Reminder. ECE 2026 Summer Quiz 1 Review Session Tonight. Quiz 1 Coverage

Size: px
Start display at page:

Download "Reminder. ECE 2026 Summer Quiz 1 Review Session Tonight. Quiz 1 Coverage"

Transcription

1 ECE 2026 Summer 208 LECTURE #8 More Sampling & Aliaing June, 208 Reminder HW4 due tomorrow Lab4 Thurday i eay Quiz i Wedneday Cloed book, except or one 2-ided heet o handwitten note Calculator allowed No martphone/tablet/laptop/wifi/etc Quiz Coverage Chapter through 4 (but not Sect 4-3) Lecture through 7 (plu any review in 8) HW # through 4 Lab 0 through 3 (MATLAB air game) Quiz Review Seion Tonight 6:30-8pm Clough Room 423 Optional Come with quetion 6//208 4

2 SAMPLING SINUSOIDS SAMPLING THEOREM How at mut we ample? t = n/ REDUCE 2 n = t 3 Equivalent condition when ampling inuoid: more than 2 ample per cycle. Ueul Fact: Sampling Hz too Slow Contruct a Chirp that ramp up rom khz to 9kHZ in 4 econd: x( = co(2 0 t ) y(=? 3 khz co(2 ( 0 )t ) = 2 0 khz 0 4 t 0 /2 (Hz) = 8000; t=0:/:4; x = co(2000*pi*t *pi*t.^2); oundc(x,); pectrogram(x,2^9,[],2^4,,'yaxi');? 2

3 Pop Quiz Recontruction? Which One? Given the ample, draw a inuoid through the value t=0:/:4; x = co(a*pi*t - B*pi*in(C*pi*); pectrogram(x,2^9,[],2^4,,'yaxi'); = A = B = C = co(0.4 n) When n i an integer co(0.4 n) co(2.4 n) Occam razor -> pick lowet requency inuoid Recontruction or Sinuoid SPECTRUM (DIGITAL). Reduce digital requency to principal range 2. Subtitute n = t Key reult: recontructed requency will alway be < /2! ˆ 2 khz * A co( 2 ( 00)( n / 000) ) Max requency = /2 6//208 3

4 SPECTRUM (DIGITAL)??? ˆ 2 00 Hz * 2 x[n] i zero requency???? 2 Aco(2 (00)( n /00) ) ˆ The REST o the STORY Spectrum o x[n] ha more than one line or each complex exponential Called ALIASING MANY SPECTRAL LINES SPECTRUM i PERIODIC with period = 2 Becaue A co ˆ n A co ˆ 2 n SPECTRUM or x[n] SPECTRUM (MORE LINES) PLOT veru NORMALIZED FREQUENCY INCLUDE ALL SPECTRUM LINES ALIASES ADD MULTIPLES o 2 SUBTRACT MULTIPLES o 2 FOLDED ALIASES (to be dicued later) ALIASES o NEGATIVE FREQS ˆ 2 khz.8 * Aco(2 (00)( n /000) ) *.8 6// , JH McClellan & RW Schaer 6 4

5 SPECTRUM (ALIASING CASE) SAMPLING GUI (con2di) ˆ kHz * * * Aco(2 (00)( n /80) ) 6// , JH McClellan & RW Schaer 7 SPECTRUM (FOLDING CASE) Aliaing Demo with Chirp 2 25Hz *.6 * Aco(2 (00)( n /25) ) t = 0:/8000:4; xx=co(2*pi*000*t.*( + ); plotpec(xx + j*e-9,8000) grid on, hg oundc(xx,8000) = 8000 Hz 6// , JH McClellan & RW Schaer 9 6//208 ECE-2025 Spring-20 jmc 20 5

6 SAMPLING GUI (con2di) Terminology Nyquit Rate = 2 max A ignal i bandlimited i it ha a (inite) maximum requency max Pop Quiz: I a quare wave bandlimited? 6//208 ECE-2025 Spring-20 jmc 2 6// , JH McClellan & RW Schaer 22 SPECTRUM or x[n] INCLUDE ALL SPECTRUM LINES ALIASES ADD INTEGER MULTIPLES o 2 and 2 FOLDED ALIASES ALIASES o NEGATIVE FREQS PLOT veru NORMALIZED FREQUENCY i.e., DIVIDE o by ˆ ( 0) 2 2 6// , JH McClellan & RW Schaer 23 EXAMPLE: SPECTRUM x[n] = Aco(0.2 n+ ) 0.2 and 0.2 ALIASES: {2.2, 4.2, 6.2, } & {-.8,-3.8, } EX: x[n] = Aco(4.2 n+ ) ALIASES o NEGATIVE FREQ: {.8,3.8,5.8, } & {-2.2, -4.2 } 6// , JH McClellan & RW Schaer 24 6

7 SPECTRUM (MORE LINES) SPECTRUM (ALIASING CASE) ˆ 2 khz.8 * Aco(2 (00)( n /000) ) *.8 ˆ 2 80Hz * * * Aco(2 (00)( n /80) ) Principal alia : ˆ.(000) 00 Hz 2 x( Aco(2 00t ) ˆ Principal alia : ˆ.25(80) 20 Hz 2 x( Aco(2 20t ) Principal alia i alway between ˆ 6//208 Principal alia 2003, ijh alway McClellan & RW between Schaer 25 6// , JH McClellan & RW Schaer 26 ˆ DIGITAL FREQ AGAIN SPECTRUM (FOLDING CASE) ˆ T ˆ T 2 ALIASING FOLDED ALIAS 6// , JH McClellan & RW Schaer Hz *.6 * Aco(2 (00)( n /25) ) Principal alia (with olding) : ˆ.2(25) 25Hz 2 x( Aco(2 25t ) Principal alia i alway between ˆ 6// , JH McClellan & RW Schaer 28 7

8 SPECTRUM Explanation o SAMPLING THEOREM How do we prevent aliaing? Guarantee original ignal i principal alia: ˆ ˆ 0 0 * 0 2 ˆ // , JH McClellan & RW Schaer ˆ 0 0 D-to-A Recontruction x( A-to-D x[n] COMPUTER y[n] Create continuou y( rom y[n] IDEAL D-to-A: I you have ormula or y[n] Invert ampling (t=nt ) by n= t D-to-A y( y[n] = Aco(0.2 n+ ) with = 8000 Hz y( = Aco(0.2 (8000+ ) = Aco(2 (800)t+ ) 6// , JH McClellan & RW Schaer 30 FREQUENCY DOMAINS D-to-A i AMBIGUOUS! x( A-to-D x[n] ( ) ˆ 2 2 y[n] ˆ ˆ D-to-A y( ˆ 2 ALIASING Given y[n], which y( do we pick??? INFINITE NUMBER o y( PASSING THRU THE SAMPLES, y[n] D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT RECONSTRUCT THE SMOOTHEST ONE THE LOWEST FREQ, i y[n] = inuoid 6// , JH McClellan & RW Schaer 3 6// , JH McClellan & RW Schaer 32 8

9 SPECTRUM (ALIASING CASE) 2 * * * 80Hz Aco(2 (00)( n /80) ) DEMOS rom CHAPTER 4 CD-ROM DEMOS SAMPLING DEMO (con2di GUI) Dierent Sampling Rate Aliaing o a Sinuoid STROBE DEMO Synthetic v. Real Televiion SAMPLES at 30 p Sampling & Recontruction 6// , JH McClellan & RW Schaer 33 6// , JH McClellan & RW Schaer 34 FOLDING DIAGRAM 2000 Hz Recontruction (D-to-A) CONVERT STREAM o NUMBERS to x( CONNECT THE DOTS INTERPOLATION y[k] INTUITIVE, convey the idea y( kt (k+)t t 6// , JH McClellan & RW Schaer 35 6// , JH McClellan & RW Schaer 36 9

10 SAMPLE & HOLD DEVICE SQUARE PULSE CASE CONVERT y[n] to y( y[k] hould be the value o y( at t = kt Make y( equal to y[k] or kt -0.5T < t < kt +0.5T y( y[k] STAIR-STEP APPROXIMATION kt (k+)t t 6// , JH McClellan & RW Schaer 37 6// , JH McClellan & RW Schaer 38 OVER-SAMPLING CASE MATH MODEL or D-to-A EASIER TO RECONSTRUCT SQUARE PULSE: 6// , JH McClellan & RW Schaer 39 6// , JH McClellan & RW Schaer 40 0

11 EXPAND the SUMMATION n y[ n] t nt ) y[0] y[] t T ) y[2] t 2T ) SUM o SHIFTED PULSES t-nt ) WEIGHTED by y[n] CENTERED at t=nt SPACED by T RESTORES REAL TIME 6// , JH McClellan & RW Schaer 4 6// , JH McClellan & RW Schaer 42 TRIANGULAR PULSE (2X) OPTIMAL PULSE? CALLED BANDLIMITED INTERPOLATION 6// , JH McClellan & RW Schaer 43 in t T t T 0 or t or t T, 2T, 6// , JH McClellan & RW Schaer 44

12 Recontruct with Ideal (2x) SAMPLING SINUSOIDS t = n/ REDUCE 2 n = t 3 6// , JH McClellan & RW Schaer 45 SAMPLING THEOREM How at mut we ample? Aliaing Demo with Chirp t = 0:/:4; xx=co(2*pi*000*t.*( + ); plotpec(xx + j*e-9,8000) grid on, hg oundc(xx,) =? 6//208 ECE-2025 Spring-20 jmc 48 2

13 Terminology Input i a Lit o Number? Nyquit Rate = 2 max A ignal i bandlimited i it ha a maximum requency max? Pop Quiz: I a quare wave bandlimited? 6// , JH McClellan & RW Schaer 49 Recontruction (D-to-A) SAMPLE & HOLD DEVICE Convert lit o number to waveorm Connect the dot, ill in the gap interpolate y( y[k] kt (k+)t t INTUITIVE, convey the idea CONVERT y[n] to y( y[k] hould be the value o y( at t = kt Make y( equal to y[k] or kt -0.5T < t < kt +0.5T y( y[k] kt (k+)t t STAIR-STEP APPROXIMATION 6// , JH McClellan & RW Schaer 5 6// , JH McClellan & RW Schaer 52 3

14 SQUARE PULSE CASE OVER-SAMPLING CASE EASIER TO RECONSTRUCT 6// , JH McClellan & RW Schaer 53 6// , JH McClellan & RW Schaer 54 MATH MODEL or D-to-A SQUARE PULSE: n EXPAND the SUMMATION y[ n] t nt ) y[0] y[] t T ) y[2] t 2T ) SUM o SHIFTED PULSES t-nt ) WEIGHTED by y[n] CENTERED at t=nt SPACED by T RESTORES REAL TIME 6// , JH McClellan & RW Schaer 55 6// , JH McClellan & RW Schaer 56 4

15 TRIANGULAR PULSE (2X) 6// , JH McClellan & RW Schaer 57 6// , JH McClellan & RW Schaer 58 OPTIMAL PULSE? Recontruct with Ideal (2x) CALLED BANDLIMITED INTERPOLATION in t T t T 0 or t or t T, 2T, 6// , JH McClellan & RW Schaer 59 6// , JH McClellan & RW Schaer 60 5

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time EE 477 Digital Signal Proceing 4 Sampling; Dicrete-Time Sampling a Continuou Signal Obtain a equence of ignal ample uing a periodic intantaneou ampler: x [ n] = x( nt ) Often plot dicrete ignal a dot or

More information

Lecture 5 Frequency Response of FIR Systems (III)

Lecture 5 Frequency Response of FIR Systems (III) EE3054 Signal and Sytem Lecture 5 Frequency Repone of FIR Sytem (III Yao Wang Polytechnic Univerity Mot of the lide included are extracted from lecture preentation prepared by McClellan and Schafer Licene

More information

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time 5.5 Sampling he Connection Between: Continuou ime & Dicrete ime Warning: I don t really like how the book cover thi! It i not that it i wrong it jut ail to make the correct connection between the mathematic

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMUTER ENGINEERING ECE 2026 Summer 208 roblem Set #3 Assigned: May 27, 208 Due: June 5, 208 Reading: Chapter 3 on Spectrum Representation, and

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

QUIZ #2 SOLUTION Version A

QUIZ #2 SOLUTION Version A GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 SOLUTION Version A DATE: 7-MAR-16 SOLUTION Version A COURSE: ECE 226A,B NAME: STUDENT #: LAST, FIRST 2 points 2 points

More information

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2 SOLUTIONS to ECE 06 Summer 07 Problem Set # PROBLEM..* Put each of the following signals into the standard form x( t ) = Acos( t + ). (Standard form means that A 0, 0, and < Use the phasor addition theorem

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions:

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions: University of Waterloo Department of Electrical and Computer Engineering ECE 4 Digital Signal Processing Midterm Exam, Spring 00 June 0th, 00, 5:0-6:50 PM Instructor: Dr. Oleg Michailovich Student s name:

More information

Circuits and Systems I

Circuits and Systems I Circuits and Systems I LECTURE #2 Phasor Addition lions@epfl Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems License Info for SPFirst Slides This work released under a Creative

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 7th, 2017 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Mar-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Up-Sampling (5B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12 Up-Sampling (5B) Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

Section 3 Discrete-Time Signals EO 2402 Summer /05/2013 EO2402.SuFY13/MPF Section 3 1

Section 3 Discrete-Time Signals EO 2402 Summer /05/2013 EO2402.SuFY13/MPF Section 3 1 Section 3 Discrete-Time Signals EO 2402 Summer 2013 07/05/2013 EO2402.SuFY13/MPF Section 3 1 [p. 3] Discrete-Time Signal Description Sampling, sampling theorem Discrete sinusoidal signal Discrete exponential

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

Roadmap for Discrete-Time Signal Processing

Roadmap for Discrete-Time Signal Processing EE 4G Note: Chapter 8 Continuou-time Signal co(πf Roadmap for Dicrete-ime Signal Proceing.5 -.5 -..4.6.8..4.6.8 Dicrete-time Signal (Section 8.).5 -.5 -..4.6.8..4.6.8 Sampling Period econd (or ampling

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Connexions module: m047 Discrete-Time Fourier Transorm DTFT) Don Johnson This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Discussion

More information

Lecture 3 January 23

Lecture 3 January 23 EE 123: Digital Signal Processing Spring 2007 Lecture 3 January 23 Lecturer: Prof. Anant Sahai Scribe: Dominic Antonelli 3.1 Outline These notes cover the following topics: Eigenvectors and Eigenvalues

More information

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Signals and Systems Lecture 14 DR TAIA STATHAKI READER (ASSOCIATE PROFESSOR) I SIGAL PROCESSIG IMPERIAL COLLEGE LODO Introduction. Time sampling theorem resume. We wish to perform spectral analysis using

More information

Problem Value Score No/Wrong Rec

Problem Value Score No/Wrong Rec GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Oct-11 COURSE: ECE-225 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R.

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R. Signals & Systems Chapter 7: Sampling Adapted from: Lecture notes from MIT, Binghamton University, and Purdue Dr. Hamid R. Rabiee Fall 2013 Outline 1. The Concept and Representation of Periodic Sampling

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

Lecture 2: The z-transform

Lecture 2: The z-transform 5-59- Control Sytem II FS 28 Lecture 2: The -Tranform From the Laplace Tranform to the tranform The Laplace tranform i an integral tranform which take a function of a real variable t to a function of a

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing. " Interchanging Operations

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing.  Interchanging Operations Lecture Outline ESE 531: Digital Signal Processing Lec 10: February 14th, 2017 Practical and Non-integer Sampling, Multirate Sampling! Downsampling/! Practical Interpolation! Non-integer Resampling! Multi-Rate

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Signal Processing - PRE

Signal Processing - PRE Convolution Revisited ignal Processing - PRE, Filtering, ampling & Quantization hannon Energy Envelope Processing Chain LR mean LR mean BP d/dn LRmean BP EE econds Copyright Cameron Rodriguez teps Acquiring

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

COMP Signals and Systems. Dr Chris Bleakley. UCD School of Computer Science and Informatics.

COMP Signals and Systems. Dr Chris Bleakley. UCD School of Computer Science and Informatics. COMP 40420 2. Signals and Systems Dr Chris Bleakley UCD School of Computer Science and Informatics. Scoil na Ríomheolaíochta agus an Faisnéisíochta UCD. Introduction 1. Signals 2. Systems 3. System response

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #1 ATE: 4-Feb-11 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gtbuzz8) 3 points 3 points 3 points Recitation Section:

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 26 Summer 14 Quiz #1 June 11, 14 NAME: (FIRST) (LAST) GT username: (e.g., gtxyz123) Circle your recitation section (otherwise

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Experiment 0: Periodic Signals and the Fourier Series

Experiment 0: Periodic Signals and the Fourier Series University of Rhode Island Department of Electrical and Computer Engineering ELE : Communication Systems Experiment : Periodic Signals and the Fourier Series Introduction In this experiment, we will investigate

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid.

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid. Sampling and Discrete Time Discrete-Time Signal Description Sampling is the acquisition of the values of a continuous-time signal at discrete points in time. x t discrete-time signal. ( ) is a continuous-time

More information

Signal processing Frequency analysis

Signal processing Frequency analysis Signal processing Frequency analysis Jean-Hugh Thomas (jean-hugh.thomas@univ-lemans.r) Fourier series and Fourier transorm (h30 lecture+h30 practical work) 2 Sampling (h30+h30) 3 Power spectrum estimation

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE23 Digital Signal Processing Lecture 7B Sampling What is this Phenomena? https://www.youtube.com/watch?v=cxddi8m_mzk Sampling of Continuous ime Signals (Ch.4) Sampling: Conversion from C. (not quantized)

More information

Lecture 8 - IIR Filters (II)

Lecture 8 - IIR Filters (II) Lecture 8 - IIR Filters (II) James Barnes (James.Barnes@colostate.edu) Spring 24 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 29 Lecture 8 Outline Introduction Digital

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Pro. Mark Fowler Note Set #14 Practical A-to-D Converters and D-to-A Converters Reading Assignment: Sect. 6.3 o Proakis & Manolakis 1/19 The irst step was to see that

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Introduction Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz prenosil@fi.muni.cz February

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

2. page 13*, righthand column, last line of text, change 3 to 2,... negative slope of 2 for 1 < t 2: Now... REFLECTOR MITTER. (0, d t ) (d r, d t )

2. page 13*, righthand column, last line of text, change 3 to 2,... negative slope of 2 for 1 < t 2: Now... REFLECTOR MITTER. (0, d t ) (d r, d t ) SP First ERRATA. These are mostly typos, but there are a few crucial mistakes in formulas. Underline is not used in the book, so I ve used it to denote changes. JHMcClellan, February 3, 00. page 0*, Figure

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam. ECE 35 Spring - Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam - Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

6.003: Signals and Systems. Sampling and Quantization

6.003: Signals and Systems. Sampling and Quantization 6.003: Signals and Systems Sampling and Quantization December 1, 2009 Last Time: Sampling and Reconstruction Uniform sampling (sampling interval T ): x[n] = x(nt ) t n Impulse reconstruction: x p (t) =

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Pro. Mark Fowler Discussion #9 Illustrating the Errors in DFT Processing DFT or Sonar Processing Example # Illustrating The Errors in DFT Processing Illustrating the Errors in

More information

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing. SAMPLING Sampling i the acquiition of a continuou ignal at dicrete time interval and i a fundamental concept in real-time ignal proceing. he actual ampling operation can alo be defined by the figure belo

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π.

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π. Today ESE 53: Digital Signal Processing! IIR Filter Design " Lec 8: March 30, 207 IIR Filters and Adaptive Filters " Bilinear Transformation! Transformation of DT Filters! Adaptive Filters! LMS Algorithm

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu Chapter 4: Application of Fourier Repreentation Chih-Wei Liu Outline Introduction Fourier ranform of Periodic Signal Convolution/Multiplication with Non-Periodic Signal Fourier ranform of Dicrete-ime Signal

More information

Lecture 8 - IIR Filters (II)

Lecture 8 - IIR Filters (II) Lecture 8 - IIR Filters (II) James Barnes (James.Barnes@colostate.edu) Spring 2009 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 27 Lecture 8 Outline Introduction Digital

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

DSP First Lab 11: PeZ - The z, n, and ωdomains

DSP First Lab 11: PeZ - The z, n, and ωdomains DSP First Lab : PeZ - The, n, and ωdomains The lab report/verification will be done by filling in the last page of this handout which addresses a list of observations to be made when using the PeZ GUI.

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Down-Sampling (4B) Young Won Lim 10/25/12

Down-Sampling (4B) Young Won Lim 10/25/12 Down-Sampling (4B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

VU Signal and Image Processing

VU Signal and Image Processing 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/18s/

More information

About this class. Yousef Saad 1. Noah Lebovic 2. Jessica Lee 3. Abhishek Vashist Office hours: refer to the class web-page.

About this class. Yousef Saad 1. Noah Lebovic 2. Jessica Lee 3. Abhishek Vashist Office hours: refer to the class web-page. CSCI 2033 Spring 2018 ELEMENTARY COMPUTATIONAL LINEAR ALGEBRA Class time : MWF 10:10-11:00am Room : Blegen Hall 10 Instructor : Yousef Saad URL : www-users.cselabs.umn.edu/classes/spring-2018 /csci2033-morning/

More information

ECS332: Midterm Examination (Set I) Seat

ECS332: Midterm Examination (Set I) Seat Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology ECS33: Midterm Examination (Set I) COURSE : ECS33 (Principles

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Fourier Analysis & Spectral Estimation

Fourier Analysis & Spectral Estimation The Intuitive Guide to Fourier Analysis & Spectral Estimation with MATLAB This book will deepen your understanding of Fourier analysis making it easier to advance to more complex topics in digital signal

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

Down-Sampling (4B) Young Won Lim 11/15/12

Down-Sampling (4B) Young Won Lim 11/15/12 Down-Sampling (B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to decrease the sampling rate by an integer

More information

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w))

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w)) T=1 sec sinc function 3 angle(f(w)) T=2 sec angle(f(w)) 1 A quick script to plot mag & phase in MATLAB w=0:0.2:50; Real exponential func b=5; Fourier transform (filter) F=1.0./(b+j*w); subplot(211), plot(w,

More information

Nyquist sampling a bandlimited function. Sampling: The connection from CT to DT. Impulse Train sampling. Interpolation: Signal Reconstruction

Nyquist sampling a bandlimited function. Sampling: The connection from CT to DT. Impulse Train sampling. Interpolation: Signal Reconstruction Sampling: he connection rom C to D Nyquist sampling a bandlimited unction ( Consider as an example sampling the bandlimited signal sinc 2 (5t F 1 5 Λ 5 An ininite number o waveorms could exactly pass through

More information

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process.

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process. iscrete-time Signals and Systems Efficient Computation of the FT: FFT Algorithms r. eepa Kundur University of Toronto Reference: Sections 6.1, 6., 6.4, 6.5 of John G. Proakis and imitris G. Manolakis,

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information