Digital Integrated Circuits Lecture 5: Logical Effort

Size: px
Start display at page:

Download "Digital Integrated Circuits Lecture 5: Logical Effort"

Transcription

1 Digital Integrated Circuits Lecture 5: Logical Effort Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University DIC-Lec5 1

2 Outline RC Delay Estimation Logical Effort Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary DIC-Lec5 cwliu@twins.ee.nctu.edu.tw

3 RC Delay Model Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nmos has resistance R, capacitance C Unit pmos has resistance R (mobility 較小 ), capacitance C Capacitance proportional to width Resistance inversely proportional to width DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 3

4 RC Values Capacitance C = C g = C s = C d = ff/μm of gate width Values similar across many processes Resistance R 6 KΩ*μm in 0.6um process Improves with shorter channel lengths Unit transistors May refer to minimum contacted device (4/ λ) 假設 nmos/pmos 寄生電容與閘極電容相同 Or maybe 1 μm wide device Doesn t matter as long as you are consistent DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 4

5 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter by using the basic RC delay model of nmos and pmos RC model A 1 Y 1 s kc g kc R/k kc d DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 5

6 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter R C A 1 Y 1 R C C Y C C 假設 A 電位提昇 C DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 6

7 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter R C A 1 Y 1 R C C Y C C R C C C C A=1 C output DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 7

8 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter R C A 1 Y 1 R C C Y C C R C C C C C t pd = 6RC 若沒有寄生電容的 ideal Inverter 則為 t pd = 3RC DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 8

9 Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 9

10 Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). Step 1 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 10

11 3-input NAND Caps We still assume C=C g =C diff Annotate the 3-input NAND gate with gate and diffusion capacitance DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 11

12 3-input NAND Caps We assume C=C g =C diff Annotate the 3-input NAND gate with gate and diffusion capacitance. C C C C C C C C C Step 3C 3C 3C C 3C 3C 3C DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 1

13 3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance. Final result 5C 5C 5C C 3C 3C DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 13

14 Elmore Delay Model ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder t R C pd i to source i nodes i ( )... (... ) = RC + R + R C + + R + R + + R C R 1 R R 3 R N C 1 C C 3 C N N N RC ladder DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 14

15 Example: -input NAND Estimate rising and falling propagation delays of a - input NAND driving h identical gates. A B x Y h copies -input NAND DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 15

16 Example: -input NAND Estimate rising and falling propagation delays of a - input NAND driving h identical gates. A B x 6C C Y 4hC h copies DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 16

17 Example: -input NAND Estimate worst-case rising and falling propagation delays of a -input NAND driving h identical gates. A B x 6C C Y 4hC h copies Worst case rising: 只有一個 pmos 開啟 R Y ( ) (6+4h)C t pdr = 6+ 4h RC DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 17

18 Example: -input NAND Estimate worst-case rising and falling propagation delays of a - input NAND driving h identical gates. A B x 6C C Y 4hC h copies R/ x R/ C Y (6+4h)C Worst case falling:a 已經為 1 ;B 的電位開始上升 t pdf R R = ( )C + ( = (7 + 4h) RC + R )[(6 + 4h) C] DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 18

19 Delay Components Delay has two parts Parasitic delay 6 or 7 RC Independent of load Effort delay 4h RC Proportional to load capacitance DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 19

20 Contamination Delay Best-case (contamination) delay can be substantially less than worst-case propagation delay. Ex: If both inputs fall simultaneously A B x 6C C Y 4hC R R Y (6+4h)C t cdr R = ( )[(6 + 4h) C] = (3 + h) RC DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 0

21 Contamination Delay Best-case (contamination) falling delay can be substantially less than worst-case propagation delay. Ex: B 已經為 1 ;A 的電位開始上升 A B x 6C C Y 4hC t cdf = = R R ( + )[(6 + (6 + 4h) RC 4h) C] DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 1

22 Delay Components Again, Delay has two parts Parasitic delay 3 or 6 RC Independent of load Effort delay 4h or h RC Proportional to load capacitance DIC-Lec5 cwliu@twins.ee.nctu.edu.tw

23 Diffusion Capacitance We assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact Reduces output capacitance by C Merged un-contacted diffusion might help too 3 9C 5C 3 3C 5C 3 3C 5C Recall 3-input NAND Shared Contacted Diffusion Merged Uncontacted Diffusion C C Gate capacitance: 由電晶體的寬度決定 Diffusion capacitance: 與佈局有關 Isolated Contacted Diffusion 3 3 7C 3C 3C 3C 3C 3 3C DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 3

24 Layout Comparison Which layout is better? V DD A B V DD A B Y Y GND GND DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 4

25 Introduction Chip designers face a bewildering array of choices What is the best circuit topology for a function? How many stages of logic give least delay? How wide should the transistors be???? Logical effort is a method to make these decisions Uses a simple model of delay Allows back-of-the-envelope calculations Helps make rapid comparisons between alternatives Emphasizes remarkable symmetries DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 5

26 Example Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file. Decoder specifications: A[3:0] A[3:0] 3 bits 16 word register file Each word is 3 bits wide Each bit presents load of 3 unit-sized transistors 4:16 Decoder 16 Register File 16 words True and complementary address inputs A[3:0] Each input may drive 10 unit-sized transistors Ben needs to decide: How many stages to use? How large should each gate be? How fast can decoder operate? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 6

27 Delay in a Logic Gate Express delays in process-independent unit d = d abs τ = 3RC 沒有寄生電容的理想反向器 1 ps in 180 nm process τ Normalized delay representation 40 ps in 0.6 μm process DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 7

28 Delay in a Logic Gate Express delays in process-independent unit d = d abs τ Delay has two components d = f + p 無關於製程型態的方式來表示 Delay, 可使電路能依照佈局來做 Delay 的比較, 而不必考慮不同製程對電路速度的影響 Linear delay model DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 8

29 Delay in a Logic Gate Express delays in process-independent unit Delay has two components Effort delay: f = gh (a.k.a. stage effort) d = d d abs τ = f + p Again has two components DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 9

30 Delay in a Logic Gate Express delays in process-independent unit Delay has two components Effort delay f = gh (a.k.a. stage effort) Again has two components g: logical effort d = d abs τ d = f + p Measures relative ability of gate to deliver current g 1 for inverter Gate Complexity, g i.e. 會耗費較多的時間去驅動相同 fanout 數的電晶體 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 30

31 Delay in a Logic Gate Express delays in process-independent unit Delay has two components Effort delay f = gh (a.k.a. stage effort) Again has two components h: electrical effort = C out / C in d = d abs τ d = f + p Ratio of output to input capacitance Sometimes called fanout Fan-out, h DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 31

32 Delay in a Logic Gate Express delays in process-independent unit Delay has two components Parasitic delay p d = d d abs τ = f + p Represents delay of gate driving no load Set by internal parasitic capacitance DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 3

33 Delay in NAND Effort delay: 4hC ( 與外部電容有關 ) Delay in -input NAND 6C d = f + p 4hC = + 3C 4 = ( ) h + = gh + 3 p A B Normalized delay representation How to calculate the logical effort g? x C 註 :Ideal Inverter ( 無寄生電容 Single Fanout) τ = 3RC;g = 1 Y 4hC DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 33

34 Delay Plots d = f + p = gh + p Normalized Delay: d input NAND g = p = d = Inverter g = p = d = Electrical Effort: h = C out / C in DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 34

35 Delay Plots d = f + p = gh + p What about NOR? Normalized Delay: d input NAND Inverter g = 4/3 p = d = (4/3)h + g = 1 p = 1 d = h + 1 Effort Delay: f 1 0 Parasitic Delay: p Electrical Effort: h = C out / C in DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 35

36 Computing Logical Effort DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current. Measure from delay vs. fanout plots Or estimate by counting transistor widths A 1 Y A B Y A B Y C in = 3 g = 3/3 C in = 4 g = 4/3 C in = 5 g = 5/3 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 36

37 Catalog of Gates Logical effort of common gates Gate type Number of inputs n Inverter 1 NAND 4/3 5/3 6/3 (n+)/3 NOR 5/3 7/3 9/3 (n+1)/3 Tristate / mux XOR, XNOR 4, 4 6, 1, 6 8, 16, 16, 8 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 37

38 Recall: 4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects S1S0 S1S0 S1S0 S1S0 D0 D1 Logical Effort =; 與輸入的數目無關 D D3 大型多工器的速度與小型多工器的速度相當? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 38

39 Computing Parasitic Delay DEF: Represents delay of gate driving no load Set by internal parasitic capacitance Measure from delay vs. fanout plots Or estimate by counting total diffusion capacitances at output A A Y 1 B Y A 4 B 4 Y 1 1 C= 3 p= 3/3= 1 C = 6 p= 6/3= C= 6 p= 6/3= 增加電晶體大小會降低電阻, 但卻會增加寄生電容, 但較寬的電晶體可以摺疊, 使內部的寄生電容可能變小 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 39

40 Catalog of Gates Parasitic delay of common gates In multiples of p inv ( 1) Gate type Number of inputs n Inverter 1 NAND 3 4 n NOR 3 4 n Tristate / mux n XOR, XNOR DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 40

41 Example: FO4 Inverter Estimate the delay of a fanout-of-4 (FO4) inverter d Logical Effort: g = Electrical Effort: h = Parasitic Delay: p = Stage Delay: d = DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 41

42 Example1: FO4 Inverter Estimate the delay of a fanout-of-4 (FO4) inverter d Logical Effort: g = 1 Electrical Effort: h = 4 Parasitic Delay: p = 1 Stage Delay: d = gh + p = 5 經驗法則 The FO4 delay is about 00 ps in 0.6 μm process 60 ps in a 180 nm process f/3 ns in an f μm process DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 4

43 Example: Ring Oscillator Estimate the frequency of an N-stage ring oscillator Odd-number stages Logical Effort: g = 1 Electrical Effort: h = 1 31 stage ring oscillator in 0.6 μm process has Parasitic Delay: p = 1 frequency of ~ 00 MHz Stage Delay: d = Frequency: f osc = 1/(*N*d) = 1/4N 如果 g 1, 那如何計算多級邏輯網路的延遲呢? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 43

44 Multistage Logic Networks Logical effort generalizes to multistage networks Path Logical Effort Path Electrical Effort Path Effort G = g i C H = C out-path in-path F = f = gh 與電晶體大小無關 與電晶體大小有關 i i i 10 g 1 = 1 h 1 = x/10 x g = 5/3 h = y/x y g 3 = 4/3 h 3 = z/y z g 4 = 1 h 4 = 0/z 0 F=GH=(5/3)(4/3)(x/10)(y/x)(z/y)(0/z)=G(0/10) DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 44

45 Multistage Logic Networks Logical effort generalizes to multistage networks Path Logical Effort Path Electrical Effort Path Effort G = g i C H = C out-path in-path F = fi = gh i i Can we always write F = GH? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 45

46 Branch Paths No! Consider paths that branch: G = H = GH = h 1 = h = F = GH? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 46

47 Paths that Branch No! Consider paths that branch: G = 1 H = 90 / 5 = GH = 18 h 1 = (15 +15) / 5 = h = 90 / 15 = 6 F = g 1 g h 1 h = 36 = GH DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 47

48 Branching Effort Branching effort Accounts for branching between stages in path Now we compute the path effort b = C F = GBH on path B= b i C + C on path off path Path branching effort Note: h i = BH DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 48

49 Multistage Delays Path Effort Delay D F = f i Path Parasitic Delay Path Delay P= p i = i = F + D d D P Recall that F = GBH 各級 path effort 的乘積為 F;path delay 則為各級 path effort delay 的總和 最小值發生在各級的 path effort delay 相同, 亦即 f i = F 1/N DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 49

50 Designing Fast Circuits Delay is smallest when each stage bears same effort Thus minimum delay of N stage path is This is a key result of logical effort = i = F + D d D P fˆ = gh = F i i 1 N D= NF + P 1 N Find fastest possible delay Doesn t require calculating gate sizes 這種方式優於模擬 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 50

51 Choose Gate Sizes to Meet the Least Delay Design How wide should the gates be for least delay? fˆ = gh= g C = in i C C out in gc i fˆ out i Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives. Check work by verifying input cap spec is met. DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 51

52 Example: 3-stage path Select gate sizes x and y for least delay from A to B x x y 45 A 8 x y B 45 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 5

53 Example: 3-stage path x A 8 x x y y 45 B 45 Logical Effort G = Electrical Effort H = Branching Effort B = Path Effort F = Best Stage Effort ˆf = Parasitic Delay P = Delay D = DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 53

54 Example: 3-stage path x A 8 x x y y 45 B 45 Logical Effort G = (4/3)*(5/3)*(5/3) = 100/7 Electrical Effort H = 45/8 Branching Effort B = 3 * = 6 Path Effort F = GBH = 15 Best Stage Effort ˆ 3 F 5 Parasitic Delay P = = 7 f = = Delay D = 3*5 + 7 = = 4.4 FO4 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 54

55 Example: 3-stage path Work backward for sizes y = x = x x y 45 A 8 x y B 45 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 55

56 Example: 3-stage path Work backward for sizes y = 45 * (5/3) / 5 = 15 x = (15+15) * (5/3) / 5 = 10 fˆ = gh= g C = in i C C out in gic fˆ out i 45 A P: 4 N: 4 P: 4 N: 6 P: 1 N: 3 B 45 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 56

57 Example: 3-stage path Check the result: 1. the size of the NAND gate: ( )*(4/3) / 5 = 8. NAND gate delay: d 1 =g 1 h 1 +p 1 = (4/3)*( ) / 8 + = 7 3. NAND3 gate delay: d =g h +p = (5/3)*(15+15) / = 8 4. NOR gate delay: d 3 =g 3 h 3 +p 3 = (5/3)*(45/15) + = = 45 A P: 4 N: 4 P: 4 N: 6 P: 1 N: 3 B 45 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 57

58 Best Number of Stages How many stages should a path use? Minimizing number of stages is not always fastest Example: drive 64-bit datapath with unit inverter Initial Driver D = Datapath Load N: f: D: DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 58

59 Best Number of Stages Example: drive 64-bit datapath with unit inverter Initial Driver D = NF 1/N + P = N(64) 1/N + N Datapath Load N: f: D: Fastest DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 59

60 Derivation for Best Number of Stages Consider adding inverters to end of path How many give least delay? = n 1 1 N + i + i= 1 ( ) D NF p N n p D N N N N 1 inv = F ln F + F + p = 0 inv Logic Block: n 1 Stages Path Effort F N - n 1 Extra Inverters Define best stage effort 1 ρ = F N p + ρ 1 lnρ = 0 inv ( ) DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 60

61 Best Number of Stages p + ρ 1 lnρ = 0 ( ) has no closed-form solution inv Neglecting parasitics (p inv = 0), we find ρ =.718 (e) For p inv = 1, solve numerically for ρ = 3.59 DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 61

62 Sensitivity Analysis How sensitive is delay to using exactly the best number 1.6 of stages? 1.51 Nˆ = log ρ F D(N) /D(N) (ρ=6) (ρ =.4) If p inv = < ρ < 6 gives delay within 15% of optimal We can be sloppy! I like ρ = 4 N / N DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 6

63 Example, Revisited Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file. Decoder specifications: A[3:0] A[3:0] 3 bits 16 word register file Each word is 3 bits wide Each bit presents load of 3 unit-sized transistors 4:16 Decoder 16 Register File 16 words True and complementary address inputs A[3:0] Each input may drive 10 unit-sized transistors Ben needs to decide: How many stages to use? How large should each gate be? How fast can decoder operate? DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 63

64 Possible 4:16 Decoder Each word is 3 bits wide Each bit presents load of 3 unit-sized transistors Each input may drive 10 unit-sized transistors A[3] A[3] A[] A[] A[1] A[1] A[0] A[0] y z word[0] 96 units of wordline capacitance y z word[15] DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 64

65 Number of Stages Decoder effort is mainly electrical and branching Electrical Effort: H = (3*3) / 10 = 9.6 Branching Effort: B = 8 If we neglect logical effort (assume G = 1) Path Effort: F = GBH = 76.8 Number of Stages: N = log 4 F = 3.1 Try a 3-stage design DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 65

66 Gate Sizes & Delay Logical Effort: G = 1 * 6/3 * 1 = Path Effort: F = GBH = 154 Stage Effort: Path Delay: Gate sizes: z = 96*1/5.36 = 18 y = 18*/5.36 = 6.7 A[3] A[3] A[] A[] A[1] A[1] A[0] A[0] ˆ 1/3 f = F = 5.36 D= 3 fˆ =.1 落在.4 與 6 之間 y z word[0] 96 units of wordline capacitance y z word[15] DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 66

67 Comparison Compare many alternatives with a spreadsheet Design N G P D NAND4-INV NAND-NOR 0/ INV-NAND4-INV NAND4-INV-INV-INV NAND-NOR-INV-INV 4 0/ NAND-INV-NAND-INV 4 16/ INV-NAND-INV-NAND-INV 5 16/ NAND-INV-NAND-INV-INV-INV 6 16/ DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 67

68 Review of Definitions Term number of stages logical effort electrical effort branching effort effort effort delay parasitic delay delay Stage 1 g h = b = f f p = C C C out in on-path gh + C C on-path d = f + p off-path Path N G = g i H = C C out-path in-path B = b i F = GBH D F = f i P = p i D = d = D + P i F DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 68

69 Method of Logical Effort 1) Compute path effort ) Estimate best number of stages 3) Sketch path with N stages 4) Estimate least delay 5) Determine best stage effort F = GBH N = log 4 F 1 N D= NF + P fˆ = F 1 N 6) Find gate sizes C in i = gic fˆ out i DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 69

70 Limits of Logical Effort Chicken and egg problem Need path to compute G But don t know number of stages without G Simplistic delay model Neglects input rise time effects Interconnect Iteration required in designs with wire Maximum speed only Not minimum area/power for constrained delay DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 70

71 Summary Logical effort is useful for thinking of delay in circuits Numeric logical effort characterizes gates NANDs are faster than NORs in CMOS Paths are fastest when effort delays are ~4 Path delay is weakly sensitive to stages, sizes But using fewer stages doesn t mean faster paths Delay of path is about log 4 F FO4 inverter delays Inverters and NAND best for driving large caps Provides language for discussing fast circuits But requires practice to master DIC-Lec5 cwliu@twins.ee.nctu.edu.tw 71

Lecture 6: Logical Effort

Lecture 6: Logical Effort Lecture 6: Logical Effort Outline Logical Effort Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary Introduction Chip designers face a bewildering array

More information

EE 447 VLSI Design. Lecture 5: Logical Effort

EE 447 VLSI Design. Lecture 5: Logical Effort EE 447 VLSI Design Lecture 5: Logical Effort Outline Introduction Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary EE 4475: VLSI Logical Design Effort

More information

ECE429 Introduction to VLSI Design

ECE429 Introduction to VLSI Design ECE429 Introduction to VLSI Design Lecture 5: LOGICAL EFFORT Erdal Oruklu Illinois Institute of Technology Some of these slides have been adapted from the slides provided by David Harris, Harvey Mudd College

More information

VLSI Design, Fall Logical Effort. Jacob Abraham

VLSI Design, Fall Logical Effort. Jacob Abraham 6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of

More information

Introduction to CMOS VLSI Design. Lecture 5: Logical Effort. David Harris. Harvey Mudd College Spring Outline

Introduction to CMOS VLSI Design. Lecture 5: Logical Effort. David Harris. Harvey Mudd College Spring Outline Introduction to CMOS VLSI Design Lecture 5: Logical Effort David Harris Harve Mudd College Spring 00 Outline Introduction Dela in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages

More information

Lecture 8: Combinational Circuit Design

Lecture 8: Combinational Circuit Design Lecture 8: Combinational Circuit Design Mark McDermott Electrical and Computer Engineering The University of Texas at ustin 9/5/8 Verilog to Gates module mux(input s, d0, d, output y); assign y = s? d

More information

Logical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA

Logical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA Logical Effort: Designing for Speed on the Back of an Envelope David Harris David_Harris@hmc.edu Harvey Mudd College Claremont, CA Outline o Introduction o Delay in a Logic Gate o Multi-stage Logic Networks

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

More information

Logical Effort. Sizing Transistors for Speed. Estimating Delays

Logical Effort. Sizing Transistors for Speed. Estimating Delays Logical Effort Sizing Transistors for Speed Estimating Delays Would be nice to have a back of the envelope method for sizing gates for speed Logical Effort Book by Sutherland, Sproull, Harris Chapter 1

More information

Introduction to CMOS VLSI Design. Logical Effort B. Original Lecture by Jay Brockman. University of Notre Dame Fall 2008

Introduction to CMOS VLSI Design. Logical Effort B. Original Lecture by Jay Brockman. University of Notre Dame Fall 2008 Introduction to CMOS VLSI Design Logical Effort Part B Original Lecture b Ja Brockman Universit of Notre Dame Fall 2008 Modified b Peter Kogge Fall 2010,2011,2015, 2018 Based on lecture slides b David

More information

Lecture 8: Logic Effort and Combinational Circuit Design

Lecture 8: Logic Effort and Combinational Circuit Design Lecture 8: Logic Effort and Combinational Circuit Design Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q Logical Effort q Delay in a Logic Gate

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee Chapter 6 Series-Parallel Circuits Objectives Identify series-parallel relationships Analyze series-parallel circuits Determine the loading effect of a voltmeter on a circuit Analyze a Wheatstone bridge

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1 0 0 = 1 0 = 0 1 = 0 1 1 = 1 1 = 0 0 = 1 : = {0, 1} : 3 (,, ) = + (,, ) = + + (, ) = + (,,, ) = ( + )( + ) + ( + )( + ) + = + = = + + = + = ( + ) + = + ( + ) () = () ( + ) = + + = ( + )( + ) + = = + 0

More information

Lecture 12 CMOS Delay & Transient Response

Lecture 12 CMOS Delay & Transient Response EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Algorithms and Complexity

Algorithms and Complexity Algorithms and Complexity 2.1 ALGORITHMS( 演算法 ) Def: An algorithm is a finite set of precise instructions for performing a computation or for solving a problem The word algorithm algorithm comes from the

More information

7. Combinational Circuits

7. Combinational Circuits 7. Combinational Circuits Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 25, 2017 ECE Department, University of Texas

More information

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit

More information

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc. Chapter 22 Lecture Essential University Physics Richard Wolfson 2 nd Edition Electric Potential 電位 Slide 22-1 In this lecture you ll learn 簡介 The concept of electric potential difference 電位差 Including

More information

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015 生物統計教育訓練 - 課程 Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所 tchsieh@mail.tcu.edu.tw TEL: 03-8565301 ext 2015 1 Randomized controlled trial Two arms trial Test treatment

More information

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 熵可以用來預測自發改變方向 我們現在回到 5.1 節引入兩個過程 第一個過程是關於金屬棒在溫度梯度下的自然變化方向 試問, 在系統達平衡狀態時, 梯度變大或更小? 為了模擬這過程, 考慮如圖 5.5 的模型, 一孤立的複合系統受

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

數位系統設計 Digital System Design

數位系統設計 Digital System Design 數位系統設計 Digital System Design Instructor: Kuan Jen Lin ( 林寬仁 ) E-Mail: kjlin@mails.fju.edu.tw Web: http://vlsi.ee.fju.edu.tw/teacher/kjlin/kjlin.htm Room: SF 727B 1 電子電機產業 消費性 通訊 控制 生醫 多媒體 綠能 作業系統 開發工具

More information

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis Ch 3 線性迴歸與相關分析 相關分析 Lear Regresso Ad Correlato Aalyss Correlato Aalyss Correlato Aalyss Correlato Aalyss s the study of the relatoshp betwee two varables. Scatter Dagram A Scatter Dagram s a chart that

More information

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim 1061 微乙 01-05 班期中考解答和評分標準 1. (10%) (x + 1)( (a) 求 x+1 9). x 1 x 1 tan (π(x )) (b) 求. x (x ) x (a) (5 points) Method without L Hospital rule: (x + 1)( x+1 9) = (x + 1) x+1 x 1 x 1 x 1 x 1 (x + 1) (for the

More information

Chapter 1 Linear Regression with One Predictor Variable

Chapter 1 Linear Regression with One Predictor Variable Chapter 1 Linear Regression with One Predictor Variable 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 1 1 / 41 Regression analysis is a statistical methodology

More information

邏輯設計 Hw#6 請於 6/13( 五 ) 下課前繳交

邏輯設計 Hw#6 請於 6/13( 五 ) 下課前繳交 邏輯設計 Hw#6 請於 6/3( 五 ) 下課前繳交 . A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations: D A = X A + XY D B = X A + XB Z = XB

More information

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士 Contents

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士   Contents 雷射原理 The Principle of Laser 授課教授 : 林彥勝博士 E-mail: yslin@mail.isu.edu.tw Contents Energy Level( 能階 ) Spontaneous Emission( 自發輻射 ) Stimulated Emission( 受激發射 ) Population Inversion( 居量反轉 ) Active Medium( 活性介質

More information

pseudo-code-2012.docx 2013/5/9

pseudo-code-2012.docx 2013/5/9 Pseudo-code 偽代碼 & Flow charts 流程圖 : Sum Bubble sort 1 Prime factors of Magic square Total & Average Bubble sort 2 Factors of Zodiac (simple) Quadratic equation Train fare 1+2+...+n

More information

Static CMOS Circuits. Example 1

Static CMOS Circuits. Example 1 Static CMOS Circuits Conventional (ratio-less) static CMOS Covered so far Ratio-ed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,

More information

Lecture 6: Circuit design part 1

Lecture 6: Circuit design part 1 Lecture 6: Circuit design part 6. Combinational circuit design 6. Sequential circuit design 6.3 Circuit simulation 6.4. Hardware description language Combinational Circuit Design. Combinational circuit

More information

Delay and Power Estimation

Delay and Power Estimation EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What

More information

Interconnect (2) Buffering Techniques. Logical Effort

Interconnect (2) Buffering Techniques. Logical Effort Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18-322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The check-off is due today (by 9:30PM) Students

More information

Ch.9 Liquids and Solids

Ch.9 Liquids and Solids Ch.9 Liquids and Solids 9.1. Liquid-Vapor Equilibrium 1. Vapor Pressure. Vapor Pressure versus Temperature 3. Boiling Temperature. Critical Temperature and Pressure 9.. Phase Diagram 1. Sublimation. Melting

More information

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Linear Regression 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Regression analysis is a statistical methodology that utilizes the relation between

More information

EXPERMENT 9. To determination of Quinine by fluorescence spectroscopy. Introduction

EXPERMENT 9. To determination of Quinine by fluorescence spectroscopy. Introduction EXPERMENT 9 To determination of Quinine by fluorescence spectroscopy Introduction Many chemical compounds can be excited by electromagnetic radication from normally a singlet ground state S o to upper

More information

Lecture 9: Combinational Circuit Design

Lecture 9: Combinational Circuit Design Lecture 9: Combinational Circuit Design Outline Bubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates Skewed Gates Best P/N ratio 0: Combinational Circuits CMOS VLSI Design

More information

EE M216A.:. Fall Lecture 4. Speed Optimization. Prof. Dejan Marković Speed Optimization via Gate Sizing

EE M216A.:. Fall Lecture 4. Speed Optimization. Prof. Dejan Marković Speed Optimization via Gate Sizing EE M216A.:. Fall 2010 Lecture 4 Speed Optimization Prof. Dejan Marković ee216a@gmail.com Speed Optimization via Gate Sizing Gate sizing basics P:N ratio Complex gates Velocity saturation ti Tapering Developing

More information

Chapter 4. Digital Integrated Circuit Design I. ECE 425/525 Chapter 4. CMOS design can be realized meet requirements from

Chapter 4. Digital Integrated Circuit Design I. ECE 425/525 Chapter 4. CMOS design can be realized meet requirements from Digital Integrated Circuit Design I ECE 425/525 Professor R. Daasch Depar tment of Electrical and Computer Engineering Portland State University Portland, OR 97207-0751 (daasch@ece.pdx.edu) http://ece.pdx.edu/~ecex25

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

Lecture 5. Logical Effort Using LE on a Decoder

Lecture 5. Logical Effort Using LE on a Decoder Lecture 5 Logical Effort Using LE on a Decoder Mark Horowitz Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 00 by Mark Horowitz Overview Reading Harris, Logical Effort

More information

EE M216A.:. Fall Lecture 5. Logical Effort. Prof. Dejan Marković

EE M216A.:. Fall Lecture 5. Logical Effort. Prof. Dejan Marković EE M26A.:. Fall 200 Lecture 5 Logical Effort Prof. Dejan Marković ee26a@gmail.com Logical Effort Recap Normalized delay d = g h + p g is the logical effort of the gate g = C IN /C INV Inverter is sized

More information

Lecture 1: Gate Delay Models

Lecture 1: Gate Delay Models High Speed CMOS VLSI Design Lecture 1: Gate Delay Models (c) 1997 David Harris 1.0 Designing for Speed on the Back of an Envelope Custom IC design is all about speed. For a small amount of money, one synthesize

More information

GSAS 安裝使用簡介 楊仲準中原大學物理系. Department of Physics, Chung Yuan Christian University

GSAS 安裝使用簡介 楊仲準中原大學物理系. Department of Physics, Chung Yuan Christian University GSAS 安裝使用簡介 楊仲準中原大學物理系 Department of Physics, Chung Yuan Christian University Out Line GSAS 安裝設定 CMPR 安裝設定 GSAS 簡易使用說明 CMPR 轉出 GSAS 實驗檔簡易使用說明 CMPR 轉出 GSAS 結果簡易使用說明 1. GSAS 安裝設定 GSAS 安裝設定 雙擊下載的 gsas+expgui.exe

More information

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子結構中的電子是如何被發現的? ( 1856 1940 ) 可以參考美國物理學會 ( American Institute of Physics ) 網站 For in-depth information, check out the American Institute of Physics' History Center

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational

More information

Chapter 20 Cell Division Summary

Chapter 20 Cell Division Summary Chapter 20 Cell Division Summary Bk3 Ch20 Cell Division/1 Table 1: The concept of cell (Section 20.1) A repeated process in which a cell divides many times to make new cells Cell Responsible for growth,

More information

EE141. Administrative Stuff

EE141. Administrative Stuff -Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw

More information

Lecture 7: Multistage Logic Networks. Best Number of Stages

Lecture 7: Multistage Logic Networks. Best Number of Stages Lecture 7: Multstage Logc Networks Multstage Logc Networks (cont. from Lec 06) Examples Readng: Ch. Best Number of Stages How many stages should a path use? Mnmzng number of stages s not always fastest

More information

CPE/EE 427, CPE 527 VLSI Design I L13: Wires, Design for Speed. Course Administration

CPE/EE 427, CPE 527 VLSI Design I L13: Wires, Design for Speed. Course Administration CPE/EE 427, CPE 527 VLSI Design I L3: Wires, Design for Speed Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-05f

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

EE115C Digital Electronic Circuits Homework #6

EE115C Digital Electronic Circuits Homework #6 Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages

More information

Logic Gate Sizing. The method of logical effort. João Canas Ferreira. March University of Porto Faculty of Engineering

Logic Gate Sizing. The method of logical effort. João Canas Ferreira. March University of Porto Faculty of Engineering Logic Gate Sizing The method of logical effort João Canas Ferreira University of Porto Faculty of Engineering March 016 Topics 1 Modeling CMOS Gates Chain of logic gates João Canas Ferreira (FEUP) Logic

More information

Frequency Response (Bode Plot) with MATLAB

Frequency Response (Bode Plot) with MATLAB Frequency Response (Bode Plot) with MATLAB 黃馨儀 216/6/15 適應性光子實驗室 常用功能選單 File 選單上第一個指令 New 有三個選項 : M-file Figure Model 開啟一個新的檔案 (*.m) 用以編輯 MATLAB 程式 開始一個新的圖檔 開啟一個新的 simulink 檔案 Help MATLAB Help 查詢相關函式 MATLAB

More information

EE115C Digital Electronic Circuits Homework #5

EE115C Digital Electronic Circuits Homework #5 EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56-147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors

More information

Lecture 8: Combinational Circuits

Lecture 8: Combinational Circuits Introduction to CMOS VLSI Design Lecture 8: Combinational Circuits David Harris Harvey Mudd College Spring 00 Outline ubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates

More information

14-A Orthogonal and Dual Orthogonal Y = A X

14-A Orthogonal and Dual Orthogonal Y = A X 489 XIV. Orthogonal Transform and Multiplexing 14-A Orthogonal and Dual Orthogonal Any M N discrete linear transform can be expressed as the matrix form: 0 1 2 N 1 0 1 2 N 1 0 1 2 N 1 y[0] 0 0 0 0 x[0]

More information

Lecture 8: Combinational Circuits

Lecture 8: Combinational Circuits Introduction to CMOS VLSI Design Lecture 8: Combinational Circuits David Harris Harvey Mudd College Spring 004 Outline ubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates

More information

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 hapter S Stereochemistry ( 立體化學 ): chiral molecules ( 掌性分子 ) Isomerism constitutional isomers butane isobutane 分子式相同但鍵結方式不同

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2) ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!

More information

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 Chapter 13, Part A Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis of Variance and the Completely

More information

EECS 151/251A Homework 5

EECS 151/251A Homework 5 EECS 151/251A Homework 5 Due Monday, March 5 th, 2018 Problem 1: Timing The data-path shown below is used in a simple processor. clk rd1 rd2 0 wr regfile 1 0 ALU REG 1 The elements used in the design have

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

Differential Equations (DE)

Differential Equations (DE) 工程數學 -- 微分方程 51 Differenial Equaions (DE) 授課者 : 丁建均 教學網頁 :hp://djj.ee.nu.edu.w/de.hm 本著作除另有註明外, 採取創用 CC 姓名標示 - 非商業性 - 相同方式分享 台灣 3. 版授權釋出 Chaper 8 Sysems of Linear Firs-Order Differenial Equaions 另一種解 聯立微分方程式

More information

Lecture 9: Combinational Circuits

Lecture 9: Combinational Circuits Introduction to CMOS VLSI Design Lecture 9: Combinational Circuits David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q ubble Pushing q Compound Gates

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan and the Applications Institute of Statistics National Chiao Tung University Hsinchu, Taiwan 1. Confidence Interval (CI) 2. Tolerance Interval (TI) 3. Prediction Interval (PI) Example A manufacturer wanted

More information

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium CHAPTER 2 Energy Bands and Carrier Concentration in Thermal Equilibrium 光電特性 Ge 被 Si 取代, 因為 Si 有較低漏電流 Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors. Figure

More information

Chapter 8 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Gravity 重力 Pearson Education, Inc. Slide 8-1

Chapter 8 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Gravity 重力 Pearson Education, Inc. Slide 8-1 Chapter 8 Lecture Essential University Physics Richard Wolfson 2 nd Edition Gravity 重力 Slide 8-1 In this lecture you ll learn 簡介 Newton s law of universal gravitation 萬有引力 About motion in circular and

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor

More information

Lecture 14: Circuit Families

Lecture 14: Circuit Families Introduction to CMOS VLSI Design Lecture 4: Circuit Families David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Pseudo-nMOS Logic q Dynamic Logic q

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷

2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷 2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷 一 單選題 :( 每題 3 分, 共 72 分 ) 題號 1 2 3 4 5 6 7 8 答案 B D D A C B C B 題號 9 10 11 12 13 14 15 16 答案 C E D D 送分 E A B 題號 17 18 19 20 21 22 23 24 答案 D A E C A C 送分 B 二 多選題

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

Logic effort and gate sizing

Logic effort and gate sizing EEN454 Dgtal Integrated rcut Desgn Logc effort and gate szng EEN 454 Introducton hp desgners face a bewlderng arra of choces What s the best crcut topolog for a functon? How man stages of logc gve least

More information

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 RHK.F95 1 Technology Trends: Microprocessor Capacity 100000000 10000000 Pentium Transistors 1000000

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

Chapter 7 Propositional and Predicate Logic

Chapter 7 Propositional and Predicate Logic Chapter 7 Propositional and Predicate Logic 1 What is Artificial Intelligence? A more difficult question is: What is intelligence? This question has puzzled philosophers, biologists and psychologists for

More information

壓差式迴路式均熱片之研製 Fabrication of Pressure-Difference Loop Heat Spreader

壓差式迴路式均熱片之研製 Fabrication of Pressure-Difference Loop Heat Spreader 壓差式迴路式均熱片之研製 Fabrication of Pressure-Difference Loop Heat Spreader 1 2* 3 4 4 Yu-Tang Chen Shei Hung-Jung Sheng-Hong Tsai Shung-Wen Kang Chin-Chun Hsu 1 2* 3! "# $ % 4& '! " ( )* +, -. 95-2622-E-237-001-CC3

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

Advanced Engineering Mathematics 長榮大學科工系 105 級

Advanced Engineering Mathematics 長榮大學科工系 105 級 工程數學 Advanced Engineering Mathematics 長榮大學科工系 5 級 姓名 : 學號 : 工程數學 I 目錄 Part I: Ordinary Differential Equations (ODE / 常微分方程式 ) Chapter First-Order Differential Equations ( 一階 ODE) 3 Chapter Second-Order

More information

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays Chapter 9 Estimating circuit speed 9.1 Counting gate delays The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI logic gates that the input signals must propagate

More information

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題 國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題 基礎數學 I.(2%) Test for convergence or divergence of the following infinite series cos( π (a) ) sin( π n (b) ) n n=1 n n=1 n 1 1 (c) (p > 1) (d) n=2 n(log n) p n,m=1 n 2 +

More information

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin Vo l ta ge ri s e [ V] EE-Spring 7 Digital Integrated ircuits Lecture SRM Project Launch nnouncements No new labs next week and week after Use labs to work on project Homework #6 due Fr. pm Project updated

More information

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values

More information

CMOS Technology Worksheet

CMOS Technology Worksheet CMOS Technology Worksheet Concept Inventory: Notes: PFET, NFET: voltage controlled switches CMOS composition rules: complementary pullup and pulldown CMOS gates are naturally inverting t PD and t CD timing

More information

在雲層閃光放電之前就開始提前釋放出離子是非常重要的因素 所有 FOREND 放電式避雷針都有離子加速裝置支援離子產生器 在產品設計時, 為增加電場更大範圍, 使用電極支援大氣離子化,

在雲層閃光放電之前就開始提前釋放出離子是非常重要的因素 所有 FOREND 放電式避雷針都有離子加速裝置支援離子產生器 在產品設計時, 為增加電場更大範圍, 使用電極支援大氣離子化, FOREND E.S.E 提前放電式避雷針 FOREND Petex E.S.E 提前放電式避雷針由 3 個部分組成 : 空中末端突針 離子產生器和屋頂連接管 空中末端突針由不鏽鋼製造, 有適合的直徑, 可以抵抗強大的雷擊電流 離子產生器位於不鏽鋼針體內部特別的位置, 以特別的樹脂密封, 隔絕外部環境的影響 在暴風雨閃電期間, 大氣中所引起的電場增加, 離子產生器開始活化以及產生離子到周圍的空氣中

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe57-05f

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

A Direct Simulation Method for Continuous Variable Transmission with Component-wise Design Specifications

A Direct Simulation Method for Continuous Variable Transmission with Component-wise Design Specifications 第十七屆全國機構機器設計學術研討會中華民國一零三年十一月十四日 國立勤益科技大學台灣 台中論文編號 :CSM048 A Direct Simulation Method for Continuous Variable Transmission with Component-wise Design Specifications Yu-An Lin 1,Kuei-Yuan Chan 1 Graduate

More information