Department of Applied Chemistry 2009 Spring

Size: px
Start display at page:

Download "Department of Applied Chemistry 2009 Spring"

Transcription

1 Physical Cheistry I. Introduction ti II. Gas Perfect Gases III. Gas Real Gases CYUT Departent of Applied Cheistry 009 Spring

2 I. Introduction

3 物理化學內容架構 Therodynaics 熱力學 Cheical Kinetics 反應動力學 Quantu Mechanics 量子力學 Statistic Therodynaics 統計熱力學 理想 / 真實氣體 熱力學三大定律熱化學 (therocheistry) 平衡 (Equilibriu) 化學平衡物理平衡理想 / 真實溶液 反應速率法則反應級數 (reaction order) 速率常數 (rate constant) 反應機構 (echanis) 基本量子理論原子構造分子結構與對稱光譜學 (spectroscopy) 固態理論 機率與波茲曼分佈 (Boltzan Distribution) 統計力學氣體動力論輸送現象

4 物化學習要點 觀念 / 現象 / 定義公式 / 參數 / 關聯驗證 / 計算 / 數值修正 / 發展 / 應用 文字敘述數學表示例題習題公式推導, 應用實務 Note : 專有名詞與單位表示

5 States of Gases Equation of State Pf f (T,,n) P:Pressure T:Teperature PnRT /

6 Pressure Pressure is defined as force divided by the area to which the force is applied. 1 Pa 1 N - 1kg -1 s -1

7 Properties of Gases p Unit of Pressure P 壓力的單位

8 Self Test 1.1 Calculation of Pressure Calculate the pressure (in pascals and atospheres) exerted by a ass of 1.0 kg pressing through the point of a pin of area at the surface of the Earth. Hint. The force exerted by a ass due to gravity at the surface of the Earth is g, where g is the acceleration of free fll fall

9 Pressure The gas with higher pressure tend to copress the gas with lower pressure. The equality of pressure on either side of a piston is a state of echanical equilibriu between two gases

10 Measureent of Pressure The pressure exerted by the atosphere is easured with a baroeter. The height of the ercury colun is proportional to the external pressure. p F A g A ( ρ ) g ( ρah) A A g ρgh p ρgl cosθ

11 Teperature Theral equilibriu is established if no change of state occurs when two objects A to B are in contact through a diatheric boundary. Diatheric Adiabatic

12 Teperature Zeroth Law of therodynaics: If A is in theral equilibriu with B, and B is in theral equilibriu with C, then C is also in theral equilibriu with A.

13 Teperature Theroeter, a device for easuring the teperature. Celsius scale of teperature ( C) The theroeter was first in contact with elting ice and then with boiling water was divided into 100 steps called degrees, the lower point being labeled 0. Therodynaic teperature scale Teperatures are denoted d T and are norally reported tdin kelvins, K (not K). A difference in teperature of 1 C is equivalent to a difference of 1 K. T / K θ / C

14 Treperature Illustration 1.1 Converting teperatures To express 5.00 C as a teperature in kelvins T/K (5.00 C)/ C Note how the units (in this case, C) are cancelled like nubers. This is the procedure called quantity calculus in which aphysical quantity (such as the teperature) is the product of a nuerical value (5.00) and a unit (1 C). Multiplication of both sides by the unit K then gives T K.

15 基本定義 導熱 diatheric 絕熱 adiabatic

16 II. Perfect Gases

17 Properties of Gases The perfect Gas equation of State Pressure of the saple f(aount, volue, teperature) P nrt P : pressure of the saple : volue of the saple occupies n :aount of substances in the saple T : teperature of the saple Boyle s Law : P 1/ Charle s s Law : Avogadro s Principle : T at constant P P T at constant n

18 Properties of Gases Gas Constant R 理想氣體常數 R J / K ol kpal/k ol cal/ k ol L at /K ol L Torr/K ol

19 Properties of Gases Boyle s Law At constant teperature, the pressure of a fixed aount of gas is inversely proportitional to its volue P 1/

20 Properties of Gases Boyle s Law At constant teperature, the pressure of a fixed aount of gas is inversely proportitional to its volue P 1/

21 Properties of Gases Boyle s Law The pressure volue dependence of a fixed aount of perfect gas at different teperatures. Each curve is a hyperbola (p constant) and is called an isother. upp3.php?figure&1&4&boo p p kidpche

22 Gas Properties Charle s Law At constant pressure, the volue of a fixed aount of gas varies linearly with the teperature A + Bθ

23 Gas Properties Charle s Law T at constant P P T at constant

24 Properties of Gases Avogadro s Principle At a given teperature and pressure, equal volues of gas contain the sae nuber of olucules Molar volue / n n The olar volue of a gas is alost the sae for all gases at the sae teperature and pressure.

25 Properties of Gases Predicting pressure A cheist is investigating the conversion of atospheric nitrogen to usable for by the bacteria that inhabit the root systes of certain legues, and needs to know the pressure in kilopascals exerted by 1.5 g of nitrogen gas in a flask of volue 50 L at 0ºC. P 1.5g ( 8.314kPa L/K ol) ( 73.15K 0) nrt 8.0 g/ol kpa 0.50 L

26 Properties of Gases Other fors of Ideal Gas Law 理想氣體定律的其他形式 P NkT PM ρrt nrt N : total nuber of gas olecule 氣體分子數 k : Boltzan constant ( J/K) M : olecular l weight 分子量 ρ : density 密度

27 Properties of Gases Estiation of Molecular Weight The density of a gaseous copound was found to be 1.3 g/l at 330 Kand 5.55 kpa. What is the olar ass of the copound? M ρrt P (1.3 g/l) (8.314 J/K ol) 330K 5.5kPa 3 (1.3 g/l) ( Pa L/K ol) 330K Pa 13 g/ol

28 Properties of Gases Cobined Gas Equation P T P T What is the final volue of a saple of gas that has been heated fro 5 to 1000 and its pressure increased fro 10.0kpa to 150.0kpa, p,given that its initial volue was 15 l? ( 10 kpa ) ( 15 L ) ( 150 kpa ) ( K) ( K) 4.3L

29 Properties of Gases Cobined Gas Equation In an industrial process, nitrogen is heated to 500 K in a vessel of constant volue. If it enters the vessel at 100 at and 300 K, what pressure would it exert at the working teperature if it behaved as a perfect gas? n p T Initial Sae 100 Sae 300 Final Sae sae 500 p1 n T p n T

30 Kinetic Model of Gases Assuptions: The gas consists of olecules of ass in ceaseless rando otion. The size of the olecules is negligible, in the sense that their diaeters are uch saller than the average distance travelled between collisions. The olecules interact only through brief, infrequent, and elastic collision.

31 Kinetic Model of Gases The root ean square speed of the olecules of a gas is proportional to the aquare root of the teperature and inversely proportional to the square root of the olar ass. p 1 3 nmc and p nrt c : root ean square speed c M : 1 nmc 3 olecular ass M nrt c N A 3RT M v 1/ 1/

32 Properties of Gases Standard Condition Standard abient teperature and pressure (SATP) Teperature k Pressure(p 0 ) 1 bar Standard teperature and pressure (STP) Teperature 0 Pressure(p 0 ) 1at

33 Properties of Gases Gas Mixture 混合氣體 P n RT + n RT + n RT +... n RT 1 3 i n RT P P P... i P i Pi P n RT n RT i i ni xi nirt nrt n i i i P Mole fraction 混合氣體中某成分氣體之分壓與總壓力之比值恰為該氣體在此混合系統中之莫耳分率 i

34 Properties of Gases Gas Mixture 混合氣體 Dalton s law: The pressure exerted by a ixture of gases is the su of the pressures that each one would exist if it occupied the container alone.

35 Properties of Gases Partial Pressure P i χ i P total ole fraction χ i n i /n totalt P i : partial pressure P i χ i (nrt/) n i RT/

36 Properties of Gases Partial Pressure (A) Calculate the ole fractions of N,O andarindryairat sea level, given that 100.0g0g of air consists of g of N, 3. g of O and 1.3 g of Ar. (B) When the total atospheric pressure is 100 kpa, what is the partial pressure of nitrogen, oxygen and argon, respectively? Calculate the oles for each gas N 75.7 / 8.0.7( ole) O 3. / ( ole) Ar 1.3/ ( ole) Total oles Mole Fractions for each gas N O Ar.7 / / / ( ole) Pressure for each gas N 100kPa kpa 100kPa 0.1 1kPa O Ar 100kPa kpa

37 III. Real Gases

38 Real Gases Molecular interaction Attraction 吸引力 lowering the total energy ake a negative contribution on the potential energy Repulsion 排斥力 ake a positive contribution on the total potential energy At large separations, the energy lowering interactions are doinant. At short distances the energy At short distances the energy raising repulsions doinate

39 FIgure 1.6

40 Copression factor Z P Z RT P RT real gas real gas real gas ideal gas / Z 1 perfect gas Z > 1 repulsive interaction Z < 1 attractive interaction

41 At very low pressures, all the gases shown have Z 1 and behave nearly perfectly. At high pressures, all the gases have Z > 1, signifying that they have a larger olar volue than a perfect gas. Repulsive forces are now doinant. At interediate pressures, ost gases have Z < 1, indicating that the attractive forces are reducing the olar volue relative to that of a perfect gas.

42 irial Equation of State The coefficients B, C,..., which depend on the teperature, are the second, third,...virial coefficients.

43 irial Equation of State For ideal gas p RT p 0 For real gas Z dz 1 dp 0 p p RT (1 + B' p + C' p ZRT + L ) + dz B' + pc' + L B' as p dp 0 B C p RT ( L ) p dz d(1/ ZRT B as )

44 dz dp B' + pc ' + L B ' as p 0 The copression factor, Z, approaches 1 at low pressures, but does so with different slopes. For a perfect gas, the slope is zero, For real gases the slope ay have either positive or negative slopes, and the slope ay vary with teperature. At the Boyle teperature, the slope is zero and the gas behaves perfectly over a wider range of conditions than at other teperatures.

45 Boyle Teperature Atthe Boyle teperature, T B dz/dp 0 as p 0 B 0 p RT B over a ore extended range of pressures than at other teperatures. At the Boyle teperaturet properties of the real gas do coincide with those of a perfect gas as p 0.

46 Boyle Teperature

47 Condensation of Real gas Near A, the pressure of the gas rises in approxiate agreeent with Boyle s law. Serious deviations fro that law begin to appear when the volue has been reduced to B. At C all siilarity to perfect behaviour is lost, for suddenly the volue decreased without any further rise in pressure. Just to the left of C a liquid appears, and there are two phases separated by a sharply defined surface. As the volue is decreased fro C through D to E, the aount of liquid increases. At E, the saple is entirely liquid. Any further reduction of volue requires the exertion of considerable pressure, as is indicated by the sharply rising line to the left of E. Even a sall reduction of volue fro E to F requires a great increase in pressure.

48 Real Gases liquid Supercritical fluid Gas Gas Gs and liquid qud 表示連續狀態, 並無產生相變化.

49 Condensation of gases The volue and the coposition of a syste containing CO at 58 K is shown at the points a, b, c, and d indicated in Figure 7.. The liquid and gas volues are not shown to scale.

50 Real Gases van der Waals equation of state 氣體狀態方程式的修正 an P + nb nrt P + ( nb ) Repulsive interaction -nb Attractive interaction Attractive interaction P P+(n/)

51 Real Gases van der Waals equation of state

52 Critical Teperature T c The teperature at which the range of shrunk to a single value For CO, T c K At TT T c δp δp 0 and 0 δ δ T T T T c T T c

53 Feature of van der Waals eq Feature of van der Waals eq. a RT a b RT a b RT c 0 ) ( 3 + a b RT a b RT T T c ) ( 3 a b RT b b c c c T T T T 0 6 ) ( ) ( b b a b a T T T T c c 1 ) ( 3 to which siplifies, ) ( 3 ) ( RT fro these two equations gives RT Equation 3 c gives b b b b T T c c c c 0 result into Substituting this. 3 equation is The solution to this 1 ) ( to which siplifies, ) ( ) ( RT c c 4 3 c Ρ Rb a R b b a T or b a b RT a b RT c c c c 7 8 ) ( ) (3 0 ) (3 ) ( ) (

54 Suppleentary 補充資料 Show that the slope of z as a function of P as P 0 is related to the van der Waals paraeters by li0 p z 1 P RT T b a RT

55 Solution 7.3 The copression Factor Rather than differentiating z with respect to P, we transfor the partial derivation to one involving RT a P b a z RT RT b RT, ideal z z P T RT T a a 1 b RT 1 b RT d R T 1 RT 1 d T T

56 7.3 The copression Factor We have transfored the differentiation with respect to 1/ to one involving. The substitution of RT/ for P is only valid in the low density liit. Because 1 1 d d 1 d d z 1 a + P T RT b ( b) RT ( b ) ( b) ( b) a + RT RT 1 b RT ( ) b a RT ( ) As P 0,, and b b b Therefroe, li P 0 z 1 a b p RT RT T

57 Boyle teperature T B a z 1 a When b li b 0 RT p 0 P RT RT b a/rt B T B (a/br) T At T B z 0 B z li 0 p 0 P T ideal gas z T>T B B, li > 0 repulsive p 0 P T<T B, B T z li < 0 p 0 P T attractive

58 Principle of Corresponding States P RT a 8 P T 3 P b 3 P 8 ( T/ T ) r 3 P 3 / 1 / c c c c c 3Tc ( ) ( ) c r r P r 8 T r r r Reduced Paraeters P T r r r P P T P c T c c

59 Principle of Corresponding States

60 alues for the copression factor are shown as a function of the reduced pressure, Pr, for seven different gases at the six values of reduced teperatures indicated in the figure. The solid curves are drawn to guide the eye.

61 Copression factor, z, as as function of P r for the T r values in indicated. The curves were calculated using the van der Waals equation of state.

62 Exaple Proble 7.3 calculate the volue occupied by 1.00 kg of CH 4 gas at T 30 K and P 68.0bar.Calculate- ideal and the relative error in if were calculated fro the ideal gas equation of state. Solution For densities corresponding to the attractive range of the potential, 30K 68.0bar T r 1.1 and Pr K 45.99bar Fro Figure 7.8, z g LbarK ol 30K 1 znrt gol 11. P 68.0bar L ideal 11.0 L 6.5L 0.70 ideal 6.5 L 58% 11.0 L

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438)

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438) Exercise 1 Exercises- chapter-1- Properties of gases (Part-2- Real gases Express the van der Waals paraeters a = 1.32 at d 6 ol 2 and b = 0.0436 d 3 ol 1 in SI base units? * The SI unit of pressure is

More information

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子結構中的電子是如何被發現的? ( 1856 1940 ) 可以參考美國物理學會 ( American Institute of Physics ) 網站 For in-depth information, check out the American Institute of Physics' History Center

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

I. Concepts and Definitions. I. Concepts and Definitions

I. Concepts and Definitions. I. Concepts and Definitions F. Properties of a syste (we use the to calculate changes in energy) 1. A property is a characteristic of a syste that can be given a nuerical value without considering the history of the syste. Exaples

More information

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc. Chapter 22 Lecture Essential University Physics Richard Wolfson 2 nd Edition Electric Potential 電位 Slide 22-1 In this lecture you ll learn 簡介 The concept of electric potential difference 電位差 Including

More information

1 The properties of gases The perfect gas

1 The properties of gases The perfect gas 1 The properties of gases 1A The perfect gas Answers to discussion questions 1A. The partial pressure of a gas in a ixture of gases is the pressure the gas would exert if it occupied alone the sae container

More information

CHAPTER 4. Thermochemistry ( 熱化學是熱力學的一支, 在化學反應或相變化過程中發生的能量吸收或釋出, 若以吸放熱的形式表現, 即為熱化學研究的對象 ) Chap. 4 Thermochemistry

CHAPTER 4. Thermochemistry ( 熱化學是熱力學的一支, 在化學反應或相變化過程中發生的能量吸收或釋出, 若以吸放熱的形式表現, 即為熱化學研究的對象 ) Chap. 4 Thermochemistry CHAPTER 4 Thermochemistry ( 熱化學是熱力學的一支, 在化學反應或相變化過程中發生的能量吸收或釋出, 若以吸放熱的形式表現, 即為熱化學研究的對象 ) 1 2 4.1 Energy Stored in Chemical Bonds Is Released or Taken Up in Chemical Reactions 3 I 2.2 Food and Energy reserves

More information

Ch.9 Liquids and Solids

Ch.9 Liquids and Solids Ch.9 Liquids and Solids 9.1. Liquid-Vapor Equilibrium 1. Vapor Pressure. Vapor Pressure versus Temperature 3. Boiling Temperature. Critical Temperature and Pressure 9.. Phase Diagram 1. Sublimation. Melting

More information

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1 0 0 = 1 0 = 0 1 = 0 1 1 = 1 1 = 0 0 = 1 : = {0, 1} : 3 (,, ) = + (,, ) = + + (, ) = + (,,, ) = ( + )( + ) + ( + )( + ) + = + = = + + = + = ( + ) + = + ( + ) () = () ( + ) = + + = ( + )( + ) + = = + 0

More information

授課大綱 課號課程名稱選別開課系級學分 結果預視

授課大綱 課號課程名稱選別開課系級學分 結果預視 授課大綱 課號課程名稱選別開課系級學分 B06303A 流體力學 Fluid Mechanics 必 結果預視 課程介紹 (Course Description): 機械工程學系 三甲 3 在流體力學第一課的學生可能會問 : 什麼是流體力學? 為什麼我必須研究它? 我為什麼要研究它? 流體力學有哪些應用? 流體包括液體和氣體 流體力學涉及靜止和運動時流體的行為 對流體力學的基本原理和概念的了解和理解對分析任何工程系統至關重要,

More information

Finite Interval( 有限區間 ) open interval ( a, closed interval [ ab, ] = { xa x b} half open( or half closed) interval. Infinite Interval( 無限區間 )

Finite Interval( 有限區間 ) open interval ( a, closed interval [ ab, ] = { xa x b} half open( or half closed) interval. Infinite Interval( 無限區間 ) Finite Interval( 有限區間 ) open interval ( a, b) { a< < b} closed interval [ ab, ] { a b} hal open( or hal closed) interval ( ab, ] { a< b} [ ab, ) { a < b} Ininite Interval( 無限區間 ) [ a, ) { a < } (, b] {

More information

Chapter 13. Chemical Kinetics. Fu-Yin Hsu

Chapter 13. Chemical Kinetics. Fu-Yin Hsu Chapter 13 Chemical Kinetics Fu-Yin Hsu Ectotherms ( 冷血動物 ) ectotherms animals whose body temperature matches their environment s temperature. Ex: Lizards ( 蜥蝪 ) The drop in body temperature immobilizes

More information

EXPERMENT 9. To determination of Quinine by fluorescence spectroscopy. Introduction

EXPERMENT 9. To determination of Quinine by fluorescence spectroscopy. Introduction EXPERMENT 9 To determination of Quinine by fluorescence spectroscopy Introduction Many chemical compounds can be excited by electromagnetic radication from normally a singlet ground state S o to upper

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee Chapter 6 Series-Parallel Circuits Objectives Identify series-parallel relationships Analyze series-parallel circuits Determine the loading effect of a voltmeter on a circuit Analyze a Wheatstone bridge

More information

Gases and the Kinetic Molecular Theory

Gases and the Kinetic Molecular Theory Gases and the Kinetic olecular Theory Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc. 5.1 The hysical States of atter The condensed states liquid and solid The gaseous

More information

OStudy of Real Gas Behavior: Ideality of CO 2 Gas

OStudy of Real Gas Behavior: Ideality of CO 2 Gas OStudy of Real Gas Behavior: Ideality of CO Gas Subitted: March, 014 CHEM 457, Section Departent of Cheistry, The Pennsylvania State University, University Park, PA 1680 Jessica Slavejkov Bashayer Aldakkan,

More information

Work Energy And Power 功, 能量及功率

Work Energy And Power 功, 能量及功率 p. 1 Work Energy And Power 功, 能量及功率 黃河壺口瀑布 p. 2 甚麼是 能量? p. 3 常力所作的功 ( Work Done by a Constant Force ) p. 4 F F θ F cosθ s 要有出力才有 功 勞 造成位移才有 功 勞 W = F cos θ s ( Joule, a scalar ) = F s or F Δx F : force,

More information

Candidates Performance in Paper I (Q1-4, )

Candidates Performance in Paper I (Q1-4, ) HKDSE 2018 Candidates Performance in Paper I (Q1-4, 10-14 ) 8, 9 November 2018 General and Common Weaknesses Weak in calculations Weak in conversion of units in calculations (e.g. cm 3 to dm 3 ) Weak in

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

HKDSE Chemistry Paper 2 Q.1 & Q.3

HKDSE Chemistry Paper 2 Q.1 & Q.3 HKDSE 2017 Chemistry Paper 2 Q.1 & Q.3 Focus areas Basic chemical knowledge Question requirement Experimental work Calculations Others Basic Chemical Knowledge Question 1(a)(i) (1) Chemical equation for

More information

100 台聯大碩士班聯招 電機類 各考科綱要及參考書目

100 台聯大碩士班聯招 電機類 各考科綱要及參考書目 100 台聯大碩士班聯招 電機類 各考科綱要及 電子學 (3001). Operational Amplifiers.. Diodes. 3. MOS Field-Effect Transistors (MOSFETs). 4. Bipolar Junction Transistors (BJTs). 5. Single-Stage Amplifiers. 6. Differential and Multistage

More information

Expansion of Gases. It is decided to verify oyle's law over a wide range of teperature and pressures. he ost suitable gas to be selected for this purpose is ) Carbon dioxide ) Heliu 3) Oxygen 4) Hydrogen.

More information

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 熵可以用來預測自發改變方向 我們現在回到 5.1 節引入兩個過程 第一個過程是關於金屬棒在溫度梯度下的自然變化方向 試問, 在系統達平衡狀態時, 梯度變大或更小? 為了模擬這過程, 考慮如圖 5.5 的模型, 一孤立的複合系統受

More information

Chap. 5 GASES & KINETIC- MOLECULAR THEORY

Chap. 5 GASES & KINETIC- MOLECULAR THEORY Chap. 5 GASES & KINETIC- OLECULAR THEORY Use the ideal gas law to describe the behavi of gases. Understand how kinetic-molecular they provides the basis f understanding gas behavi Be able to describe effusion

More information

2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷

2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷 2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷 一 單選題 :( 每題 3 分, 共 72 分 ) 題號 1 2 3 4 5 6 7 8 答案 B D D A C B C B 題號 9 10 11 12 13 14 15 16 答案 C E D D 送分 E A B 題號 17 18 19 20 21 22 23 24 答案 D A E C A C 送分 B 二 多選題

More information

第 3 章有機化學反應種類及酸鹼有機反應. 一 ) 有機化反應的種類及有機反應機制 (organic reactions and their mechanism)

第 3 章有機化學反應種類及酸鹼有機反應. 一 ) 有機化反應的種類及有機反應機制 (organic reactions and their mechanism) 第 3 章有機化學反應種類及酸鹼有機反應 一 ) 有機化反應的種類及有機反應機制 (organic reactions and their mechanism) 1) a) Substitution reaction: (Saturated compound such as alkanes or alkyl halides, aromatic compounds) ne group replace

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Che340 hysical Cheistry for Biocheists Exa 3 Apr 5, 0 Your Nae _ I affir that I have never given nor received aid on this exaination. I understand that cheating in the exa will result in a grade F for

More information

Chapter 4: Temperature

Chapter 4: Temperature Chapter 4: Teperature Objectives: 1. Define what teperature is. 2. Explain the difference between absolute and relative teperature. 3. Know the reference points for the teperature scales. 4. Convert a

More information

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis Ch 3 線性迴歸與相關分析 相關分析 Lear Regresso Ad Correlato Aalyss Correlato Aalyss Correlato Aalyss Correlato Aalyss s the study of the relatoshp betwee two varables. Scatter Dagram A Scatter Dagram s a chart that

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 hapter S Stereochemistry ( 立體化學 ): chiral molecules ( 掌性分子 ) Isomerism constitutional isomers butane isobutane 分子式相同但鍵結方式不同

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士 Contents

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士   Contents 雷射原理 The Principle of Laser 授課教授 : 林彥勝博士 E-mail: yslin@mail.isu.edu.tw Contents Energy Level( 能階 ) Spontaneous Emission( 自發輻射 ) Stimulated Emission( 受激發射 ) Population Inversion( 居量反轉 ) Active Medium( 活性介質

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

STP : standard temperature and pressure 0 o C = 273 K kpa

STP : standard temperature and pressure 0 o C = 273 K kpa GAS LAWS Pressure can be measured in different units. For our calculations, we need Pressure to be expressed in kpa. 1 atm = 760. mmhg = 101.3 kpa R is the Universal Gas Constant. Take note of the units:

More information

3 Thermodynamics and Statistical mechanics

3 Thermodynamics and Statistical mechanics Therodynaics and Statistical echanics. Syste and environent The syste is soe ortion of atter that we searate using real walls or only in our ine, fro the other art of the universe. Everything outside the

More information

APPLYING PRINCIPAL COMPONENT ANALYSIS TO A GR&R STUDY

APPLYING PRINCIPAL COMPONENT ANALYSIS TO A GR&R STUDY 8 Journal of the Chinese Institute of Industrial Engineers, Vol. 4, No., pp. 8-89 (007) APPLYING PRINCIPAL COMPONEN ANALYSIS O A GR&R SUDY Fu-Kwun Wang* Departent of Industrial Manageent National aiwan

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Chapter 1 Linear Regression with One Predictor Variable

Chapter 1 Linear Regression with One Predictor Variable Chapter 1 Linear Regression with One Predictor Variable 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 1 1 / 41 Regression analysis is a statistical methodology

More information

KINETIC THEORY. Contents

KINETIC THEORY. Contents KINETIC THEORY This brief paper on inetic theory deals with three topics: the hypotheses on which the theory is founded, the calculation of pressure and absolute teperature of an ideal gas and the principal

More information

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 Chapter 13, Part A Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis of Variance and the Completely

More information

Candidates Performance in Paper I (Q1-4, )

Candidates Performance in Paper I (Q1-4, ) HKDSE 2016 Candidates Performance in Paper I (Q1-4, 10-14 ) 7, 17 November 2016 General Comments General and Common Weaknesses Weak in calculations Unable to give the appropriate units for numerical answers

More information

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C? Section 12.2 The Ideal Gas Law Solutions for Practice Probles Student Edition page 556 21. Practice Proble (page 556) What is the volue of 5.65 ol of heliu gas at a pressure of 98 kpa and a teperature

More information

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015 生物統計教育訓練 - 課程 Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所 tchsieh@mail.tcu.edu.tw TEL: 03-8565301 ext 2015 1 Randomized controlled trial Two arms trial Test treatment

More information

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium CHAPTER 2 Energy Bands and Carrier Concentration in Thermal Equilibrium 光電特性 Ge 被 Si 取代, 因為 Si 有較低漏電流 Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors. Figure

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

CHAPTER III: Kinetic Theory of Gases [5%]

CHAPTER III: Kinetic Theory of Gases [5%] CHAPTER III: Kinetic Theory of Gases [5%] Introduction The kinetic theory of gases (also known as kinetic-molecular theory) is a law that explains the behavior of a hypothetical ideal gas. According to

More information

Gaseous States of Matter

Gaseous States of Matter Gaseous States of Matter Semester-1 : ICY-101: CHEMISTRY-I, Unit III Dr. Tapta Kanchan Roy Assistant Professor Department of Chemistry & Chemical Sciences Central University of Jammu 1 The simplest state

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

Chapter 20 Cell Division Summary

Chapter 20 Cell Division Summary Chapter 20 Cell Division Summary Bk3 Ch20 Cell Division/1 Table 1: The concept of cell (Section 20.1) A repeated process in which a cell divides many times to make new cells Cell Responsible for growth,

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER CHAPTER 9 The Gaseous State CHAPTER 10 Solids, Liquids, and Phase Transitions CHAPTER 11 Solutions 392 Gas Liquid Solid 9 THE GASEOUS STATE 9.1 The

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

Why a particular process occurs? Is it due to decrease of energy? Model study 1: An adiabatic ( 絕熱 ) system insulation

Why a particular process occurs? Is it due to decrease of energy? Model study 1: An adiabatic ( 絕熱 ) system insulation 17 Spontaneity, Entropy ( 熵 ) and Free Energy ( 自由能 ) Question: Why a particular process occurs? Is it due to decrease of energy? Model study 1: An adiabatic ( 絕熱 ) system insulation ideal gas vacuum q

More information

磁振影像原理與臨床研究應用 課程內容介紹 課程內容 參考書籍. Introduction of MRI course 磁振成像原理 ( 前 8 週 ) 射頻脈衝 組織對比 影像重建 脈衝波序 影像假影與安全 等

磁振影像原理與臨床研究應用 課程內容介紹 課程內容 參考書籍. Introduction of MRI course 磁振成像原理 ( 前 8 週 ) 射頻脈衝 組織對比 影像重建 脈衝波序 影像假影與安全 等 磁振影像原理與臨床研究應用 盧家鋒助理教授國立陽明大學物理治療暨輔助科技學系 alvin4016@ym.edu.tw 課程內容介紹 Introduction of MRI course 2 課程內容 磁振成像原理 ( 前 8 週 ) 射頻脈衝 組織對比 影像重建 脈衝波序 影像假影與安全 等 磁振影像技術與分析技術文獻討論 對比劑增強 功能性影像 擴散張量影像 血管攝影 常用分析方式 等 磁振影像於各系統應用

More information

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Linear Regression 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Regression analysis is a statistical methodology that utilizes the relation between

More information

Digital Integrated Circuits Lecture 5: Logical Effort

Digital Integrated Circuits Lecture 5: Logical Effort Digital Integrated Circuits Lecture 5: Logical Effort Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University cwliu@twins.ee.nctu.edu.tw DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 1 Outline RC

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Elements that exist as gases at 250C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

UNIT 5 States of matter I. Questions carrying one mark

UNIT 5 States of matter I. Questions carrying one mark UNIT 5 States of matter I. Questions carrying one mark 5. What are van der Waals forces? 5.2 What type of van der Waals force exists between HCl molecules? 5.3 Between which type of molecules does dipole

More information

Chemistry II Midterm Exam 20 April, 2012

Chemistry II Midterm Exam 20 April, 2012 Chemistry II Midterm Exam 0 April, 01 Constants R = 8.314 J/mol K = 0.08314 L bar/k mol = 0.081 L atm/k mol = 8.314 L kpa/k mol 1 bar = 750.06 torr = 0.9869 atm F = 9.6485 10 4 C/mol 1. A 0.5-g sample

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan and the Applications Institute of Statistics National Chiao Tung University Hsinchu, Taiwan 1. Confidence Interval (CI) 2. Tolerance Interval (TI) 3. Prediction Interval (PI) Example A manufacturer wanted

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

行政院國家科學委員會補助專題研究計畫 成果報告 期中進度報告 ( 計畫名稱 )

行政院國家科學委員會補助專題研究計畫 成果報告 期中進度報告 ( 計畫名稱 ) 附件一 行政院國家科學委員會補助專題研究計畫 成果報告 期中進度報告 ( 計畫名稱 ) 發展紅外線 / 可見光合頻波成像顯微術以研究表面催化反應 計畫類別 : 個別型計畫 整合型計畫計畫編號 :NSC 97-2113 - M - 009-002 - MY2 執行期間 : 97 年 3 月 1 日至 98 年 7 月 31 日 計畫主持人 : 重藤真介共同主持人 : 計畫參與人員 : 成果報告類型 (

More information

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1 Chemistry TOPIC 2 States of Matter (I) - Gases Topic 2. States of Matter (I) - Gases. 1 Contents 1. Introduction 2. Pressure measurement 3. The Ideal Gas equation 4. Efusion and Diffusion 5. Kinetic Molecular

More information

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

Chapter 7 Propositional and Predicate Logic

Chapter 7 Propositional and Predicate Logic Chapter 7 Propositional and Predicate Logic 1 What is Artificial Intelligence? A more difficult question is: What is intelligence? This question has puzzled philosophers, biologists and psychologists for

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32 Departent of Mechanical Engineering ME 322 Mechanical Engineering Therodnaics Ideal Gas Mixtures II Lecture 32 The Gibbs Phase Rule The nuber of independent, intensive properties required to fix the state

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.)

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.) Real Gases Sections 1.4-1.6 (Atkins 6th Ed.), 1.3-1.5 (Atkins 7-9th Eds.) Molecular Interactions Compression factor Virial coefficients Condensation Critical Constants Van der Waals Equation Corresponding

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

期中考前回顧 助教 : 王珊彗. Copyright 2009 Cengage Learning

期中考前回顧 助教 : 王珊彗. Copyright 2009 Cengage Learning 期中考前回顧 助教 : 王珊彗 考前提醒 考試時間 :11/17( 四 )9:10~12:10 考試地點 : 管二 104 ( 上課教室 ) 考試範圍 :C1-C9, 選擇 + 計算 注意事項 : 考試請務必帶工程計算機 可帶 A4 參考紙 ( 單面 不能浮貼 ) 計算過程到第四位, 結果寫到小數點第二位 不接受沒有公式, 也不接受沒算出最後答案 考試只會附上 standard normal distribution

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

材料力學 Mechanics of Materials

材料力學 Mechanics of Materials 材料力學 Mechanics of Materials 林峻立博士 國立陽明大學生物醫學工程系教授 Chun-Li Lin, PhD., Professor, Department of Biomedical Engineering National Yang-Ming University 1-1 Cortical bone: 10-20GPa Load Cross section b Moment

More information

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar Gases A Chemistry Lecture Outline Name: Basics on Gases composition of the atmosphere: properties of gases: vapors: gases of substances that are normally liquids or solids Equation for pressure: 1 atm

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Chapter 1 - The Properties of Gases. 2. Knowledge of these defines the state of any pure gas.

Chapter 1 - The Properties of Gases. 2. Knowledge of these defines the state of any pure gas. Chapter 1 - The Properties of Gases I. The perfect gas. A. The states of gases. (definition) 1. The state variables: volume=v amount of substance, moles = n pressure = p temperature = T. Knowledge of these

More information

ln P 1 saturation = T ln P 2 saturation = T

ln P 1 saturation = T ln P 2 saturation = T More Tutorial at www.littledubdoctor.co Physical Cheistry Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) PYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) MOLE CONCEPT, STOICIOMETRIC CALCULATIONS Learner Note: The ole concept is carried forward to calculations in the acid and base section, as well as in

More information

UNIT 10.

UNIT 10. UNIT 10 Pressure: F/A http://chemlab.truman.edu/chem130labs/calorimetryfiles/thermobackground.asp There are four variable needed to define the physical state of a gas. They are: o Temperature o Pressure

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area 6 GASES Gases are one of the three states of matter, and while this state is indispensable for chemistry's study of matter, this chapter mainly considers the relationships between volume, temperature and

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

Ch2. Atoms, Molecules and Ions

Ch2. Atoms, Molecules and Ions Ch2. Atoms, Molecules and Ions The structure of matter includes: (1)Atoms: Composed of electrons, protons and neutrons.(2.2) (2)Molecules: Two or more atoms may combine with one another to form an uncharged

More information

第二章 : Hydrostatics and Atmospheric Stability. Ben Jong-Dao Jou Autumn 2010

第二章 : Hydrostatics and Atmospheric Stability. Ben Jong-Dao Jou Autumn 2010 第二章 : Hydrostatics and Atmospheric Stability Ben Jong-Dao Jou Autumn 2010 Part I: Hydrostatics 1. Gravity 2. Geopotential: The concept of geopotential is used in measurement of heights in the atmosphere

More information

Differential Equations (DE)

Differential Equations (DE) 工程數學 -- 微分方程 51 Differenial Equaions (DE) 授課者 : 丁建均 教學網頁 :hp://djj.ee.nu.edu.w/de.hm 本著作除另有註明外, 採取創用 CC 姓名標示 - 非商業性 - 相同方式分享 台灣 3. 版授權釋出 Chaper 8 Sysems of Linear Firs-Order Differenial Equaions 另一種解 聯立微分方程式

More information

14-A Orthogonal and Dual Orthogonal Y = A X

14-A Orthogonal and Dual Orthogonal Y = A X 489 XIV. Orthogonal Transform and Multiplexing 14-A Orthogonal and Dual Orthogonal Any M N discrete linear transform can be expressed as the matrix form: 0 1 2 N 1 0 1 2 N 1 0 1 2 N 1 y[0] 0 0 0 0 x[0]

More information

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

More information