f sends 1 to 2, so f 1 sends 2 back to 1. f sends 2 to 4, so f 1 sends 4 back to 2. f 1 = { (2,1), (4,2), (6,3), (1,4), (3,5), (5,6) }.

Size: px
Start display at page:

Download "f sends 1 to 2, so f 1 sends 2 back to 1. f sends 2 to 4, so f 1 sends 4 back to 2. f 1 = { (2,1), (4,2), (6,3), (1,4), (3,5), (5,6) }."

Transcription

1 .3 Inverse Functions an their Derivatives In this unit you ll review inverse unctions, how to in them, an how the graphs o unctions an their inverses are relate geometrically. Not all unctions can be unone, but when they can be, the inverse unction unoes whatever the unction i. I the unction ties a knot, then the inverse unction unties the knot. Then we ll apply the chain rule to in the erivatives o inverse unctions. Inverse Functions First let be the unction = { (,), (,), (3,6), (,), (5,3), (6,5) } with arrow iagram: Since the inverse unction unoes what i, it s easy to in the arrow iagram or this inverse unction; just raw in the arrows that clean up the mess create, the arrow iagram that unoes the unction : This iagram was constructe by thinking: Thus, sens to, so sens back to. sens to, so sens back to. Etc = { (,), (,), (6,3), (,), (3,5), (5,6) }. Notice that the points in are simply the points in, but with all their xy-coorinates switche! For example, in place o the point (,), the inverse unction has the point (,). Below is a graph o unction, along with its inverse unction,. Plotting in blue, an its inverse in re, we get the iagram to the right: The iagonal line y=x is graphe in yellow; notice the symmetry o the graphe points about that line.

2 Important concept! Switching the xy-coorinates o any point relects that point through the iagonal line y=x, as illustrate in the iagram: Since all the points o the graph o the inverse unction are points o the original unction with the xycoorinates switche, it ollows that the graph o the inverse unction is the graph o the unction relecte through the line y=x, as we saw to be the case in the above example. Our simple example o a unction an its inverse worke because not only i our original unction pass the vertical line test (vertical lines cross the graph o ANY unction in at most one place), but it also passes the horizontal line test (horizontal lines cross the graph o the unction in at most one place). In such cases the unction is sai to be one-to-one, which means each input to the unction (those are the x-coorinates in the points that make up the graph o the unction) is paire with a unique output rom the unction (those are the y-coorinates in the points that make up the graph o the unction), an also each output rom the unction has a unique input that generates it. IMPORTANT! The inverse o a unction is not its reciprocal, in general: The notation is unortunately ambiguous, but whenever you see (x), this means the inverse unction an not the reciprocal o the unction. Most unctions we nee eal with are eine in terms o equations, usually where y is expresse algebraically as a unction o x. Fining the inverse unction algebraically also involves switching the x an y coorinates. For example, to in the inverse unction o the unction = 5, we start by switching the x s an y s: y = 5 x = 3y 5 Then solve the resulting switche equation or y: That s the inverse unction, x + 5 =. 3 x + 5 x + 5 = 3y = y. 3

3 Here are both unctions plotte on the same graph, along with the line y=x. NOTE: To in an inverse unction when the equation or the unction expresses y as a unction o x, we ve irst switche the x s an y s in the equation, an then solve or y. But you can also o this in the reverse orer, irst solving or x as a unction o y an then switching the x s an y s in the equation. Examples:. Let y = +. Fin y in terms o x an y in terms o y. We are given y as a unction o x: y +. y y 3 ( x+ ) = 3 ( x+ ) = 3 ( x+ ) ( + ) = 3 ( x+ ) 3 + y 6 ( + ) Solving or x as a unction o y, we get: y y = y( + ) = y+ y = y = y x= + 3y ' y = =. 3y That last line is the erivation o the inverse unction, x ( y) Dierentiating with respect to y, we get: ( 3y) ( y) ( y) ( 3y) y y y 3y 3 3y 6+ 3y x y y 3y 3y 3y 6 = y y 9y y 3y y ( y) ( 3y)

4 Notice that the equation ( y) y = eines the unction 3y x =. It s the same unction either way! just as well as the equation Plotting an its inverse = in blue, + x = in re, we get the iagram to the right: The iagonal line y=x is graphe in yellow; notice the symmetry o the graphe unctions about that line.. Let y ax + b, an let x = ( y). Fin y in terms o x an in terms o y. cx + y ( cx + ) ( ax + b) ( ax + b) ( cx + ax + b y ax + b ) y = cx + cx + cx + ( cx + ) a ( ax + b) c acx + a acx bc a bc ( cx + ) ( cx + ) ( cx + ) = y a bc = cx ( + ) Solving or x as a unction o y (an thus ining the inverse unction), we get: ax + b y = y ( cx + ) = ax + b cxy + y = ax + b cxy ax = b y cx + Dierentiating with respect to y, we get: b y cy a ( cy a) x = b y x ( y) ( cy a) ( b y) ( b y) ( cy a) b y y y cy a b y c x = y y cy a cy a cy a cy a bc cy a bc = y + + ( cy a) y ( cy a) ( ) ( ) ( ) ( y )

5 The Derivative o an Inverse Function To in the erivative o an inverse unction,, we begin with the algebraic equation that escribes the act that the unction unoes whatever the unction oes to x (since these unctions are inverses o each other), an then we ierentiate both sies o that equation: ( ) ( ) x = x x x Now we must invoke the chain rule, I we let y = an x ( y) ( ) = x = ( g x ) = '( g ) g', to get '( ) = ( x ) = ' x ( ) =, then the above equation can be expresse more concisely: = y y In the next section we ll use this technique to erive ormulas or the inverse trigonometric unctions. Derivative Examples: 3. Let y = tan x. Fin y at π x =. π π At x =, we have y = tan =, so we want to in the erivative o the inverse unction o y = tan x, at the point y =. This is the reciprocal o the erivative y evaluate at π x =. y π But π = x π = π = = tan sec sec =. x = x = x =

6 An so, y y = y π x =. Let y = x sin x. Fin y at x = 0. At x = 0, we have y = 0 sin0= 0, so we want to in the erivative o the inverse unction o y y = xsin x, at the point y = 0. This is the reciprocal o the erivative evaluate at 0 x =. y But = ( x sin x ) = ( cos x ) = cos 0 = = 0. x = 0 x = 0 x = 0 The inverse unction s erivative is then the reciprocal o 0, which is uneine. At any points on the graph o y = x with horizontal tangent lines, the corresponing points on the graph o y = x points. Plotting an its inverse have vertical tangent lines. The erivative o the inverse unction isn t eine at such y = = x sin x in blue, y x = in re, we get the iagram to the right: The iagonal line y=x is graphe in yellow; notice the symmetry o the graphe unctions about that line. Also notice that at (0,0), has a horizontal tangent (the x-axis) while has a vertical tangent (the y-axis).

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

MATH section 2.3 Basic Differentiation Formulas Page 1 of 5

MATH section 2.3 Basic Differentiation Formulas Page 1 of 5 MATH 0100 section. Basic Dierentiation Formulas Page 1 o The tetbook is using Leibniz notation or this section. I ll continue to use this notation when we are using ormulas an rules. Notation: This means,

More information

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points Dr. Sarah Mitchell Autumn 2014 An important limit To calculate the limits of basic trigonometric functions

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14 AP Calculus AB Ch. Derivatives (Part I) Name Intro to Derivatives: Deinition o the Derivative an the Tangent Line 9/15/1 A linear unction has the same slope at all o its points, but non-linear equations

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule 330_003.q 11/3/0 :3 PM Page 119 SECTION.3 Prouct an Quotient Rules an Higher-Orer Derivatives 119 Section.3 Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Higher. Further Calculus 149

Higher. Further Calculus 149 hsn.uk.net Higher Mathematics UNIT 3 OUTCOME 2 Further Calculus Contents Further Calculus 49 Differentiating sinx an cosx 49 2 Integrating sinx an cosx 50 3 The Chain Rule 5 4 Special Cases of the Chain

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Unit 1 PreCalculus Review & Limits

Unit 1 PreCalculus Review & Limits 1 Unit 1 PreCalculus Review & Limits Factoring: Remove common factors first Terms - Difference of Squares a b a b a b - Sum of Cubes ( )( ) a b a b a ab b 3 3 - Difference of Cubes a b a b a ab b 3 3 3

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Math 1 Lecture 20. Dartmouth College. Wednesday

Math 1 Lecture 20. Dartmouth College. Wednesday Math 1 Lecture 20 Dartmouth College Wenesay 10-26-16 Contents Reminers/Announcements Last Time Derivatives of Trigonometric Functions Reminers/Announcements WebWork ue Friay x-hour problem session rop

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

2.3 Product and Quotient Rules and Higher-Order Derivatives

2.3 Product and Quotient Rules and Higher-Order Derivatives Chapter Dierentiation. Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct Rule. Fin the erivative o a unction using the Quotient Rule. Fin the erivative

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col Review of Linear Algebra { E18 Hanout Vectors an Their Inner Proucts Let X an Y be two vectors: an Their inner prouct is ene as X =[x1; ;x n ] T Y =[y1; ;y n ] T (X; Y ) = X T Y = x k y k k=1 where T an

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Taylor Expansions in 2d

Taylor Expansions in 2d Taylor Expansions in 2 In your irst year Calculus course you evelope a amily o ormulae or approximating a unction F(t) or t near any ixe point t 0. The cruest approximation was just a constant. F(t 0 +

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Algebra II Notes Inverse Functions Unit 1.2. Inverse of a Linear Function. Math Background

Algebra II Notes Inverse Functions Unit 1.2. Inverse of a Linear Function. Math Background Algebra II Notes Inverse Functions Unit 1. Inverse o a Linear Function Math Background Previously, you Perormed operations with linear unctions Identiied the domain and range o linear unctions In this

More information

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr Dierentiation Rules c 00 Donal Kreier an Dwigt Lar Te Power Rule is an example o a ierentiation rule. For unctions o te orm x r, were r is a constant real number, we can simply write own te erivative rater

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Chapter 8: Trig Equations and Inverse Trig Functions

Chapter 8: Trig Equations and Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 8: Trig Equations and Inverse Trig Functions EXAMPLE : Solve the equations below: a sin( t) b sin( t) 0 sin a Based on our experience with the

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -7-08 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Math 1720 Final Exam Review 1

Math 1720 Final Exam Review 1 Math 70 Final Eam Review Remember that you are require to evaluate this class by going to evaluate.unt.eu an filling out the survey before minight May 8. It will only take between 5 an 0 minutes, epening

More information

Lesson 7.3 Exercises, pages

Lesson 7.3 Exercises, pages Lesson 7. Exercises, pages 8 A. Write each expression in terms of a single trigonometric function. cos u a) b) sin u cos u cot U tan U P DO NOT COPY. 7. Reciprocal and Quotient Identities Solutions 7 c)

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Math 3A Midterm 1 Solutions

Math 3A Midterm 1 Solutions Math 3A Miterm Solutions Rea all of the following information before starting the exam: 0/0/00 Check your exam to make sure all pages are present. When you use a major theorem (like the inermeiate value

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules Sec 3. Eponential Functions A. Limit Rules. r lim a a r. I a, then lim a and lim a 0 3. I 0 a, then lim a 0 and lim a 4. lim e 0 5. e lim and lim e 0 Eamples:. Starting with the graph o a.) Shiting 9 units

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Reresher Course in Mathematics September 3 Lecture 5 Unconstraine Optimization an Quaratic Forms Francesco Feri We consier the unconstraine optimization or the case o unctions

More information

Math 106 Exam 2 Topics. du dx

Math 106 Exam 2 Topics. du dx The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1 5-1 Trigonometric Identities What You ll Learn Scan the text under the Now heading. List two things that you will learn in the lesson. 1. 2. Lesson 5-1 Active Vocabulary Review Vocabulary Complete each

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

Chapter 6: Inverse Trig Functions

Chapter 6: Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 6: Inverse Trig Functions As we studied in MTH, the inverse of a function reverses the roles of the inputs and the outputs (For more information

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). 8. THEOREM I the partial derivatives and eist near (a b) and are continuous at (a b) then is dierentiable at (a b). For a dierentiable unction o two variables z= ( ) we deine the dierentials d and d to

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS YORK UNIVERSITY Faculty of Science Department of Mathematics an Statistics MATH 505 6.00 A Test # June 5, 04 SOLUTIONS Family Name (print): Given Name: Stuent No: Signature: INSTRUCTIONS:. Please write

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

DOUBLE PENDULUM VIBRATION MOTION IN FLUID FLOW

DOUBLE PENDULUM VIBRATION MOTION IN FLUID FLOW ENGINEERING FOR RURA DEEOPMENT Jelgava,.-.5.5. DOUBE PENDUUM IBRATION MOTION IN FUID FOW Janis iba, Maris Eiuks, Martins Irbe Riga Technical University, atvia janis.viba@rtu.lv, maris.eiuks@rtu.lv, martins.irbe@rtu.lv

More information