10,12 (graph exponentials) 2. Math 63: FALL 202 HOMEWORK Below is a list of online problems (go through webassign), and a second set that you need to write up and turn in on the given due date, in class. Each day, you need to work

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week: December 4 8 Deadline to hand in the homework: your exercise class on week January 5. Exercises with solutions ) Let H, K be Hilbert spaces, and A : H K be a linear

More information

Convergence of Sequences

Convergence of Sequences Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline Convergence of Sequences Definition Let

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3 APPENDIX A EXERCISES In Exercises 1 12, list the all of the elements of the given set. 1. The set of all prime numbers less than 20 2. The set of all positive integers whose square roots are less than

More information

Exercise 11. Isao Sasano

Exercise 11. Isao Sasano Exercise Isao Sasano Exercise Calculate the value of the following series by using the Parseval s equality for the Fourier series of f(x) x on the range [, π] following the steps ()-(5). () Calculate the

More information

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is Name: Solutions Math 54: Mock Final December, 25 Find the general solution of y y 2y = cos(x) sin(2x) The auxiliary equation for the corresponding homogeneous problem is r 2 r 2 = (r 2)(r + ) = r = 2,

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Click here for answers. f x dy dx sl 2 x 2. (b) Determine the function y f x. f x y. Find the minimum value of f. I n. I k 1

Click here for answers. f x dy dx sl 2 x 2. (b) Determine the function y f x. f x y. Find the minimum value of f. I n. I k 1 CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER 6 A Click here for answers. S Click here for solutions. ;. Three mathematics students have ordered a 4-inch pizza. Instead of slicing it in the traditional

More information

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013 Mathematics Principles of Analysis Solutions for Problem Set 5 Due: March 15, 013 A Section 1. For each of the following sequences, determine three different subsequences, each converging to a different

More information

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o Homework: Appendix A: 1, 2, 3, 5, 6, 7, 8, 11, 13-33(odd), 34, 37, 38, 44, 45, 49, 51, 56. Appendix B: 3, 6, 7, 9, 11, 14, 16-21, 24, 29, 33, 36, 37, 42. Appendix D: 1, 2, 4, 9, 11-20, 23, 26, 28, 29,

More information

Lecture 4: Oscillators to Waves

Lecture 4: Oscillators to Waves Matthew Schwartz Lecture 4: Oscillators to Waves Review two masses Last time we studied how two coupled masses on springs move If we take κ=k for simplicity, the two normal modes correspond to ( ) ( )

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3)

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3) Diff. Eqns. Problem Set 6 Solutions. Solve the boundary-value problems or else show that no solutions exist. a y + y 6y, y, y 4 b y + 9y x + e x, y, yπ a Assuming y e rx is a solution, we get the characteristic

More information

Trig Equations PS Sp2016

Trig Equations PS Sp2016 Trig Equations PS Sp016 NAME: SCORE: INSTRUCTIONS PLEASE RESPOND THOUGHTFULLY TO ALL OF THE PROMPTS IN THIS PACKET. TO COMPLETE THE TRIG EQUATIONS PROBLEM SET, YOU WILL NEED TO: 1. FILL IN THE KNOWLEDGE

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Exam TMA4120 MATHEMATICS 4K. Monday , Time:

Exam TMA4120 MATHEMATICS 4K. Monday , Time: Exam TMA4 MATHEMATICS 4K Monday 9.., Time: 9 3 English Hjelpemidler (Kode C): Bestemt kalkulator (HP 3S eller Citizen SR-7X), Rottmann: Matematisk formelsamling Problem. a. Determine the value ( + i) 6

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

7 PDES, FOURIER SERIES AND TRANSFORMS Last Updated: July 16, 2012

7 PDES, FOURIER SERIES AND TRANSFORMS Last Updated: July 16, 2012 Problem List 7.1 Fourier series expansion of absolute value function 7.2 Fourier series expansion of step function 7.3 Orthogonality of functions 7.4 Fourier transform of sinusoidal pulse 7.5 Introducing

More information

PHYS 301 HOMEWORK #13-- SOLUTIONS

PHYS 301 HOMEWORK #13-- SOLUTIONS PHYS 31 HOMEWORK #13-- SOLUTIONS 1. The wave equation is : 2 u x = 1 2 u 2 v 2 t 2 Since we have that u = f (x - vt) and u = f (x + vt), we substitute these expressions into the wave equation.starting

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES) MATHEMATICS GRADE SESSION 0 (LEARNER NOTES) TRIGONOMETRY () Learner Note: Trigonometry is an extremely important and large part of Paper. You must ensure that you master all the basic rules and definitions

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Assignment 16 Assigned Weds Oct 11

Assignment 16 Assigned Weds Oct 11 Assignment 6 Assigned Weds Oct Section 8, Problem 3 a, a 3, a 3 5, a 4 7 Section 8, Problem 4 a, a 3, a 3, a 4 3 Section 8, Problem 9 a, a, a 3, a 4 4, a 5 8, a 6 6, a 7 3, a 8 64, a 9 8, a 0 56 Section

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 3th, 28 From separation of variables, we move to linear algebra Roughly speaking, this is the study of

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Math WW09 Solutions November 24, 2008

Math WW09 Solutions November 24, 2008 Math 352- WW09 Solutions November 24, 2008 Assigned problems: 8.7 0, 6, ww 4; 8.8 32, ww 5, ww 6 Always read through the solution sets even if your answer was correct. Note that like many of the integrals

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du.

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du. Circle One: Name: 7:45-8:35 (36) 8:5-9:4 (36) Math-4, Spring 7 Quiz #3 (Take Home): 6 7 Due: 9 7 You may discuss this quiz solely with me or other students in my discussion sessions only. Use a new sheet

More information

18.06 Problem Set 9 - Solutions Due Wednesday, 21 November 2007 at 4 pm in

18.06 Problem Set 9 - Solutions Due Wednesday, 21 November 2007 at 4 pm in 8.6 Problem Set 9 - Solutions Due Wednesday, 2 November 27 at 4 pm in 2-6. Problem : (5) When A = SΛS is a real-symmetric (or Hermitian) matrix, its eigenvectors can be chosen orthonormal and hence S =

More information

Tutorial on obtaining Taylor Series Approximations without differentiation

Tutorial on obtaining Taylor Series Approximations without differentiation Tutorial on obtaining Taylor Series Approximations without differentiation Professor Henry Greenside February 2, 2018 1 Overview An important mathematical technique that is used many times in physics,

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

Unit #11 - Integration by Parts, Average of a Function

Unit #11 - Integration by Parts, Average of a Function Unit # - Integration by Parts, Average of a Function Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Integration by Parts. For each of the following integrals, indicate whether

More information