Work Energy And Power 功, 能量及功率

Size: px
Start display at page:

Download "Work Energy And Power 功, 能量及功率"

Transcription

1 p. 1 Work Energy And Power 功, 能量及功率 黃河壺口瀑布

2 p. 2 甚麼是 能量?

3 p. 3

4 常力所作的功 ( Work Done by a Constant Force ) p. 4 F F θ F cosθ s 要有出力才有 功 勞 造成位移才有 功 勞 W = F cos θ s ( Joule, a scalar ) = F s or F Δx F : force, s : displacement, W : work 1 J = 1 N 1 m = ( kg m 2 ) / s 2

5 W = F s = ( F x i + F y j + F z k ) (Δx i + Δy j + Δz k ) = F x Δx+ F y Δy+ F z Δz p. 5 W : mechanical work ( different from chemical work ) F s W = 0 negative work F AB A F BA B s f k (friction on B) F AB = F BA, W = F s W on A by B ( negative work ) = W on B by A ( positive work )

6 p. 6 A F AB F BA B s f k (friction on B) work done by kinetic friction W f = f k s cos180 o = f k s kinetic friction can also do positive work A f k ( f k moves block A to the right also ) B

7 非常力所作的功 ( Work Done by Variable Force in 1-Dim ) p. 7 ΔW = F Δx = F x Δx F x F x1 F x2 F x3 a Δx b x W = ΔW = F x1 Δx+ F x2 Δx + + F xn Δx n = F xi Δx i =1 as Δx 0 b b W = F x dx or more generally W = F ds a a

8 p. 8

9 動能 ( Kinetic Energy ) p. 9 F v W cause v change cause x change cause? change in one-dim., const. force : W = F x Δx= ma Δx v 2 = v 2 o + 2a Δx a Δx = ½(v 2 v 2 o ) W = ½ mv 2 ½mv 2 o define kinetic energy ( K.E. ) : E k = ½ mv 2 ( joule, scalar ) W net = ΔE k : Work Energy Theorem ( 功能定律 ) ( Work-Energy Theorem still valid in 3-dim. space and with non-constant forces. )

10 p. 10 垂直於運動方向的力沒有作功 ( 沒有改變物體的動能 )

11 Ex. N F m = 4 kg, θ = 53 o p. 11 f θ F cosθ F = 3 N, Δx = 2 m v o = 3 m/s, μ k = 1/8 mg Find (1) ΔE k, (2) v f (1) F y = 0 N = mg Fsinθ ΔE k = W Net = W F + W f = F x s μ k N s = F cosθ s μ k ( mg Fsinθ ) s = = 32 J (2) Δ E k = ½ mv 2 f ½mv 2 o = 32 J, v o = 3 m/s v f = 5 m/s

12 位能 ( Potential Energy ) p. 12 An experiment by Galileo Galilei : A B C raise ball from C A, do work W A C, gain K.E. = W, reach v max C B, K.E. = 0 ( A and B same height ) B C A, K.E. = 0 where does K.E. go at A and B?

13 p. 13 v = 0, K.E. = 0 v f v o v o = v f potential energy ( P.E., E p ) : energy associated with the relative positions of two or more interacting particles

14 p. 14 Example : v max earth surface F ext do work ( W ) to raise the apple Changes the apple-earth relative position Changes the apple-earth system s potential ( or the apple s potential ) release the apple stored P.E. K.E. If one raise the apple at const. speed ( K.E. unchanged ) W ext = Δ ( P.E. ) = E pf -E po

15 如何計算一個系統中的位能? A B C W ext changes particles relative position ( pendulum and earth ) P.E. changed 2 K.E. ( 1/2 mv max ) positive work increase in P.E. ( E p ) p. 15 earth Only changes in P.E. are important Freedom to assign E p = 0 configuration Once the initial configuration for E p =0 is defined : The P.E. of a system is the external work needed to bring the particles from the E p =0 configuration to the given position at a const. velocity ( or speed ).

16 Gravitational Potential Energy (near the earth s surface) p. 16 y f external work done to move m from y i to y f at a const. velocity F ext y i mg earth surface ( W net = W ext + W g = 0 = ΔE k ) W ext = F ext s, F ext = mg ( mg 為此 apple/earth 雙粒子系統內力 ) W ext = F ext s, F ext = mg = mg ( y f y i ) = mgy f mgy i = ΔE p = E p ( y f ) E p ( y i ) Define E p = 0 at y i = 0 E p ( y f ) = mg y f E p (y) = mg y

17 Spring Potential Energy p. 17 Hooke s Law : F sp = - k x, k : spring constant kx f F F sp x f x Move the spring from x = 0 to x f at a constant speed : b W = F ds = ½ k x 2 a f define E p,sp = 0 at x = 0 E p,sp = ½ k x 2 f E p,sp = ½ k x 2

18 p. 18 伽利略看遠處的大東西虎克看身邊的小東西

19 p. 19

20 Spring Potential Energy p. 20 Hooke s Law : F sp = - k x, k : spring constant kx f F F sp x f x Move the spring from x = 0 to x f at a constant speed : b W = F ds = ½ k x 2 a f define E p,sp = 0 at x = 0 E p,sp = ½ k x 2 f E p,sp = ½ k x 2

21 p. 21 +x, +F sp direction F sp F sp F sp F sp = - kx

22 p. 22 Work changes the velocity of the particle ΔE k the relative positions of particles ΔE p Inversely : Energy is a measure of the particle s, or the particle system s, capability to perform work ( on others ) 甚麼是 能量?

23 能量守恆 ( Energy Conservation ) p. 23 mechanically conservative system ( 機械守恆系統 ) : no energy enters or leaves the system ( e.g. heat, radiation, work by external force, work done by internal chemical reaction ) In a mechanically conservative system : v 2 A system of 2 particles ( apple & earth) y 2 E k + E p = const. v 1 ( E k + E p ) initial = ( E k + E p ) final y 1 earth ½mv mg y 2 = ½ mv mg y 1

24 p. 24

25 p. 25 There are other forms of energy : e.g. thermal energy ( Actually, in microscopic scale, thermal energy may also be a kind of kinetic energy )

26 p. 26 從位能轉換為動能 動能再轉換為電能 2003 三峽大壩

27 p. 27 The ball on which track will hit the finish line earlier?

28 功率, 機械功率 ( Mechanical Power ) p. 28 mechanical power P av = ΔW / Δt ( J / s ), 1 J/s = 1 watt ( W ), 1 hp = 746 W lim ΔW/Δt = P = dw/dt Δt 0 ΔW = F Δs dw = F ds v = ds / dt P = dw / dt = F ds / dt = F v Ex. A tractor exert 3 x 10 4 N, moving at 5 m/s. What is its horsepower? P = F v = 3 x 10 4 x 5 = 1.5 x 10 5 ( W ) 200 ( hp )

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc. Chapter 22 Lecture Essential University Physics Richard Wolfson 2 nd Edition Electric Potential 電位 Slide 22-1 In this lecture you ll learn 簡介 The concept of electric potential difference 電位差 Including

More information

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射 原子結構中的電子是如何被發現的? ( 1856 1940 ) 可以參考美國物理學會 ( American Institute of Physics ) 網站 For in-depth information, check out the American Institute of Physics' History Center

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

Physics 1A Lecture 6B. "If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow

Physics 1A Lecture 6B. If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow Physics 1A Lecture 6B "If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow Work Let s assume a constant force F acts on a rolling ball in a trough at an angle θ over

More information

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee Chapter 6 Series-Parallel Circuits Objectives Identify series-parallel relationships Analyze series-parallel circuits Determine the loading effect of a voltmeter on a circuit Analyze a Wheatstone bridge

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1 0 0 = 1 0 = 0 1 = 0 1 1 = 1 1 = 0 0 = 1 : = {0, 1} : 3 (,, ) = + (,, ) = + + (, ) = + (,,, ) = ( + )( + ) + ( + )( + ) + = + = = + + = + = ( + ) + = + ( + ) () = () ( + ) = + + = ( + )( + ) + = = + 0

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Chapter 8 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Gravity 重力 Pearson Education, Inc. Slide 8-1

Chapter 8 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Gravity 重力 Pearson Education, Inc. Slide 8-1 Chapter 8 Lecture Essential University Physics Richard Wolfson 2 nd Edition Gravity 重力 Slide 8-1 In this lecture you ll learn 簡介 Newton s law of universal gravitation 萬有引力 About motion in circular and

More information

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week Today: Work, Kinetic Energy, Potential Energy HW #4 due Thursday, 11:59 p.m. pm No Recitation Quiz this week 1 What is Energy? Mechanical Electromagnetic PHY 11 PHY 13 Chemical CHE 105 Nuclear PHY 555

More information

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium CHAPTER 2 Energy Bands and Carrier Concentration in Thermal Equilibrium 光電特性 Ge 被 Si 取代, 因為 Si 有較低漏電流 Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors. Figure

More information

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015 生物統計教育訓練 - 課程 Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所 tchsieh@mail.tcu.edu.tw TEL: 03-8565301 ext 2015 1 Randomized controlled trial Two arms trial Test treatment

More information

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 熵可以用來預測自發改變方向 我們現在回到 5.1 節引入兩個過程 第一個過程是關於金屬棒在溫度梯度下的自然變化方向 試問, 在系統達平衡狀態時, 梯度變大或更小? 為了模擬這過程, 考慮如圖 5.5 的模型, 一孤立的複合系統受

More information

13.7 Power Applied by a Constant Force

13.7 Power Applied by a Constant Force 13.7 Power Applied by a Constant Force Suppose that an applied force F a acts on a body during a time interval Δt, and the displacement of the point of application of the force is in the x -direction by

More information

Chap. 4 Force System Resultants

Chap. 4 Force System Resultants Chap. 4 Force System Resultants Chapter Outline Moment of a Force Scalar Formation Cross Product Moment of Force Vector Formulation Principle of Moments Moment of a Force about a Specified xis Moment of

More information

Algorithms and Complexity

Algorithms and Complexity Algorithms and Complexity 2.1 ALGORITHMS( 演算法 ) Def: An algorithm is a finite set of precise instructions for performing a computation or for solving a problem The word algorithm algorithm comes from the

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Work and kinetic energy. If a net force is applied on an object, the object may

Work and kinetic energy. If a net force is applied on an object, the object may Work and kinetic energy If a net force is applied on an object, the object may CHAPTER 6 WORK AND ENERGY experience a change in position, i.e., a displacement. When a net force is applied over a distance,

More information

pseudo-code-2012.docx 2013/5/9

pseudo-code-2012.docx 2013/5/9 Pseudo-code 偽代碼 & Flow charts 流程圖 : Sum Bubble sort 1 Prime factors of Magic square Total & Average Bubble sort 2 Factors of Zodiac (simple) Quadratic equation Train fare 1+2+...+n

More information

Kinetic Energy and Work

Kinetic Energy and Work Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside

More information

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計

統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 統計學 Spring 2011 授課教師 : 統計系余清祥日期 :2011 年 3 月 22 日第十三章 : 變異數分析與實驗設計 Chapter 13, Part A Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis of Variance and the Completely

More information

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan and the Applications Institute of Statistics National Chiao Tung University Hsinchu, Taiwan 1. Confidence Interval (CI) 2. Tolerance Interval (TI) 3. Prediction Interval (PI) Example A manufacturer wanted

More information

PHYSICS 149: Lecture 17

PHYSICS 149: Lecture 17 PHYSICS 149: Lecture 17 Chapter 6: Conservation of Energy 6.7 Elastic Potential Energy 6.8 Power Chapter 7: Linear Momentum 7.1 A Vector Conservation Law 7. Momentum Lecture 17 Purdue University, Physics

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Chapter 7. Kinetic energy and work. Energy is a scalar quantity associated with the state (or condition) of one or more objects.

Chapter 7. Kinetic energy and work. Energy is a scalar quantity associated with the state (or condition) of one or more objects. Chapter 7 Kinetic energy and work 7.2 What is energy? One definition: Energy is a scalar quantity associated with the state (or condition) of one or more objects. Some characteristics: 1.Energy can be

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

Lecture 3. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-SCIENVP-L Term01

Lecture 3. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-SCIENVP-L Term01 Lecture 3 > Potential Energy > Conservation of Energy > Power (Source: Serway; Giancoli) 1 Conservative & Nonconservative Forces > Conservative forces allow objects to lose energy through work and gain

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Chapter 7 Work and Kinetic Energy. Copyright 2010 Pearson Education, Inc.

Chapter 7 Work and Kinetic Energy. Copyright 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy Units of Chapter 7 Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power 7-1 Work Done by a Constant Force The definition

More information

邏輯設計 Hw#6 請於 6/13( 五 ) 下課前繳交

邏輯設計 Hw#6 請於 6/13( 五 ) 下課前繳交 邏輯設計 Hw#6 請於 6/3( 五 ) 下課前繳交 . A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations: D A = X A + XY D B = X A + XB Z = XB

More information

Lectures 11-13: From Work to Energy Energy Conservation

Lectures 11-13: From Work to Energy Energy Conservation Physics 218: sect.513-517 Lectures 11-13: From Work to Energy Energy Conservation Prof. Ricardo Eusebi for Igor Roshchin 1 Physics 218: sect.513-517 Energy and Work-Energy relationship Prof. Ricardo Eusebi

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

材料力學 Mechanics of Materials

材料力學 Mechanics of Materials 材料力學 Mechanics of Materials 林峻立博士 國立陽明大學生物醫學工程系教授 Chun-Li Lin, PhD., Professor, Department of Biomedical Engineering National Yang-Ming University 1-1 Cortical bone: 10-20GPa Load Cross section b Moment

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

Chapter 7. Kinetic Energy and Work

Chapter 7. Kinetic Energy and Work Chapter 7 Kinetic Energy and Work 7.3 Kinetic Energy Kinetic energy K is energy associated with the state of motion of an object. The faster the object moves, the greater is its kinetic energy. For an

More information

Numbers and Fundamental Arithmetic

Numbers and Fundamental Arithmetic 1 Numbers and Fundamental Arithmetic Hey! Let s order some pizzas for a party! How many pizzas should we order? There will be 1 people in the party. Each people will enjoy 3 slices of pizza. Each pizza

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

授課大綱 課號課程名稱選別開課系級學分 結果預視

授課大綱 課號課程名稱選別開課系級學分 結果預視 授課大綱 課號課程名稱選別開課系級學分 B06303A 流體力學 Fluid Mechanics 必 結果預視 課程介紹 (Course Description): 機械工程學系 三甲 3 在流體力學第一課的學生可能會問 : 什麼是流體力學? 為什麼我必須研究它? 我為什麼要研究它? 流體力學有哪些應用? 流體包括液體和氣體 流體力學涉及靜止和運動時流體的行為 對流體力學的基本原理和概念的了解和理解對分析任何工程系統至關重要,

More information

Chapter 20 Cell Division Summary

Chapter 20 Cell Division Summary Chapter 20 Cell Division Summary Bk3 Ch20 Cell Division/1 Table 1: The concept of cell (Section 20.1) A repeated process in which a cell divides many times to make new cells Cell Responsible for growth,

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Lecture 9. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-BIOPHY1-L Term01

Lecture 9. > Potential Energy. > Conservation of Energy. > Power. (Source: Serway; Giancoli) Villacorta--DLSUM-BIOPHY1-L Term01 Lecture 9 > Potential Energy > Conservation of Energy > Power (Source: Serway; Giancoli) 1 Conservative & Nonconservative Forces > The various ways work and energy appear in some processes lead to two

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

2001 HG2, 2006 HI6, 2010 HI1

2001 HG2, 2006 HI6, 2010 HI1 - Individual 9 50450 8 4 5 8 9 04 6 6 ( 8 ) 7 6 8 4 9 x, y 0 ( 8 8.64) 4 4 5 5 - Group Individual Events I 6 07 + 006 4 50 5 0 6 6 7 0 8 *4 9 80 0 5 see the remark Find the value of the unit digit of +

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Work and Kinetic Energy

Work and Kinetic Energy Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

Chapter 5 Work and Energy

Chapter 5 Work and Energy Chapter 5 Work and Energy Work and Kinetic Energy Work W in 1D Motion: by a Constant orce by a Varying orce Kinetic Energy, KE: the Work-Energy Theorem Mechanical Energy E and Its Conservation Potential

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Like other undamental concepts, energy is harder to deine in words than in equations. It is closely linked to the concept o orce. Conservation o Energy is one o Nature

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2.

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2. . Two objects are connected by a light string passing over a light frictionless pulley as in Figure P8.3. The object of mass m is released from rest at height h. Using the principle of conservation of

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim 1061 微乙 01-05 班期中考解答和評分標準 1. (10%) (x + 1)( (a) 求 x+1 9). x 1 x 1 tan (π(x )) (b) 求. x (x ) x (a) (5 points) Method without L Hospital rule: (x + 1)( x+1 9) = (x + 1) x+1 x 1 x 1 x 1 x 1 (x + 1) (for the

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 2 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Stress and Strain Axial Loading 2.1 An Introduction

More information

Answers: ( HKMO Heat Events) Created by: Mr. Francis Hung Last updated: 23 November see the remark

Answers: ( HKMO Heat Events) Created by: Mr. Francis Hung Last updated: 23 November see the remark 9 50450 8 4 5 8-9 04 6 Individual 6 (= 8 ) 7 6 8 4 9 x =, y = 0 (= 8 = 8.64) 4 4 5 5-6 07 + 006 4 50 5 0 Group 6 6 7 0 8 *4 9 80 0 5 see the remark Individual Events I Find the value of the unit digit

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出 hapter S Stereochemistry ( 立體化學 ): chiral molecules ( 掌性分子 ) Isomerism constitutional isomers butane isobutane 分子式相同但鍵結方式不同

More information

Ch2 Linear Transformations and Matrices

Ch2 Linear Transformations and Matrices Ch Lea Tasfoatos ad Matces 7-11-011 上一章介紹抽象的向量空間, 這一章我們將進入線代的主題, 也即了解函數 能 保持 向量空間結構的一些共同性質 這一章討論的向量空間皆具有相同的 体 F 1 Lea Tasfoatos, Null spaces, ad ages HW 1, 9, 1, 14, 1, 3 Defto: Let V ad W be vecto spaces

More information

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士 Contents

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士   Contents 雷射原理 The Principle of Laser 授課教授 : 林彥勝博士 E-mail: yslin@mail.isu.edu.tw Contents Energy Level( 能階 ) Spontaneous Emission( 自發輻射 ) Stimulated Emission( 受激發射 ) Population Inversion( 居量反轉 ) Active Medium( 活性介質

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

tan θ(t) = 5 [3 points] And, we are given that d [1 points] Therefore, the velocity of the plane is dx [4 points] (km/min.) [2 points] (The other way)

tan θ(t) = 5 [3 points] And, we are given that d [1 points] Therefore, the velocity of the plane is dx [4 points] (km/min.) [2 points] (The other way) 1051 微甲 06-10 班期中考解答和評分標準 1. (10%) A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/3, this angle is decreasing

More information

4 內流場之熱對流 (Internal Flow Heat Convection)

4 內流場之熱對流 (Internal Flow Heat Convection) 4 內流場之熱對流 (Intenal Flow Heat Convection) Pipe cicula coss section. Duct noncicula coss section. Tubes small-diamete pipes. 4.1 Aveage Velocity (V avg ) Mass flowate and aveage fluid velocity in a cicula

More information

Introduction: Work and Kinetic Energy of Particles

Introduction: Work and Kinetic Energy of Particles Name Period Work and Energy The 120mm M829 Armor Piercing, Fin Stabilized, Discarding Sabot-Tracer(APFSDS-T), http://www.fas.org/man/dod- 101/sys/land/120.htm Introduction: Work and Kinetic Energy of Particles

More information

Work and Energy. Work and Energy

Work and Energy. Work and Energy 1. Work as Energy Transfer Work done by a constant force (scalar product) Work done by a varying force (scalar product & integrals). Kinetic Energy Work-Energy Theorem Work by a Baseball Pitcher A baseball

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 7: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Physics 231 Lecture 9

Physics 231 Lecture 9 Physics 31 Lecture 9 Mi Main points o today s lecture: Potential energy: ΔPE = PE PE = mg ( y ) 0 y 0 Conservation o energy E = KE + PE = KE 0 + PE 0 Reading Quiz 3. I you raise an object to a greater

More information

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F.

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F. Power Power is the time rate at which work W is done by a force Aerage power P ag = W/ t Instantaneous power (energy per time) P = dw/dt = (Fcosφ dx)/dt = F cosφ= F. Unit: watt 1 watt = 1 W = 1 J/s 1 horsepower

More information

Candidates Performance in Paper I (Q1-4, )

Candidates Performance in Paper I (Q1-4, ) HKDSE 2018 Candidates Performance in Paper I (Q1-4, 10-14 ) 8, 9 November 2018 General and Common Weaknesses Weak in calculations Weak in conversion of units in calculations (e.g. cm 3 to dm 3 ) Weak in

More information

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics Work done by multiple forces Work done by multiple forces no normal work tractor work friction work total work = W T +W f = +10 kj no weight work Work-Energy: Finding the Speed total work = W T +W f =

More information

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題 國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題 基礎數學 I.(2%) Test for convergence or divergence of the following infinite series cos( π (a) ) sin( π n (b) ) n n=1 n n=1 n 1 1 (c) (p > 1) (d) n=2 n(log n) p n,m=1 n 2 +

More information

ApTutorGroup. SAT II Chemistry Guides: Test Basics Scoring, Timing, Number of Questions Points Minutes Questions (Multiple Choice)

ApTutorGroup. SAT II Chemistry Guides: Test Basics Scoring, Timing, Number of Questions Points Minutes Questions (Multiple Choice) SAT II Chemistry Guides: Test Basics Scoring, Timing, Number of Questions Points Minutes Questions 200-800 60 85 (Multiple Choice) PART A ----------------------------------------------------------------

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Ch.9 Liquids and Solids

Ch.9 Liquids and Solids Ch.9 Liquids and Solids 9.1. Liquid-Vapor Equilibrium 1. Vapor Pressure. Vapor Pressure versus Temperature 3. Boiling Temperature. Critical Temperature and Pressure 9.. Phase Diagram 1. Sublimation. Melting

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

CHAPTER 8: Conservation of Energy 1.)

CHAPTER 8: Conservation of Energy 1.) CHAPTE 8: Conservation of Energy 1.) How We Got Here! We started by noticing that a force component acted along the line of a body s motion will affect the magnitude of the body s velocity. We multiplied

More information

Chapter 7 Energy of a System

Chapter 7 Energy of a System Chapter 7 Energy of a System Course Outline : Work Done by a Constant Force Work Done by avarying Force Kinetic Energy and thework-kinetic EnergyTheorem Power Potential Energy of a System (Will be discussed

More information

Physics 231 Lecture 12

Physics 231 Lecture 12 Physics 31 Lecture 1 Work energy theorem W Potential energy o gravity: ΔPE total = = PE KE PE KE 0 mg Conservation o energy ( y ) 0 y 0 E = KE + PE = KE 0 + PE 0 Potential energy o a spring = PE = 1 kx

More information

Lecture 9: Kinetic Energy and Work 1

Lecture 9: Kinetic Energy and Work 1 Lecture 9: Kinetic Energy and Work 1 CHAPTER 6: Work and Kinetic Energy The concept of WORK has a very precise definition in physics. Work is a physical quantity produced when a Force moves an object through

More information

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis Ch 3 線性迴歸與相關分析 相關分析 Lear Regresso Ad Correlato Aalyss Correlato Aalyss Correlato Aalyss Correlato Aalyss s the study of the relatoshp betwee two varables. Scatter Dagram A Scatter Dagram s a chart that

More information

GSAS 安裝使用簡介 楊仲準中原大學物理系. Department of Physics, Chung Yuan Christian University

GSAS 安裝使用簡介 楊仲準中原大學物理系. Department of Physics, Chung Yuan Christian University GSAS 安裝使用簡介 楊仲準中原大學物理系 Department of Physics, Chung Yuan Christian University Out Line GSAS 安裝設定 CMPR 安裝設定 GSAS 簡易使用說明 CMPR 轉出 GSAS 實驗檔簡易使用說明 CMPR 轉出 GSAS 結果簡易使用說明 1. GSAS 安裝設定 GSAS 安裝設定 雙擊下載的 gsas+expgui.exe

More information

Polybenzimidazole 及其奈米複合材 料薄膜在直接甲醇燃料電池的應用

Polybenzimidazole 及其奈米複合材 料薄膜在直接甲醇燃料電池的應用 遠東科技大學材料科學與工程系專題演講 Polybenzimidazole 及其奈米複合材 料薄膜在直接甲醇燃料電池的應用 許聯崇教授 國立成功大學材料科學及工程學系中華民國 97 年 3 月 19 日 utline Fuel Cells and Proton Exchange Membranes Synthesis of Polybenzimidazoles (PBIs) Research work

More information

Chapter 1 Linear Regression with One Predictor Variable

Chapter 1 Linear Regression with One Predictor Variable Chapter 1 Linear Regression with One Predictor Variable 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 1 1 / 41 Regression analysis is a statistical methodology

More information

Lecture 12 Friction &Circular. Dynamics

Lecture 12 Friction &Circular. Dynamics Lecture 12 Friction &Circular Exam Remarks Units, units, units Dynamics Drawing graphs with arrows and labels FBDs: ma is not a force! r(r) given, derive v(t), a(t) Circular motion: the velocity vector

More information

REAXYS NEW REAXYS. RAEXYS 教育訓練 PPT HOW YOU THINK HOW YOU WORK

REAXYS NEW REAXYS. RAEXYS 教育訓練 PPT HOW YOU THINK HOW YOU WORK REAXYS HOW YOU THINK HOW YOU WORK RAEXYS 教育訓練 PPT Karen.liu@elsevier.com NEW REAXYS. 1 REAXYS 化學資料庫簡介 CONTENTS 收錄內容 & 界面更新 資料庫建置原理 個人化功能 Searching in REAXYS 主題 1 : 化合物搜尋 主題 2 : 反應搜尋 主題 3 : 合成計畫 主題 4 :

More information

Chapter 7 Kinetic Energy and Work

Chapter 7 Kinetic Energy and Work Prof. Dr. I. Nasser Chapter7_I 14/11/017 Chapter 7 Kinetic Energy and Work Energy: Measure of the ability of a body or system to do work or produce a change, expressed usually in joules or kilowatt hours

More information

Physics 10 Lecture 7A. "Energy and persistence conquer all things. --Benjamin Franklin

Physics 10 Lecture 7A. Energy and persistence conquer all things. --Benjamin Franklin Physics 10 Lecture 7A "Energy and persistence conquer all things. --Benjamin Franklin Quiz 1 Info It will be a Scantron test covering Chapters 1, 2, 3, 4, 5, and 6. A list of equations, constants, and

More information

Digital Image Processing

Digital Image Processing Dgtal Iage Processg Chater 08 Iage Coresso Dec. 30, 00 Istructor:Lh-Je Kau( 高立人 ) Deartet of Electroc Egeerg Natoal Tae Uversty of Techology /35 Lh-Je Kau Multeda Coucato Grou Natoal Tae Uv. of Techology

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Linear Regression 許湘伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34 Regression analysis is a statistical methodology that utilizes the relation between

More information