Gases and the Kinetic Molecular Theory

Size: px
Start display at page:

Download "Gases and the Kinetic Molecular Theory"

Transcription

1 Gases and the Kinetic olecular Theory Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc. 5.1 The hysical States of atter The condensed states liquid and solid The gaseous state Gas volume changes greatly with pressure Gas volume changes greatly with temperature Gases have low viscosity (flow easily) Gases have low density (~1000 times lower than liquids and solids) Gases are miscible in all proportions olecular model of the gaseous state olecules are in constant, rapid, random motion (explains the absence of definite shape, miscibility, low viscosity) olecules are widely separated (explains the absence of definite volume, low density, compressibility) 5. ressure Gas molecules collide with each other an the walls of the container molecules exert force on the walls Force ressure Area F A Atmospheric pressure ( atm ) caused by the gravitational pull of the Earth molecules exert force on all objects Barometers -measure the atmospheric pressure (Torricelli) no pressure above the mercury column (vacuum) the weight of the Hg column balances atm the height of the Hg column is proportional to atm g - acceleration of free fall (9.81 m/s ) d - density of Hg (13546 kg/m 3 ) - volume of Hg column h - height of Hg column (0.760 m at sea level) A - area of Hg column base F atm Hg F mhg g A mhg d dha F dhag dhag atm dhg A kg / m s atm anometers measure the pressure of gases in containers Close-end and open-end manometers

2 Units of ressure SI unit pascal (a) 1 a 1 N/m 1 kg/m s atm a (at sea level) Conventional units: atm 1 atm a (exactly) bar 1 bar a (exactly) torr 760 Torr 1 atm (exactly) mm Hg 1 mmhg 1 Torr lb/in 14.7 lb/in 1 atm Example: Convert Torr to atmospheres and kilopascals. 1 atm Torr atm 760 Torr 1 atm a Torr 760 Torr 1 atm a ka 5.3 The Gas Laws Relate the parameters of the gaseous state pressure, volume, temperature, and number of moles Boyle s Law At constant temperature (T) the pressure () of a fixed amount of gas is inversely proportional to its volume () At constant T and n: k k constant (depends on T and n) k constant Assume two states of a gas at constant T state 1 1, 1 state, 1 1 k k 1 1 Example: A.0 L sample of oxygen at 10 atm is transferred to a 15.0 L container at constant temperature. What is the new pressure? 1.0 L 1 10 atm 15.0 L? 10 atm.0 L L 1.3 atm Charles s Law At constant pressure () the volume () of a fixed amount of gas is proportional to its absolute temperature (T) At constant and n: k T k constant (depends on and n) k T T Charles s law helped devise the absolute temperature scale (Lord Kelvin)

3 Assume two states of a gas at constant state 1 T 1, 1 state T, 1 1 k k T T T T 1 1 Example: A balloon is filled with 5.0 L He gas at 15ºC. The temperature is changed to 35ºC. What is the new volume of the balloon? T 1 15ºC 88 K L T 35ºC 308 K? T L 308 K 5.3 L T 88 K 1 ariations of Charles s law Amontons s law At constant volume () the pressure () of a fixed amount of gas is proportional to its absolute temperature (T) At constant and n: k T k constant (depends on and n) T k T Assume two states of a gas at constant state 1 T 1, 1 state T, 1 1 k k T1 T T1 T Example: A cylinder containing N gas at 15ºC and 50 atm is moved to a new location at 35ºC. What is the new pressure in the cylinder? T 1 15ºC 88 K 1 50 atm T 35ºC 308 K? T 1 50 atm 308 K 53 atm T 88 K 1 Avogadro s Law At constant temperature (T) and pressure () the volume () of a gas is proportional to its amount (n) At constant T and : k n k constant (depends on T, ) k n n olar volume ( m ) the volume of one mole of a substance m /n Avogadro s principle At constant T and equal number of moles of different gases occupy equal volumes olar volumes of gases are very similar (/n constant) Assume two states of a gas at constant T and state 1 1, n 1 state, n k k n n n n

4 The Ideal Gas Law 1 k Boyle's Law k T k n Charles's Law Avogadro's Law Combination of the three laws: nt R R proportionality constant nrt ideal gas law R universal gas constant There is no need to memorize the mathematical expression for the individual gas laws since they can all be derived from the ideal gas law Ideal gas obeys the ideal gas law R is determined experimentally R L atm/mol K R J/mol K Assume two states of a gas state 1 1, 1, n 1, T 1 state,, n, T R R nt nt nt nt Note: T must always be in Kelvin Example: A 5.0 L gas sample at 1.0 atm and 10ºC is moved to a.0 L container and heated to 300ºC. What is the new pressure? atm L T 1 10ºC 83 K?.0 L T 300ºC 573 K n 1 n n T nt nt nt T 1.0 atm 5.0 L 573 K atm T 1 83 K.0 L Example: A 3.0 g sample of methane, CH 4, is placed in a.0 L container at ºC. What is the pressure in the container? nrt.0 L T ºC 95 K moles of CH 4 (n): 1 mol CH 4 n 3.0 g CH mol CH g CH4 Latm 0.19 mol K nrt mol K.3 atm.0 L Standard conditions Standard temperature and pressure (ST) 1 atm; T 0ºC K The molar volume of the ideal gas at ST m nrt / RT n n Latm K RT mol K L m.41 1 atm mol

5 5.4 Applications of the Ideal Gas Law The molar mass and density of gasses mass m density d volume mass m molar mass moles n m n nrt n RT m n drt d d RT RT The density of a gas is proportional to its molar mass and pressure and inversely proportional to its temperature Example: Calculate the density of O at ST g/mol 1 atm T 0ºC K (ST) g atm mol g d 1.48 RT Latm L K mol K Finding the molar mass of a volatile liquid Weigh a flask with a known volume Fill the flask with the vapors of the volatile liquid at a known temperature and pressure Cool the flask and let the vapors condense Reweigh the flask to get the mass of the vapors Example: Calculate the molar mass of a liquid if g of its vapors occupy.50 L at 00ºC and 45.0 Torr. d m/ g/.50 L 0.38 g/l T 00ºC 473 K 45.0 Torr [1 atm/760 Torr] atm g L atm K drt L mol K g atm mol ixtures of Gasses ixtures are treated just like pure gases same gas laws apply artial pressure of a gas in a mixture the pressure the gas would exert if it occupied the container alone Dalton s law of partial pressures the total pressure () of a gaseous mixture is the sum of the partial pressures ( i ) of its components A + B + or Σ i ole fraction (χ i ) of a gas in a mixture a fraction of the total number of moles that belongs to that gas ni ni χi ni n χi 1 n n i The sum of all mol fractions is equal to one The ideal gas law can be written for each gas in a mixture in terms of partial pressures i n i RT nrt

6 i nirt i ni χ i nrt n i χ i The partial pressure of a gas is proportional to its mol fraction Example: Calculate the total pressure and the partial pressures of He and Ne in a.0 L mixture containing 1.0 g He and.0 g Ne at 0ºC. grams of He and Ne moles of He and Ne mole fractions of He and Ne total pressure partial pressures 1 mol He 1.0 g He 0.5 mol He 4.00 g He 1 mol Ne.0 g Ne mol Ne 0.18 g Ne χ χ He Ne nhe n + n He Ne nne n + n He Ne n mol nrt nrt nrt Latm 0.35 mol K mol K.0 L 4. atm He Ne χ atm 3.0 atm He χ atm 1. atm Ne Collecting a gas over water total gas + water total atm water (vapor pressure of water) given in tables Example: A.5 L sample of O gas was collected over water at 6 C and 745 torr atmospheric pressure. What is the mass of O in the sample? (The vapor pressure of water at 6 C is 5 torr.) oxygen total - water torr T K 1 atm 70 torr.5 L O 760 torr no mol RT L atm K mol K 3.0 g O mol O 3.1 g O 1 mol O

7 Stoichiometry and the Ideal Gas Law The volume ratios of gases in reactions are the same as their mole ratios (follows from Avogadro s principle) 3H (g) + N (g) NH 3 (g) The ideal gas law can be used to convert between the number of moles of gaseous reactants (or products) and their volumes at certain T and 3 mol H react with 1 mol N 3 L H react with 1 L N Example: How many liters of N are needed to react completely with 5.0 L H? 5.0 L H [1 L N / 3 L H ] 1.7 L N Example: Calculate the volume of CO produced by the decomposition of.0 g CaCO 3 at 5ºC and 1.0 atm. CaCO 3 (s) CaO(s) + CO (g) 1 mol CaCO 1 mol CO.0 g CaCO 0.00 mol CO g CaCO 3 1 mol CaCO 3 L atm 0.00 mol K nrt mol K 1.0 atm 0.49 L Example: Calculate the mass of NaN 3 needed to produce 10 L of N in an air bag at 5ºC and 1.0 atm by the reaction: 6NaN 3 (s) + Fe O 3 (s) 3Na O (s) + 4Fe(s) + 9N (g) T 98 K 1 atm 10 L n? 1 atm 10 L n 0.41 mol RT Latm K mol K 6 mol NaN g NaN mol N 9 mol N 1 mol NaN3 18 g NaN The Kinetic olecular Theory ostulates of the Kinetic olecular Theory The gas particles are negligibly small (their volume can be neglected) The gas particles are in constant, random motion and move in straight lines until they collide The gas particles do not interact except during collisions. The collisions are elastic so there is no loss of energy due to friction The average kinetic energy of gas particles, E k, is proportional to the absolute temperature, T A molecular view of the gas laws Boyle s law ( 1/)

8 A molecular view of the gas laws Charles s law ( T) A molecular view of the gas laws Avogadro s law ( n) Average kinetic energy of the gas particles Example: Calculate the root-mean-square 1 Ek T Ek mu speed of N at 5ºC. T 5ºC 98 K 8.0 g/mol kg/mol u T u T R J/mol K m mass of particles u average square speed J K 3RT J Root-mean-square speed of the gas particles u mol K rms 515 kg kg urm s u urm s T mol 3 RT kg m /s m m u rm s kg s s The axwell Distribution of Speeds Gives the fraction of particles moving at each particle speed Gas molecules travel with a wide range of speeds with a bell-shaped distribution The most probable speed, the average speed and the root-mean-square speed are very close in magnitude The range of speeds widens and u rms increases with increasing the temperature

9 The meaning of temperature RT m3rt Ek mu murms m mn A E k 3RT 3RT and urms N A The range of speeds widens and u rms increases with decreasing the molar mass of the gas Lighter gases have higher molecular speeds u rms depends on T and E k depends only on T T is a measure of the average kinetic energy of the molecular motion Diffusion and Effusion Diffusion gradual dispersal of one substance through another gases diffuse from places with high to places with low concentration Effusion escape of a substance through a small hole into vacuum effusion through porous materials, pin holes, cracks, etc. Graham s Law the effusion rate (ER) of a gas is inversely proportional to the square root of its molar mass (same relation is valid in general for the diffusion rate) 1 ER Can be explained with u rms 3RT/ The time of effusion (t eff ) is inversely proportional to ER 1 t eff teff ER For two gases, A and B: ER A t ER B t B ( ) ( ) ( A) ( ) B eff A A eff B Example: If it takes a certain amount of H 15 s to effuse through a small hole, how long does it take for the same amount of O? t ( O ) ( ) ( O ) O ( ) ( ) eff O teff O teff H eff H H eff 3.00 g/mol 15 s 60 s.0 g/mol t H t 5.6 Real Gases Real gases deviate from ideal behavior Compression factor (Z) Z /nrt For ideal gases: nrt Z /nrt 1 A plot of Z versus gives a straight line for ideal gases, but not for real gases

10 Negative deviations important at moderately high pressures (/nrt < 1) Due to attractive forces between the molecules The molecules attract each other and impact the walls with a weaker force ( and Z decrease) ositive deviations important at very high pressures (/nrt > 1) Due to the actual volume of the molecules The physical volume of the molecules reduces the free volume in the container, but we still use the volume of the entire container,, which is larger than the free volume (Z increases) an der Waals equation: an + ( nb) nrt a, b - van der Waals constants (zero for ideal gases) an / - pressure correction (a depends on the attractive forces between molecules) nb - volume correction (b is a measure for the actual volume of the gas molecules) Real gases approach ideal behavior at low pressures and high temperatures (away from conditions of condensation)

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar Gases A Chemistry Lecture Outline Name: Basics on Gases composition of the atmosphere: properties of gases: vapors: gases of substances that are normally liquids or solids Equation for pressure: 1 atm

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Characteristics of Unlike liquids and solids, they Expand to fill their containers.

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 5 Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel from N

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

Gases. Chapter 11. Preview. 27-Nov-11

Gases. Chapter 11. Preview. 27-Nov-11 Chapter 11 Gases Dr. A. Al-Saadi 1 Preview Properties and measurements of gases. Effects of temperature, pressure and volume. Boyle s law. Charles s law, and Avogadro s law. The ideal gas equation. Gas

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 10 2015 Pearson Education James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements

More information

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter Ten- Gases. STUDY GUIDE AP Chemistry STUDY GUIDE AP Chemistry Chapter Ten- Gases Lecture Notes 10.1 Characteristics of Gases All substances have three phases: solid, liquid and gas. Substances that are liquids or solids under ordinary conditions

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works. 10/16/018 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 1 10/16/018 A Gas Uniformly fills any container.

More information

Chapter 5. The Gas Laws

Chapter 5. The Gas Laws Chapter 5 The Gas Laws 1 Pressure Force per unit area. Gas molecules fill container. Molecules move around and hit sides. Collisions are the force. Container has the area. Measured with a barometer. 2

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Chapter 10. Gases. Characteristics of Gases. Units of Pressure. Pressure. Manometer. Units of Pressure 27/07/2014 P = F A

Chapter 10. Gases. Characteristics of Gases. Units of Pressure. Pressure. Manometer. Units of Pressure 27/07/2014 P = F A 7/07/014 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Characteristics of Chapter 10 Unlike liquids and solids, gases expand to fill their containers;

More information

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

More information

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings Chapter 5 Gases A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings The properties of a gas depends upon four variables-

More information

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works. Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? n understanding of real world phenomena. n understanding of how science works. Gas Uniformly fills any container. Mixes completely

More information

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011 Chapter 5: Gases 5.1 Definitions 5.2 The First Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gases 5.5 Mixtures of Gases (Partial Pressures) 5.6 Kinetic Molecular Theory 5.7 Effusion and Diffusion 5.8-9

More information

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases Chapter 10 part 1: Ideal Gases Read: BLB 10.1 5 HW: BLB 10.2,19a,b, 23, 26, 30, 39, 41, 45, 49 Sup 10:1 6 Know: What is pressure? Gases Which elements exist as gases at ordinary temperature and pressure?

More information

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1 Chemistry TOPIC 2 States of Matter (I) - Gases Topic 2. States of Matter (I) - Gases. 1 Contents 1. Introduction 2. Pressure measurement 3. The Ideal Gas equation 4. Efusion and Diffusion 5. Kinetic Molecular

More information

Chap. 5 GASES & KINETIC- MOLECULAR THEORY

Chap. 5 GASES & KINETIC- MOLECULAR THEORY Chap. 5 GASES & KINETIC- OLECULAR THEORY Use the ideal gas law to describe the behavi of gases. Understand how kinetic-molecular they provides the basis f understanding gas behavi Be able to describe effusion

More information

Chapter 5. Gases and the Kinetic-Molecular Theory

Chapter 5. Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Macroscopic vs. Microscopic Representation Kinetic Molecular Theory of Gases 1. Gas molecules are in constant motion in random directions. Collisions among

More information

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Chapter 10 Problems Problems

More information

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike

More information

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is: Standard T & P (STP) The standard temperature and pressure for gases is: At STP, 1 mol of any ideal gas occupies 22.4 L T = 273 K (0 o C) P = 1 atm = 101.325 kpa = 1.01325 bar 22.4 L Using STP in problems

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta Chapter 5 Gases - 4 Gas Stoichiometry Dr. Sapna Gupta Stoichiometry in Gases Amounts of gaseous reactants and products can be calculated by utilizing The ideal gas law to relate moles to T, P and V. Moles

More information

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 1 Physical Characteristics of Gases

More information

Chapter 10. Chapter 10 Gases

Chapter 10. Chapter 10 Gases Chapter 10 Gases Earth is surrounded by a layer of gaseous molecules - the atmosphere - extending out to about 50 km. 10.1 Characteristics of Gases Gases low density; compressible volume and shape of container

More information

AP Chemistry Unit 5 - Gases

AP Chemistry Unit 5 - Gases Common Gases at Room Temperature AP Chemistry Unit 5 - Gases Know these! HCN toxic slight odor of almonds HS toxic odor of rotten eggs CO toxic odorless CO odorless CH4 methane odorless, flammable CH4

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Elements that exist as gases at 250C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1. Standard T & P (STP) T = 73 K (0 o C) P = 1 atm = 101.35 kpa = 1.0135 bar At STP, 1 mol of any ideal gas occupies.4 L.4 L Gas Density We can use PV = nrt to determine the density of gases. What are the

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

Gases. Gases and the Kinetic Molecular Theory. Chapter 5. Gases have different physical properties compared to liquids and solids. width.

Gases. Gases and the Kinetic Molecular Theory. Chapter 5. Gases have different physical properties compared to liquids and solids. width. Gases Chapter 5 Gases and the Kinetic Molecular Theory 5.1 An Overview of the hysical States of Matter 5.2 Gas ressure and Its Measurement 5.3 The Gas Laws and Their Experimental Foundations 5.4 Further

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Chapter 10. Gases. The Gas Laws

Chapter 10. Gases. The Gas Laws Page 1 of 12 10.1 Characteristics of Gases. Chapter 10. Gases. All substances have three phases; solid, liquid and gas. Substances that are liquids or solids under ordinary conditions may also exist as

More information

Gases and Kinetic Molecular Theory

Gases and Kinetic Molecular Theory 1 Gases and Kinetic Molecular Theory 1 CHAPTER GOALS 1. Comparison of Solids, Liquids, and Gases. Composition of the Atmosphere and Some Common Properties of Gases 3. Pressure 4. Boyle s Law: The Volume-Pressure

More information

Properties of Gases. Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight

Properties of Gases. Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight Chapter 5 Gases Properties of Gases Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight Atmospheric Pressure Atmospheric pressure

More information

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases Dr. Ayman Nafady 2009, Prentice-Hall, 10.1. Characteristics of Gases Unlike liquids

More information

Some Important Industrial Gases

Some Important Industrial Gases Gaseous state Table 5.1 Some Important Industrial Gases Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel

More information

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state Chapter 5 Gases and Their Properties Why Study Gases? some very common elements exist in a gaseous state our gaseous atmosphere provides one means of transferring energy and material throughout the globe

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Gases and Kinetic Theory

Gases and Kinetic Theory Gases and Kinetic Theory Chemistry 35 Fall 2000 Gases One of the four states of matter Simplest to understand both physically and chemically Gas Properties Low density Fluid Can be defined by their: 1.

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94 CHAPTER 5GASES 1,,8,9,11,1,14,17,19,0,,4,6,8,0,,8,40,4,45,46,51,5,55,57,6,6,80,8,88,94 5.1 a) The volume of the liquid remains constant, but the volume of the gas increases to the volume of the larger

More information

kpa = 760 mm Hg? mm Hg P = kpa

kpa = 760 mm Hg? mm Hg P = kpa Chapter : Gasses. The atmospheric pressure of 768. mm Hg. Expressed in kilopascals (kpa) what would the value be the pressure? ( atm = 035 Pa = 760 torr = 760 mm Hg) a. 778.4 kpa b. 0.4 kpa c. 00.3 kpa

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J.

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy Chapter 10 Gases Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All Preparation of the standard solution Exp 5: Copyright Houghton Mifflin Company.All 1 1 Mass of KHP: 5.2 5.5 g Volume of volumetric flask: 250.0 cm Molarity of standard (KHP) solution: M = n/v Copyright

More information

General Properties of Gases

General Properties of Gases Page III-9-1 / Chapter Nine Lecture Notes Gases and Their Properties Chapter 9 Importance of Gases Chemistry 222 Professor Michael Russell Airbags fill with N 2 gas in an accident. Gas is generated by

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Substances that are Gases under Normal Conditions

Substances that are Gases under Normal Conditions Chapter 5: Gases 5.1 Early Experiments 5.2 The gas laws of Boyle, Charles, and Avogadro 5.3 The Ideal Gas Law 5.4 Gas Stiochiometry 5.5 Dalton s Law of Partial Pressures 5.6 The Kinetic molecular Theory

More information

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law) Chapter 10 Gases Conditions of ideal gases: Ideal gases have no attractive forces between the molecules. the atoms volume taken into account when looking at the volume a gas occupies. Low pressure and

More information

Properties of Gases. Gases have four main characteristics compared with solids and liquids:

Properties of Gases. Gases have four main characteristics compared with solids and liquids: 1 Properties of Gases Gases have four main characteristics compared with solids and liquids: Gases take the volume and shape of their containers. Mix completely (homogeneously) with any other gas. Compressible:

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER CHAPTER 9 The Gaseous State CHAPTER 10 Solids, Liquids, and Phase Transitions CHAPTER 11 Solutions 392 Gas Liquid Solid 9 THE GASEOUS STATE 9.1 The

More information

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart Chapter 10 Gases & Kinetic Molecular Theory I) Gases, Liquids, Solids Gases Liquids Solids Particles far apart Particles touching Particles closely packed very compressible slightly comp. Incomp. D g

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

Lecture 2 PROPERTIES OF GASES

Lecture 2 PROPERTIES OF GASES Lecture 2 PROPERTIES OF GASES Reference: Principles of General Chemistry, Silberberg Chapter 6 SOME FUNDAMENTAL DEFINITIONS: SYSTEM: the part of the universe being the subject of study 1 SOME FUNDAMENTAL

More information

The Kinetic-Molecular Theory of Gases

The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory of Gases kinetic-molecular theory of gases Originated with Ludwig Boltzman and James Clerk Maxwell in the 19th century Explains gas behavior on the basis of the motion of individual

More information

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship 7/6/0 Chapter Five: GASES Characteristics of Gases Uniformly fills any container. Mixes completely with any other gas. Exerts pressure on its surroundings. When subjected to pressure, its volume decreases.

More information

נושא 6 גזים. 1 Prof. Zvi C. Koren

נושא 6 גזים. 1 Prof. Zvi C. Koren נושא 6 גזים 1 Prof. Zvi C. Koren Torricelli Charles Avogadro Graham Dalton Boyle Gay-Lussac Kelvin Maxwell Boltzmann 2 Prof. Zvi C. Koren Gas Laws: A Practical Application - Air Bags Example: An automobile

More information

Forces between atoms/molecules

Forces between atoms/molecules Professor K gases Forces between atoms/molecules BONDS are the INTRAMOLECULAR FORCES holding the atoms in molecules together... What holds the molecules of a solid or liquid together?... INTERMOLECULAR

More information

The Kinetic-Molecular Theory of Gases

The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory of Gases kinetic-molecular theory of gases Originated with Ludwig Boltzman and James Clerk Maxwell in the 19th century Explains gas behavior on the basis of the motion of individual

More information

CHEMISTRY II B. Chapter 10 & Chapter 12. Gases

CHEMISTRY II B. Chapter 10 & Chapter 12. Gases CHEMISTRY II B Chapter 10 & Chapter 12 Gases Think to yourself! How do gas particles move/behavior?! What is the Kinetic Molecular Theory?! Gases are mostly empty space! Particles have no attractive or

More information

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy Pressure is defined as force per unit area. Pressure Pressure is measured with a device called a barometer. A mercury barometer uses the weight of a column of Hg to determine the pressure of gas pushing

More information

Gases and the Kinetic- Molecular Theory. ก ก ก ก Mc-Graw Hill. Gases and the Kinetic Molecular Theory

Gases and the Kinetic- Molecular Theory. ก ก ก ก Mc-Graw Hill. Gases and the Kinetic Molecular Theory ก ก Gases and the Kinetic- Molecular Theory ก ก ก ก Mc-Graw Hill 1 Gases and the Kinetic Molecular Theory 5.1 An Overview of the Physical States of Matter 5. Gas Pressure and Its Measurement 5.3 The Gas

More information

Test Bank for Chemistry 9th Edition by Zumdahl

Test Bank for Chemistry 9th Edition by Zumdahl Test Bank for Chemistry 9th Edition by Zumdahl 1. Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in

More information

Chapter 6: Gases. Philip Dutton University of Windsor, Canada N9B 3P4. Prentice-Hall 2002

Chapter 6: Gases. Philip Dutton University of Windsor, Canada N9B 3P4. Prentice-Hall 2002 General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 6: Gases Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall 2002 Prentice-Hall 2002 General

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

Boyle s law states the relationship between the pressure and the volume of a sample of gas.

Boyle s law states the relationship between the pressure and the volume of a sample of gas. The Ideal Gas Law Boyle s law states the relationship between the pressure and the volume of a sample of gas. Charles s law states the relationship between the volume and the absolute temperature of a

More information

Chapter 5. Gases and the Kinetic-Molecular Theory

Chapter 5. Gases and the Kinetic-Molecular Theory Chapter 5. Gases and the Kinetic-Molecular Theory 1 5.1 An Overview of the Physical States of Matter The reason we study gases in Chemistry: The observable properties of gases give us a window into what

More information

Gases Over View. Schweitzer

Gases Over View. Schweitzer Gases Over View Schweitzer Collision theory Describing Ideal gases Particles are very far apart relative to their size. Particles are traveling very fast Particles are traveling in straight lines Collisions

More information

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases 5-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. An Overview of the Physical States of Matter The Distinction of Gases from Liquids and Solids 1. Gas

More information

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3. 5.6 Dalton s Law of Partial Pressures Dalton s Law of Partial Pressure; The total pressure of a gas is the sum of all its parts. P total = P 1 + P + P 3 + P n Pressures are directly related to moles: n

More information

SAMPLE EXERCISE 10.1 Converting Units of Pressure. SAMPLE EXERCISE 10.1 continued

SAMPLE EXERCISE 10.1 Converting Units of Pressure. SAMPLE EXERCISE 10.1 continued SAMPLE EXERCISE 10.1 Converting Units of Pressure (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atm. (c) Convert 147.2 kpa to torr. Analyze: In each case we are given the pressure in one

More information

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter Gases Properties of Gases assume the volume and shape of their containers most compressible of the states of matter mix evenly and completely with other gases much lower density than other forms of matter

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure

Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure Chapter 5: Phenomena Phenomena: To determine the properties of gases scientists recorded various observations/measurements about different gases. Analyze the table below looking for patterns between the

More information

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe CHEMISTRY XL-14A GASES August 6, 2011 Robert Iafe Chemistry in the News 2 Polymer nicotine trap is composed of a porphyrin derivative (black), in which amide pincers (green) are attached to the zinc (violet)

More information

The Gas Laws-Part I The Gaseous State

The Gas Laws-Part I The Gaseous State The Gas Laws-Part I The Gaseous State The States of Matter The Distinction of Gases from Liquids and Solids 1. Gas volume changes greatly with pressure. 2. Gas volume changes greatly with temperature.

More information

Chapter 5. Question. Question. Answer. Answer. Question (continued) The Gaseous State

Chapter 5. Question. Question. Answer. Answer. Question (continued) The Gaseous State Chapter 5 CRS s The Gaseous State Equal volumes of propane, C 3 H 8, and carbon monoxide at the same temperature and pressure have the same a. density. b.. c. number of atoms. 1) a only 2) b only 3) c

More information

CHEMISTRY Matter and Change. Chapter 13: Gases

CHEMISTRY Matter and Change. Chapter 13: Gases CHEMISTRY Matter and Change Chapter 13: Gases CHAPTER 13 Table Of Contents Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry Click a hyperlink to view the corresponding

More information