Lecture 28 Continuous-Time Fourier Transform 2

Size: px
Start display at page:

Download "Lecture 28 Continuous-Time Fourier Transform 2"

Transcription

1 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1

2 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental frequency gets very small and the set defines a very dense set of points on the frequency axis that approaches the continuous variable As a result, we can claim that 2

3 Limit of the Fourier Series Similarly, For the examples of Fig. 11-1, the spectra plot 3

4 Limit of the Fourier Series The frequencies get closer and closer together as 4

5 Existence and Convergence The Fourier transform and its inverse are integrals with infinite limits. An infinite sum of even infinitesimally small quantities might not converge to a finite result. To aid in our use of the Fourier transform it would be helpful to be able to determine whether the Fourier transform exists or not check the magnitude of 5

6 Existence and Convergence To obtain a sufficient condition for existence of the Fourier transform The last step follows that for all t and Thus, a sufficient condition for the existence of the Fourier transform ( ) is Sufficient Condition for Existence of 6

7 Right-Sided Real Exponential Signals Fourier transform can represent non-periodic signals in much the same way that the Fourier series represents periodic signals The signal is a right-sided exponential signal because it is nonzero only on the right side. Time-Domain Frequency-Domain 7

8 Right-Sided Real Exponential Signals Substitute the function into (11.15) we obtain This result will be finite only if at the upper limit of is bounded, which is true only if a > 0. Thus, the right-sided exponential signal is guaranteed to have a Fourier transform if it dies out with increasing t, which requires a > 0. 8

9 Right-Sided Real Exponential Signals The Fourier transform is a complex function of. We can plot the real and imaginary parts versus, or plot the magnitude and phase angle as functions of frequency. 9

10 Bandwidth and Decay Rate These figures show a fundamental property of Fourier transform representations the inverse relation between time and frequency. a controls the rate of decay In the time-domain, as a increases, the exponential dies out more quickly. In the frequency-domain, as a increases, the Fourier transform spreads out Signals that are short in time duration are spread out in frequency 10

11 Exercise

12 Rectangular Pulse Signals Consider the rectangular pulse The Fourier transform is Time-Domain Frequency-Domain 12

13 Rectangular Pulse Signals The Fourier transform of the rectangular pulse signal is called a sinc function. The formal definition of a sinc function is Time-Domain Frequency-Domain 13

14 Rectangular Pulse Signals Properties of the sinc function 1. The value at is. When we attempt to evaluate the sinc formula at, we obtain. However, using L Hopital s rule from calculus, we obtain Note that we could also use the small angle approximation for the sine function to obtain the same result 14

15 Rectangular Pulse Signals 2. The zeros of the sinc function are at nonzero integer multiples of, where T is the total duration of the pulse. It crosses zero at regular intervals because we have in the numerator. Since for where n is an integer, it follows that for or 15

16 Rectangular Pulse Signals 3. Because of the in the denominator of, the function dies out with increasing, but only as fast as 4. is an even function, i.e., Thus the real even-symmetric rectangular pulse has a real even-symmetric Fourier transform. 16

17 Bandlimited Signals We define a bandlimited signal as one whose Fourier transform satisfies the condition for with The frequency is called the bandwidth of the bandlimited signal. One ideally bandlimited Fourier transform 17

18 Bandlimited Signals We want to determine the time-domain signal that has this Fourier transform, i.e., we need to evaluate the inverse transform integral It has the form of a sinc function This signal has a peak value of at t = 0, and the zero crossings are spaced at nonzero multiplies of 18

19 Bandlimited Signals Note the inverse relationship between time width and frequency width. If we increase, the bandwidth is greater, but the first zero crossing in the time domain moves closer to t = 0 so the time-width is smaller. Time-Domain Frequency-Domain 19

20 Impulse in Time or Frequency The impulse time-domain signal is the most concentrated time signal that we can have. Therefore, we might expect that its Fourier transform will have a very wide bandwidth, and it does. The Fourier transform of contains all frequencies in equal amounts. Time-Domain Frequency-Domain 20

21 Impulse in Time or Frequency Likewise, we can examine an impulse in frequency, if we define the Fourier transform of a signal to be We can show by substitution into (11.2) that x(t) = 1 for all t and thereby obtain the Fourier transform pair Time-Domain Frequency-Domain The constant signal x(t) = 1 for all t has only one frequency, namely DC, and we see that its transform is an impulse concentrated at 21

22 Sinusoids We will show how to determine the Fourier transform of a periodic signal. We know that periodic signals can be represented as Fourier series. However, there are distinct advantages for bring this class of signals under the general Fourier transform umbrella. Suppose that the Fourier transform of a signal is an impulse at,. By substituting into the inverse transform integral Time-Domain Frequency-Domain 22

23 Sinusoids Time-Domain Frequency-Domain The result is not unexpected. It says that a complexexponential signal of frequency has a Fourier transform that is nonzero only at the frequency. The result is the basis for including all periodic functions in our Fourier transform framework. Consider the signal 23

24 Sinusoids Since integration is linear, it follows that the Fourier transform of a sum of two or more signals is the sum of their corresponding Fourier transforms. Time-Domain Frequency-Domain Thus, the Fourier transform of the real sinusoid x(t) is 24

25 Sinusoids So we have the Fourier transform pair Time-Domain Frequency-Domain Note that the size (area) of the impulse at negative frequency is the complex conjugate of the size of the impulse at the positive frequency. 25

26 Periodic Signals Now we are ready to obtain a general formula for the Fourier transform of any periodic function for which a Fourier series exists. A periodic signal can be represented by the sum of complex exponentials where and 26

27 Periodic Signals The Fourier transform of a sum is the sum of corresponding Fourier transforms Thus, any periodic signal with fundamental frequency is represented by the following Fourier transform pair as this figure. 27

28 Periodic Signals Time-Domain Frequency-Domain 28 The key ingredient is the impulse function which allows us to define Fourier transforms that are zero at all but a discrete set of frequencies.

29 Example: Square Wave Transform A periodic square wave where T 0 = 2T We also obtain the DC coefficient by evaluating the integral 29

30 Example: Square Wave Transform After substituting, we obtain If we substitute this into (11.35) we obtain the equation for the Fourier transform of a periodic square wave: 30

31 Example: Square Wave Transform This figure shows the Fourier transform of the square wave for the case T 0 = 2T. The Fourier coefficients are zero for even multiples of, so there are no impulses at those frequencies. Any periodic signal with fundamental frequency will have a transform with impulses at integer multiples of, but with different sizes dictated by the a k coefficients. 31

32 Example: Transform of Impulse Train Consider the periodic impulse train Express it as a Fourier series To determine the Fourier coefficients {a k }, we must evaluate Fourier series integral over one convenient period The Fourier coefficients for the periodic impulse train are all the same size. 32

33 Example: Transform of Impulse Train The Fourier transform of a periodic signal represented by a Fourier series as in (11.42) is of the form Substituting a k into the general expression for, we obtain Therefore, the Fourier transform of a periodic impulse train is also a periodic impulse train. 33

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes Chapter 5.1 Fourier Representation for four Signal Classes 5.1.1Mathematical Development of Fourier Transform If the period is stretched without limit, the periodic signal no longer remains periodic but

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Discrete Fourier Transform Discrete Fourier Transform (DFT) Relations to Discrete-Time Fourier Transform (DTFT) Relations to Discrete-Time Fourier Series (DTFS) October 16, 2018

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform C H A P T E R 7 Discrete-Time Fourier Transform In Chapter 3 and Appendix C, we showed that interesting continuous-time waveforms x(t) can be synthesized by summing sinusoids, or complex exponential signals,

More information

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008 Signals and Systems Lecture (S) Orthogonal Functions and Fourier Series March 17, 008 Today s Topics 1. Analogy between functions of time and vectors. Fourier series Take Away Periodic complex exponentials

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

(i) Understanding the characteristics and properties of DTFT

(i) Understanding the characteristics and properties of DTFT Discrete-Time Fourier Transform (DTFT) Chapter Intended Learning Outcomes: (i) Understanding the characteristics and properties of DTFT (ii) Ability to perform discrete-time signal conversion between the

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10)

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) What we have seen in the previous lectures, is first

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Objectives Scope of this lecture: If a Continuous Time (C.T.) signal is to be uniquely represented

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Lecture 11 FIR Filters

Lecture 11 FIR Filters Lecture 11 FIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/4/12 1 The Unit Impulse Sequence Any sequence can be represented in this way. The equation is true if k ranges

More information

A3. Frequency Representation of Continuous Time and Discrete Time Signals

A3. Frequency Representation of Continuous Time and Discrete Time Signals A3. Frequency Representation of Continuous Time and Discrete Time Signals Objectives Define the magnitude and phase plots of continuous time sinusoidal signals Extend the magnitude and phase plots to discrete

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at Chapter 2 FOURIER TRANSFORMS 2.1 Introduction The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier transform is the extension of this idea to non-periodic functions by

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

1 Mathematical Preliminaries

1 Mathematical Preliminaries Mathematical Preliminaries We shall go through in this first chapter all of the mathematics needed for reading the rest of this book. The reader is expected to have taken a one year course in differential

More information

Fourier transform. Alejandro Ribeiro. February 1, 2018

Fourier transform. Alejandro Ribeiro. February 1, 2018 Fourier transform Alejandro Ribeiro February 1, 2018 The discrete Fourier transform (DFT) is a computational tool to work with signals that are defined on a discrete time support and contain a finite number

More information

Chapter 10 Conjugate Direction Methods

Chapter 10 Conjugate Direction Methods Chapter 10 Conjugate Direction Methods An Introduction to Optimization Spring, 2012 1 Wei-Ta Chu 2012/4/13 Introduction Conjugate direction methods can be viewed as being intermediate between the method

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

(i) Represent continuous-time periodic signals using Fourier series

(i) Represent continuous-time periodic signals using Fourier series Fourier Series Chapter Intended Learning Outcomes: (i) Represent continuous-time periodic signals using Fourier series (ii) (iii) Understand the properties of Fourier series Understand the relationship

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Brief Review of Signals and Systems My subject for today s discussion

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

Damped Oscillators (revisited)

Damped Oscillators (revisited) Damped Oscillators (revisited) We saw that damped oscillators can be modeled using a recursive filter with two coefficients and no feedforward components: Y(k) = - a(1)*y(k-1) - a(2)*y(k-2) We derived

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2 SOLUTIONS to ECE 06 Summer 07 Problem Set # PROBLEM..* Put each of the following signals into the standard form x( t ) = Acos( t + ). (Standard form means that A 0, 0, and < Use the phasor addition theorem

More information

Sampling. Alejandro Ribeiro. February 8, 2018

Sampling. Alejandro Ribeiro. February 8, 2018 Sampling Alejandro Ribeiro February 8, 2018 Signals exist in continuous time but it is not unusual for us to process them in discrete time. When we work in discrete time we say that we are doing discrete

More information

2. Limits at Infinity

2. Limits at Infinity 2 Limits at Infinity To understand sequences and series fully, we will need to have a better understanding of its at infinity We begin with a few examples to motivate our discussion EXAMPLE 1 Find SOLUTION

More information

EE422G Homework #9 Solution

EE422G Homework #9 Solution EE4G Homework #9 Solution. (3 points) Sampling and Reconstruction a) Given the following discrete-time input x(n), sketch the outputs reconstructed continuous signal y(t) using Sample-And-Hold and Linear

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Power Spectral Density of Digital Modulation Schemes

Power Spectral Density of Digital Modulation Schemes Digital Communication, Continuation Course Power Spectral Density of Digital Modulation Schemes Mikael Olofsson Emil Björnson Department of Electrical Engineering ISY) Linköping University, SE-581 83 Linköping,

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Flash File. Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties. Objectives: Scope of this Lecture:

Flash File. Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties. Objectives: Scope of this Lecture: Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties Objectives: Scope of this Lecture: In the previous lecture we defined digital signal processing and

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Ch. 7: Z-transform Reading

Ch. 7: Z-transform Reading c J. Fessler, June 9, 3, 6:3 (student version) 7. Ch. 7: Z-transform Definition Properties linearity / superposition time shift convolution: y[n] =h[n] x[n] Y (z) =H(z) X(z) Inverse z-transform by coefficient

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

1 Introduction & Objective

1 Introduction & Objective Signal Processing First Lab 13: Numerical Evaluation of Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in

More information

Fourier transform. XE31EO2 - Pavel Máša. EO2 Lecture 2. XE31EO2 - Pavel Máša - Fourier Transform

Fourier transform. XE31EO2 - Pavel Máša. EO2 Lecture 2. XE31EO2 - Pavel Máša - Fourier Transform Fourier transform EO2 Lecture 2 Pavel Máša - Fourier Transform INTRODUCTION We already know complex form of Fourier series f(t) = 1X k= 1 A k e jk! t A k = 1 T Series frequency spectra is discrete Circuits

More information

Study Guide and Intervention

Study Guide and Intervention Study Guide and Intervention Pure Imaginary Numbers A square root of a number n is a number whose square is n. For nonnegative real numbers a and b, ab = a b and a b = a, b 0. b The imaginary unit i is

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

MATH 280 Multivariate Calculus Fall 2012

MATH 280 Multivariate Calculus Fall 2012 MATH 8 Multivariate Calculus Fall 1 Describing and integrating nonuniform density on a line segment An object with uniform composition throughout has the same mass density at each point. ikewise, if charge

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

UNIT 4: DIGITAL SYSTEM MODELS

UNIT 4: DIGITAL SYSTEM MODELS UNIT 4: DIGITAL SYSTEM MODELS 4.1 Introduction This unit is concerned with the description of digital systems, it introduces the concepts of a linear time-invariant system, convolution, the general system

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 31, 2017 Hello and welcome to class! Last time We discussed shifting, stretching, and composition. Today We finish discussing composition, then discuss

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Connexions module: m047 Discrete-Time Fourier Transorm DTFT) Don Johnson This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Discussion

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 30, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed shifting, stretching, and

More information

Line Spectra and their Applications

Line Spectra and their Applications In [ ]: cd matlab pwd Line Spectra and their Applications Scope and Background Reading This session concludes our introduction to Fourier Series. Last time (http://nbviewer.jupyter.org/github/cpjobling/eg-47-

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n].

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n]. ELEC 36 LECURE NOES WEEK 9: Chapters 7&9 Chapter 7 (cont d) Discrete-ime Processing of Continuous-ime Signals It is often advantageous to convert a continuous-time signal into a discrete-time signal so

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB Simon Fraser University School of Engineering Science ENSC 380-3 Linear Systems Spring 2000 This course covers the modeling and analysis of continuous and discrete signals and systems using linear techniques.

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Chapter 7 PHASORS ALGEBRA

Chapter 7 PHASORS ALGEBRA 164 Chapter 7 PHASORS ALGEBRA Vectors, in general, may be located anywhere in space. We have restricted ourselves thus for to vectors which are all located in one plane (co planar vectors), but they may

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 5: Sampling Theory S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 85 Sampling and Aliasing All of

More information

MITOCW MITRES_6-007S11lec09_300k.mp4

MITOCW MITRES_6-007S11lec09_300k.mp4 MITOCW MITRES_6-007S11lec09_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS i SYLLABUS osmania university UNIT - I CHAPTER - 1 : TRANSIENT RESPONSE Initial Conditions in Zero-Input Response of RC, RL and RLC Networks, Definitions of Unit Impulse, Unit Step and Ramp Functions,

More information

Bessel s and legendre s equations

Bessel s and legendre s equations Chapter 12 Bessel s and legendre s equations 12.1 Introduction Many linear differential equations having variable coefficients cannot be solved by usual methods and we need to employ series solution method

More information

The Discrete Fourier Transform

The Discrete Fourier Transform In [ ]: cd matlab pwd The Discrete Fourier Transform Scope and Background Reading This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives 77 6. More on Fourier series 6.. Harmonic response. One of the main uses of Fourier series is to express periodic system responses to general periodic signals. For example, if we drive an undamped spring

More information

Poles, Zeros and System Response

Poles, Zeros and System Response Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

More information

Chapter 1.6. Perform Operations with Complex Numbers

Chapter 1.6. Perform Operations with Complex Numbers Chapter 1.6 Perform Operations with Complex Numbers EXAMPLE Warm-Up 1 Exercises Solve a quadratic equation Solve 2x 2 + 11 = 37. 2x 2 + 11 = 37 2x 2 = 48 Write original equation. Subtract 11 from each

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information