AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University

Size: px
Start display at page:

Download "AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University"

Transcription

1 AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University

2 What we know: Magne)c energy is stored slowly in AR field. Sudden release* of a frac)on of stored energy produces flares & CMEs. What this knowledge can do for us: Quan)ta)ve measurements are crucial for basic studies of flares & CMEs. Key to flare/cme science Help forecast occurrence/severity of flares, CMEs & space weather. Key to flare/cme forecas3ng How well do we know what we know? 1. How well can we measure the magne)c energy stored in an AR at any )me? 2. How well can we measure the frac)on available for release? 3. How well can we measure the energy actually released in a par)cular flare? 4. How well can we measure energy flux during storage? * Release = conversion to other forms: kine)c, radia)on, thermal, NT par)cles

3 1. Measuring magne)c energy the state of the art: NLFFF* Measure B(x,y,z 0 ) over some horizontal surface z=z 0 Assume ( B) B = 0 for all z > z 0 (β=0 i.e. Force- Free Field ) Use favorite algorithm to extrapolate from measurement to B(x,y,z) over volume V within z > z 0 Sun et al Integrate over volume W ff,v = 1 8π V 2 B(x, y,z) dxdydz *NLFFF = non- linear force- free field

4 Issues with the state of the art Measured B(x,y,z 0 ) must be adjusted to conform w/ FFF assump)on Different algorithms for extrapola)on and/or FFF adjustment yield different solu)ons different energies (Schrijver et al. 2008, Metcalf et al. 2008, DeRosa et al. 2009, 2015) β > 0 produces error in energy rel. error ~ 1.5 β (Peter et al. 2015) Energy affected by choice of V especially loca)on of z 0 since energy is concentrated low Thin current layers common/important in models & simula)ons (CSs, QSLs) rare in data & extrapola)ons (cf Metcalf et al. 2008) No quan)ta)ve use of coronal data (cf Malanushenko et al. 2011, 2012, 2014 Aschwanden 2013) Schrijver et al DeRosa et al Thalmann & Wiegelmann. 2008

5 2. Available energy the state of the art: Free Energy ΔW Assume B z (x,y,z 0 ) unchanged during flare/cme Field with minimum energy: poten)al B 0 = 0 Subtract this energy to obtain Free Energy ( ) ΔW = W ff W 0 = 1 8π B 2 2 B 0 Issues with the state of the art V dxdydz Observed: surface field does change (Wang et al. 2002, Sudol & Harvey 2005) ΔW ~ 5% - 20% of W ff comparable to accuracy of NLFFF Can we even accurately (repeatably) measure W 0? Other conserved quan))es (i.e. helicity) prevents the field from achieving its minimum much of ΔW not truly available Is energy in lowest layer (i.e. most of it) reduced over en)re AR in a flare? flare kernels (chr- spheric response) occupy small frac)on of AR large- scale organiza)on (e.g. ribbons) suggests release in high corona can this effec)vely tap energy stored low down?

6 3. Measuring the energy drop state of the art Sun et al differen)al use of NLFFF less affected by systema)c errors some measurements of drops 55% ΔW: Schrijver et al % ΔW: Sun et al % ΔW: Feng et al Measuring the energy release where we stand (Emslie et al. 2004, 2005, 2012) Radia)ve losses over all λ only losses from flare (esp. UV & vis.) Kine)c energy of ejected material omit work done by solar wind(?) MHD waves leaving AR (25% - 60% of release Longcope & Tarr 2012) NT par)cles accounted for in later radia)ve losses? Thermal conduc)on radiated from TR and chr- sphere Thermal energy of flare plasma eventually lost through above channels double coun)ng?

7 4. Energy flux the state of the art: Poyn)ng flux Measure p- spheric velocity field v(x,y,z 0 ) horizontal & ver)cal. Use B(x,y,z 0,t) in feature- tracking methods like LCT, DAVE or MEF (Fisher & Welsch 2008, Schuck 2006, 2008, Longcope 2004) Compute Poyn)ng flux upward through z=z 0 S z (x, y,z 0 ) = 1 4π B ( v B) z ˆ Time integrate over build- up Issues with the state of the art Technical challenges w/ velocity measurements (see Welsch et al. 2007) Build- up is very slow (1 5 days) makes data- driven modeling very challenging requires mul)- day, round- the- clock observa)on of B(x,y,z 0,t) Steady losses may off- set some accumula)on: e.g. coronal hea)ng in AR requires P ~ erg/day (@ 10 7 erg/cm 2 /s) (stored energy comes from rather thin margin!?)

8 Making progress Measure B(x,y,z 0 ) at z 0 where FFF is beser approx n: chr- spheric VMGs May help extrapola)on algorithms at least reduce discrepancies (but precision is different from accuracy!) S)ll have errors ~ 1.5 β from seung β=0 (Peter et al. 2015) Omits region with significant free energy (chr- sphere) where field changes much more during flare source of flare energy? Make use of coronal data in extrapola)on How can coronal B observa)ons be incorporated? Coronal images provide informa)on use it (sensi)ve to J layers?) Efforts s)ll preliminary development needed Less energy in corona BUT perhaps most important for flaring Next gen. coronal models beyond the NLFFF Dynamics (aka simula)ons) )me- scale & length- scale challenges Include β 0?? Permit thin layers Measuring energy release flare modeling to produce energy inventory

Magnetic twists and energy releases in solar flares

Magnetic twists and energy releases in solar flares Hinode seminar 2 September 2015 Magnetic twists and energy releases in solar flares Toshifumi Shimizu (ISAS/JAXA, Japan) 2015.9.2 Hinode seminar 1 Eruptive solar flares! General scenario Formation of magnetic

More information

Development and Evaluation of an Automated System for Empirical Forecasting of Flares

Development and Evaluation of an Automated System for Empirical Forecasting of Flares Development and Evaluation of an Automated System for Empirical Forecasting of Flares Sung-Hong Park1 Collaborators: J. Baek2, S. Bong2, Y. Yuan3, J. Jing3 1 National Observatory of Athens (NOA) 2 Korea

More information

Tracking Vector Magnetic Fields

Tracking Vector Magnetic Fields Tracking Vector Magnetic Fields HMI Science Team Meeting September 8-11, 2009, Stanford, CA Supported by NASA: NNH06AD87I P. W. Schuck Peter.Schuck@nasa.gov Room 236, Building 21 Space Weather Laboratory,

More information

Field line helicity as a tool for coronal physics

Field line helicity as a tool for coronal physics Field line helicity as a tool for coronal physics Anthony Yeates with Gunnar Hornig (Dundee), Marcus Page (Durham) Helicity Thinkshop, Tokyo, 20-Nov-2017 What is magnetic helicity? The average pairwise

More information

Scaling laws of free magnetic energy stored in a solar emerging flux region

Scaling laws of free magnetic energy stored in a solar emerging flux region Publ. Astron. Soc. Japan 2014 66 (4), L6 (1 5) doi: 10.1093/pasj/psu049 Advance Access Publication Date: 2014 July 14 Letter L6-1 Letter Scaling laws of free magnetic energy stored in a solar emerging

More information

Multi-wavelength observations to understand the solar magnetic activity and its feedback on the interplanetary medium

Multi-wavelength observations to understand the solar magnetic activity and its feedback on the interplanetary medium Multi-wavelength observations to understand the solar magnetic activity and its feedback on the interplanetary medium G. Molodij, B.Schmieder and V. Bommier LESIA-Observatoire de Paris-Meudon, CNRS, associé

More information

Solar Flares - Hinode Perspec.ve -

Solar Flares - Hinode Perspec.ve - Solar Flares - Hinode Perspec.ve - EIS SOT XRT Coupling and Dynamics of the Solar Atmosphere 2014 Nov 10 14 @IUCAA, Pune, India Hirohisa Hara NAOJ Solar Flare Research by Hinode Solar flares: explosive

More information

Cosmic Ray Electrons with CTA. R.D. Parsons

Cosmic Ray Electrons with CTA. R.D. Parsons Cosmic Ray Electrons with CTA R.D. Parsons Cosmic Ray Electrons In addi:on to the well known hadronic component of cosmic rays there is a more poorly understood electronic component Has a lower flux than

More information

Coronal Magnetic Field Extrapolations

Coronal Magnetic Field Extrapolations 3 rd SOLAIRE School Solar Observational Data Analysis (SODAS) Coronal Magnetic Field Extrapolations Stéphane RÉGNIER University of St Andrews What I will focus on Magnetic field extrapolation of active

More information

Energy build- up & release erup3ons. MHD instabili3es Lecture 2 Jan. 23, 2017

Energy build- up & release erup3ons. MHD instabili3es Lecture 2 Jan. 23, 2017 Energy build- up & release erup3ons MHD instabili3es Lecture 2 Jan. 23, 2017 Our mission: explain what has happened here Our tool: magnetohydrodynamics (MHD) MHD describes Plasma as a single fluid (combining

More information

Radio Observations and Space Weather Research

Radio Observations and Space Weather Research Radio Observations and Space Weather Research Jasmina Magdalenić Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium What is space weather and why is it important? Eruptive processes:

More information

arxiv: v1 [astro-ph.sr] 25 Oct 2013

arxiv: v1 [astro-ph.sr] 25 Oct 2013 Bull. Astr. Soc. India (213) 41, 1 12 Magnetic structure of solar active region NOAA 11158 arxiv:131.6895v1 [astro-ph.sr] 25 Oct 213 P. Vemareddy 1, A. Ambastha 1 and T. Wiegelmann 2 1 Udaipur Solar Observatory,

More information

MHD simulation of solar wind using solar photospheric magnetic field data

MHD simulation of solar wind using solar photospheric magnetic field data 6-16P, LWS workshop 2004 March, Boulder MHD simulation of solar wind using solar photospheric magnetic field data Keiji Hayashi (Stanford University) keiji@quake.stanford.edu Introduction Time-dependent

More information

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab SDO Summer School ~ August 2010 ~ Yunnan, China Some

More information

P. Démoulin and E. Pariat

P. Démoulin and E. Pariat Mem. S.A.It. Vol.?, 1 c SAIt 2004 Memorie della ÓÑÔÙØ Ò Ñ Ò Ø Ò Ö Ý Ò Ð ØÝ ÙÜ ÖÓÑ Ö Ó Ñ Ò ØÓ Ö Ñ P. Démoulin and E. Pariat Observatoire de Paris, section de Meudon, LESIA, UMR 8109 (CNRS), F-92195 Meudon

More information

Radio Probes of Extrasolar Space Weather

Radio Probes of Extrasolar Space Weather Radio Probes of Extrasolar Space Weather Rachel Osten Space Telescope Science Institute Radio Stars: from khz to THz Haystack Observatory November 2, 2017 Star s magnetic field helps to set the environment

More information

Physical modeling of coronal magnetic fields and currents

Physical modeling of coronal magnetic fields and currents Physical modeling of coronal magnetic fields and currents Participants: E. Elkina,, B. Nikutowski,, A. Otto, J. Santos (Moscow,Lindau,, Fairbanks, São José dos Campos) Goal: Forward modeling to understand

More information

Application of a data-driven simulation method to the reconstruction of the coronal magnetic field

Application of a data-driven simulation method to the reconstruction of the coronal magnetic field Research in Astron. Astrophys. 2012 Vol. 12 No. 5, 563 572 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Application of a data-driven simulation method

More information

MASC: MAGNETIC ACTIVITY OF THE SOLAR CORONA

MASC: MAGNETIC ACTIVITY OF THE SOLAR CORONA MASC: MAGNETIC ACTIVITY OF THE SOLAR CORONA Frédéric Auchère, Jean-Claude Vial Institut d Astrophysique Spatiale, France Weiqun Gan, Hui Li Purple Mountain Observatory, Nanjing, China Silvano Fineschi

More information

Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016

Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016 Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016 Stanislav Boldyrev (UW-Madison), Dmitri Uzdensky (CU-Boulder), Steve Tobias (U-Leeds), Jean Carlos Perez (FIT) 1 I. Introduc>on:

More information

The Sun The Sun is a very typical main sequence star. It contains mes more mass than the combined mass of all other solar system bodies.

The Sun The Sun is a very typical main sequence star. It contains mes more mass than the combined mass of all other solar system bodies. The Sun The Sun is a very typical main sequence star. It contains 1000 9mes more mass than the combined mass of all other solar system bodies. By mass it is composed of 74% H, 25% He and 1% heavier elements

More information

Reconstructing Force-Free Fields by a Lagrange Multiplier Technique

Reconstructing Force-Free Fields by a Lagrange Multiplier Technique Reconstructing Force-Free Fields by a Lagrange Multiplier Technique S. Nasiri In collaboration with T. Wiegelmann and B. Inhester MPS Solar Group Seminar June 18, 2013 Contents Force free modeling for

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Pu#ng the physics into sea ice parameterisa3ons: a case study (melt ponds)

Pu#ng the physics into sea ice parameterisa3ons: a case study (melt ponds) Pu#ng the physics into sea ice parameterisa3ons: a case study (melt ponds) April 1998 July 1998 Ice Sta3on SHEBA. Canadian Coast Guard icebreaker Des Groseilliers. Danny Feltham Centre for Polar Observa3on

More information

Solar Flares and CMEs. Solar Physics 1

Solar Flares and CMEs. Solar Physics 1 Solar Flares and CMEs Solar Physics 1 What is a solar flare? What is a CME? A solar flare is a sudden eruption of energetic charged particles from the Sun s corona. A coronal mass ejection (CME) is, by

More information

arxiv: v1 [astro-ph.sr] 30 Dec 2014

arxiv: v1 [astro-ph.sr] 30 Dec 2014 Research in Astronomy and Astrophysics manuscript no. (L A TEX: ms.tex; printed on August 25, 2017; 5:22) Key words: Sun: flares Sun: magnetic fields Structure and Evolution of Magnetic Fields Associated

More information

Active galactic nuclei (AGNs): a brief observational tour

Active galactic nuclei (AGNs): a brief observational tour Active galactic nuclei (AGNs): a brief observational tour Yongquan Xue ( 薛永泉 ) Department of Astronomy University of Science and Technology of China http://staff.ustc.edu.cn/~xuey Early history, AGN ABCs,

More information

Magnetic helicity conservation in a solar active event

Magnetic helicity conservation in a solar active event IUTAM Symposium: Helicity, Structures and Singularity in Fluid and Plasma Dynamics Venezia, Italy, April 11 th 2016 Magnetic helicity conservation in a solar active event É. Pariat 1, G. Valori 2, P. Démoulin

More information

Solar Flare Durations

Solar Flare Durations Solar Flare Durations Whitham D. Reeve 1. Introduction Scientific investigation of solar flares is an ongoing pursuit by researchers around the world. Flares are described by their intensity, duration

More information

arxiv: v1 [astro-ph.sr] 8 Feb 2012

arxiv: v1 [astro-ph.sr] 8 Feb 2012 Evidence for collapsing fields in corona and photosphere during the 15 February 2011 X2.2 flare: SDO AIA and HMI Observations S. Gosain 1,2 arxiv:1202.1784v1 [astro-ph.sr] 8 Feb 2012 Received sgosain@nso.edu

More information

Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO

Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO Paul A. Conlon and Peter T. Gallagher Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin

More information

Modelling the Initiation of Solar Eruptions. Tibor Török. LESIA, Paris Observatory, France

Modelling the Initiation of Solar Eruptions. Tibor Török. LESIA, Paris Observatory, France Modelling the Initiation of Solar Eruptions Tibor Török LESIA, Paris Observatory, France What I will not talk about: global CME models Roussev et al., 2004 Manchester et al., 2004 Tóth et al., 2007 numerical

More information

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation Han He, 1,2 and Huaning

More information

Solar Spectral Irradiance (SSI) from CODET model and their relation with Earth s upper atmosphere

Solar Spectral Irradiance (SSI) from CODET model and their relation with Earth s upper atmosphere Solar Spectral Irradiance (SSI) from CODET model and their relation with Earth s upper atmosphere Jenny Marcela Rodríguez Gómez PhD in Space Geophysics (INPE) Collaborators: Luis Eduardo Antunes Vieira

More information

Solar Activity The Solar Wind

Solar Activity The Solar Wind Solar Activity The Solar Wind The solar wind is a flow of particles away from the Sun. They pass Earth at speeds from 400 to 500 km/s. This wind sometimes gusts up to 1000 km/s. Leaves Sun at highest speeds

More information

School and Conference on Analytical and Computational Astrophysics November, Coronal Loop Seismology - State-of-the-art Models

School and Conference on Analytical and Computational Astrophysics November, Coronal Loop Seismology - State-of-the-art Models 9-4 School and Conference on Analytical and Computational Astrophysics 14-5 November, 011 Coronal Loop Seismology - State-of-the-art Models Malgorzata Selwa Katholic University of Leuven, Centre for Plasma

More information

Structure and Evolution of Magnetic Fields Associated with Solar Eruptions

Structure and Evolution of Magnetic Fields Associated with Solar Eruptions Research in Astron. Astrophys. Vol. (2x) No., http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Structure and Evolution of Magnetic Fields Associated with

More information

As the central pressure decreases due to the increase of μ, the stellar core contracts and the central temperature increases. This increases the

As the central pressure decreases due to the increase of μ, the stellar core contracts and the central temperature increases. This increases the Stellar Evolu,on Stars spend most of their lives on the main sequence. Evidence for this is provided by the fact that 90% of stars observable from Earth are main- sequence stars. Stellar evolu,on during

More information

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators:

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators: Radia%ve Magne%c Reconnec%on collaborators: in Astrophysical Plasmas Dmitri Uzdensky (University of Colorado, Boulder) - B. CeruF *, G. Werner, K. Nalewajko, M. Begelman (Univ. Colorado) - A. Spitkovsky

More information

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission SOLI INVICTO ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission Andrei Zhukov Principal Investigator of PROBA-3/ASPIICS Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

More information

Aurora Borealis An introduc0on to the Northern Lights

Aurora Borealis An introduc0on to the Northern Lights Aurora Borealis An introduc0on to the Northern Lights Sherry Bu7nor Royal Astronomical Society of Canada Victoria Centre 2012 all rights reserved Solar cycles and sunspots image: NASA/ MSFC * the Sun goes

More information

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012 Outline of Presentation Karen Meyer 1 Duncan Mackay 1 Aad van Ballegooijen 2 Magnetic Carpet 2D Photospheric Model Non-Linear Force-Free Fields 3D Coronal Model Future Work Conclusions 1 University of

More information

arxiv: v1 [astro-ph.sr] 7 Jul 2015

arxiv: v1 [astro-ph.sr] 7 Jul 2015 arxiv:1507.01910v1 [astro-ph.sr] 7 Jul 2015 Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov Démoulin Magnetic Flux Rope Model Chaowei Jiang, Xueshang Feng SIGMA Weather Group,

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields

Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields Thomas R. Metcalf 1, Marc L. DeRosa 2, Carolus J. Schrijver

More information

Magne&c Dissipa&on in Rela&vis&c Jets

Magne&c Dissipa&on in Rela&vis&c Jets Magne&c Dissipa&on in Rela&vis&c Jets Yosuke Mizuno Ins$tute for Theore$cal Physics Goethe University Frankfurt In Black Hole Cam collabora$on (Theory Team) Blazars through Sharp Mul$- Frequency Eyes,

More information

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes The Sun, the largest body in the Solar System, is a giant ball of gas held together by gravity. The Sun is constantly undergoing the nuclear process of fusion and creating a tremendous amount of light

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Various geomagnetic disturbances including coronal hole high-speed stream, coronal mass ejection, sudden impulse and reverse shock effects Background: This background section defines the various

More information

Results from Chromospheric Magnetic Field Measurements

Results from Chromospheric Magnetic Field Measurements Results from Chromospheric Magnetic Field Measurements Andreas Lagg Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau Outline: The average chromosphere Magnetic structures canopy spicules

More information

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT SDO SUMMER SCHOOL ~ August 2010 ~ Yunnan, China Marc DeRosa (LMSAL) ~ derosa@lmsal.com WHAT IS SDO? The goal of Solar Dynamics Observatory (SDO) is to understand:

More information

Solar Physics & Space Plasma Research Centre (SP 2 RC) Living with a Star. Robertus Erdélyi

Solar Physics & Space Plasma Research Centre (SP 2 RC) Living with a Star. Robertus Erdélyi Living with a Star Robertus Erdélyi Robertus@sheffield.ac.uk SP 2 RC, School of Mathematics & Statistics, The (UK) Living with a Star The Secrets of the Sun Robertus Erdélyi Robertus@sheffield.ac.uk SP

More information

EUHFORIA: Modeling the dangers of the sun.

EUHFORIA: Modeling the dangers of the sun. EUHFORIA: Modeling the dangers of the sun. 1 Introduction When we look at the Sun in visible light, it looks rather boring. However, when we observe the Sun at other wavelengths, it gets very interesting!

More information

arxiv: v1 [astro-ph.sr] 19 Dec 2013

arxiv: v1 [astro-ph.sr] 19 Dec 2013 arxiv:1312.5389v1 [astro-ph.sr] 19 Dec 2013 1 Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare A. Malanushenko 1,2, C. J. Schrijver 2, M. L. DeRosa

More information

Activity 7: Be an Aurora Forecaster

Activity 7: Be an Aurora Forecaster ACTIVITY 7 NASA/STEREO Be an Aurora Forecaster Iñupiaq value: Respect for Nature We can predict when the northern lights are likely to occur by monitoring solar activity. When a solar storm such as a coronal

More information

Forecas(ng the Magne(c Field Configura(on of CMEs

Forecas(ng the Magne(c Field Configura(on of CMEs Volker Bothmer University of Göttingen Institute for Astrophysics 26 October 2015 ISEST Workshop, UNAM, Mexico City Forecas(ng the Magne(c Field Configura(on of CMEs Outline 1. Magnetic field configuration

More information

Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23

Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013845, 2009 Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23 Nandita Srivastava,

More information

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is 1 9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is produced by the proton-proton chain in which four hydrogen

More information

Gyrokine)c Phase space Turbulence and Energy Flows

Gyrokine)c Phase space Turbulence and Energy Flows Gyrokine)c Phase space Turbulence and Energy Flows Review, Progress and Open Problems Gabriel G. Plunk 2 August, 2010, Newton Ins)tute Tomo Tatsuno, M. Barnes, S. Cowley, W. Dorland, G. Howes, R. Numata,

More information

Solar and Stellar Flares - nanoflares to superflares -

Solar and Stellar Flares - nanoflares to superflares - MFUIII, 2011 Aug 22-25, Zakopane, Poland Magnetic Field in the Universe, III. Invited talk (25min) Solar and Stellar Flares - nanoflares to superflares - Kazunari Shibata Kyoto University, Kyoto, Japan

More information

Ma#er: What it is 1/17/15. What does it Ma#er?

Ma#er: What it is 1/17/15. What does it Ma#er? Ma#er: What it is What does it Ma#er? 1. Our world is made of energy and ma7er. 2. Ma7er is a conglomera;on of fundamental par;cles. 3. Some par;cles are composites of fundamental par;cles. 4. The fundamental

More information

arxiv: v1 [astro-ph.sr] 18 Mar 2017

arxiv: v1 [astro-ph.sr] 18 Mar 2017 Numerical Simulations of the Evolution of Solar Active Regions: the Complex AR12565 and AR12567 Cristiana Dumitrache Astronomical Institute of Romanian Academy, Str. Cutitul de Argint 5, 040557 Bucharest,

More information

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012441, 2008 Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation Han He 1,2

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

arxiv: v1 [astro-ph.sr] 2 Jun 2017

arxiv: v1 [astro-ph.sr] 2 Jun 2017 DRAFT VERSION APRIL 14, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 COMPARISON OF TWO CORONAL MAGNETIC FIELD MODELS FOR RECONSTRUCTING A SIGMOIDAL SOLAR ACTIVE REGION WITH CORONAL LOOPS

More information

Hea$ng of an erup$ng prominence associated with a solar coronal mass ejec$on on 2012 Jan 27

Hea$ng of an erup$ng prominence associated with a solar coronal mass ejec$on on 2012 Jan 27 Hea$ng of an erup$ng prominence associated with a solar coronal mass ejec$on on 2012 Jan 27 Jin-Yi Lee 1, John C. Raymond 2, Katharine K. Reeves 2, Yong-Jae Moon 1, and Kap-Sung Kim 1 1 Kyung Hee University,

More information

The Project. National Schools Observatory

The Project. National Schools Observatory Sunspots The Project This project is devised to give students a good understanding of the structure and magnetic field of the Sun and how this effects solar activity. Students will work with sunspot data

More information

Heat flux transported by fast electrons in front of lower hybrid wave antenna on EAST tokamak

Heat flux transported by fast electrons in front of lower hybrid wave antenna on EAST tokamak Heat flux transported by fast electrons in front of lower hybrid wave antenna on EAST tokamak Nong Xiang 1, 2 In collaboration with Zhongzheng Men 1, 2, Jing Ou 1, 2,Xueyi Wang 3, Chunyun Gan 1, 2 1 Ins&tute

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Dr. Simon R. Thomas & Prof. Silvia Dalla University of Central Lancashire Thanks to: Markus Battarbee, Timo Laitinen,

More information

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3 Proof Delivery Form Proceedings of the International Astronomical Union Date of delivery: 5 May 2016 Journal and vol/article ref: IAU 1600209 Number of pages (not including this page): 3 This proof is

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions importance of HII regions one of main ISM phases great example for understanding

More information

The Magnetic Sun. Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions

The Magnetic Sun. Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions The Magnetic Sun Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions Len Culhane Mullard Space Science Laboratory University College London Lecture Aims Focus

More information

Astronomy 101 Lab: Solar Observing

Astronomy 101 Lab: Solar Observing Name: Astronomy 101 Lab: Solar Observing Pre-Lab Assignment: In this lab, you will determine the rotation rate of the Sun, determine the speed of material ejected from the Sun in a coronal mass ejection,

More information

Modelling magnetic fields in the corona using nonlinear force-free fields

Modelling magnetic fields in the corona using nonlinear force-free fields Modelling magnetic fields in the corona using nonlinear force-free fields M. S. Wheatland 1 and K. D. Leka 2 1 School of Physics Sydney Institute for Astronomy The University of Sydney 2 North West Research

More information

Coronal Signatures of a Flare Generated Type-II Solar Radio Burst

Coronal Signatures of a Flare Generated Type-II Solar Radio Burst 8th East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon), 2018 ~ August 03 (Fri), 2018 Coronal Signatures of a Flare Generated Type-II Solar Radio Burst V. Vasanth

More information

Introduc)on to Astrophysics. Unit 5: Stars

Introduc)on to Astrophysics. Unit 5: Stars Introduc)on to Astrophysics Unit 5: Stars 1 Plan Stars are Suns so start by learning what we can about our local star To compare to other stars, need to find luminosity, temperature, size, and mass Combine

More information

The model of solar wind polytropic flow patterns

The model of solar wind polytropic flow patterns The model of solar wind polytropic flow patterns work in progress B.M. Shergelashvili in collaboration with V. N. Melnik, G. Dididze, H. Fichtner, S. Poedts, T. V. Zaqarashvili, M. L. Khodachenko Our Mysterious

More information

Work Group 2: Theory

Work Group 2: Theory Work Group 2: Theory Progress report (Sept. 2017- ) Bojan Vršnak & Yuming Wang Hvar, Croatia, Sept. 2018 Brief History kick-off meeting of the ISEST program: June 2013, Hvar Observatory, Croatia four groups

More information

Solutions to Merav Opher (2010) Problems

Solutions to Merav Opher (2010) Problems Solutions to Merav Opher 00 Problems. The normal of the shock is Since from the plot you can obtain all the three components of Bu and Bd, the normal can be easily found. The shock speed is: With the shock

More information

Study of a Large Helical Eruptive Prominence Associated with Double CME on 21 April 2001

Study of a Large Helical Eruptive Prominence Associated with Double CME on 21 April 2001 J. Astrophys. Astr. (2006) 27, 347 352 Study of a Large Helical Eruptive Prominence Associated with Double CME on 21 April 2001 Syed Salman Ali, Wahab Uddin & Ramesh Chandra Aryabhatta Research Institute

More information

Co Authors: Jason Li, Rashid Sunyaev, Feng Yuan, Chao Liu, Daniel Proga, Luca CioM & Greg Novak

Co Authors: Jason Li, Rashid Sunyaev, Feng Yuan, Chao Liu, Daniel Proga, Luca CioM & Greg Novak Why are the Sleeping Giants so Quiet: Rota6ng, Inflow/ Ou=low Solu6ons for Accre6ng Black Holes Co Authors: Jason Li, Rashid Sunyaev, Feng Yuan, Chao Liu, Daniel Proga, Luca CioM & Greg Novak Overall Understanding

More information

Stellar dynamo: new insights from the Kepler mission. Alfio Bonanno INAF Catania Astrophysical Observatory

Stellar dynamo: new insights from the Kepler mission. Alfio Bonanno INAF Catania Astrophysical Observatory Stellar dynamo: new insights from the Kepler mission Alfio Bonanno INAF Catania Astrophysical Observatory outline Review of MF- dynamo in stellar context Ground based data Dynamo in radia

More information

Question: Origin of coronal eruptions?

Question: Origin of coronal eruptions? Magnetic field extrapolation methods: state-of-the-art applications Motivation: Instabilities in the coronal magnetic field cause eruptions. Thomas Wiegelmann Max-Planck-Institut für Sonnensystemforschung

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Nicholas Murphy, 1 Mari Paz Miralles, 1 Crystal Pope, 1,2 John Raymond, 1 Kathy Reeves, 1 Dan Seaton, 3 & David Webb 4 1 Harvard-Smithsonian

More information

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Space Weather S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Outline Overview of Space Weather I. Space disasters II. Space weather III. Sun IV. Solar wind (interplanetary space) V. Magnetosphere VI. Recent Space

More information

Supercomputers simulation of solar granulation

Supercomputers simulation of solar granulation Supercomputers simulation of solar granulation simulation by Stein et al (2006), visualization by Henze (2008) Beyond Solar Dermatology But still stops at 0.97R! what lies deeper still? Supercomputers

More information

Magnetic Drivers of CME Defection in the Low Corona

Magnetic Drivers of CME Defection in the Low Corona Magnetic Drivers of CME Defection in the Low Corona C. Kay (Boston University) M. Opher (Boston University) R. M. Evans (NASA GSFC/ORAU T. I. Gombosi (University of Michigan) B. van der Holst (University

More information

ATLAS Searches for TeV- scale gravity with mul9- body final states

ATLAS Searches for TeV- scale gravity with mul9- body final states ATLAS Searches for TeV- scale gravity with mul9- body final states Vicki Moeller On Behalf of the ATLAS Collabora9on NR/HEP Workshop 01/09/2011 Vicki Moeller Cambridge 01/09/2011 1 TeV- Scale Gravity Scenario:

More information

Solar and Earth Radia.on

Solar and Earth Radia.on Solar and Earth Radia.on Solar and Earth Radia.on Solar radia.on Any incoming radia.on measured at the earth s surface Earth radia.on The long- wave band of radia.on emi>ed by the earth What are the typical

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

Predic've Analy'cs for Energy Systems State Es'ma'on

Predic've Analy'cs for Energy Systems State Es'ma'on 1 Predic've Analy'cs for Energy Systems State Es'ma'on Presenter: Team: Yingchen (YC) Zhang Na/onal Renewable Energy Laboratory (NREL) Andrey Bernstein, Rui Yang, Yu Xie, Anthony Florita, Changfu Li, ScoD

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

ENERGY RELEASE DURING SLOW LONG DURATION FLARES

ENERGY RELEASE DURING SLOW LONG DURATION FLARES ISSN 1845 8319 ENERGY RELEASE DURING SLOW LONG DURATION FLARES U.B ak-stȩślicka, T.Mrozek and S.Kołomański Astronomical Institute, Wrocław University, Poland Abstract. Slow Long Duration Events (SLDEs)

More information

michele piana dipartimento di matematica, universita di genova cnr spin, genova

michele piana dipartimento di matematica, universita di genova cnr spin, genova michele piana dipartimento di matematica, universita di genova cnr spin, genova first question why so many space instruments since we may have telescopes on earth? atmospheric blurring if you want to

More information

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity Deep roots of solar activity Michael Thompson University of Sheffield Sheffield, U.K. michael.thompson@sheffield.ac.uk With thanks to: Alexander Kosovichev, Rudi Komm, Steve Tobias Connections between

More information

SOLAR- C Science Defini.on Mee.ng 2 ISAS 2010/3/11. Polar Region Ac.vity. Masumi SHIMOJO Nobeyama Solar Radio Observatory NAOJ/NINS

SOLAR- C Science Defini.on Mee.ng 2 ISAS 2010/3/11. Polar Region Ac.vity. Masumi SHIMOJO Nobeyama Solar Radio Observatory NAOJ/NINS SOLAR- C Science Defini.on Mee.ng 2 nd @ ISAS 2010/3/11 Polar Region Ac.vity Masumi SHIMOJO Nobeyama Solar Radio Observatory NAOJ/NINS Outline Introducing the results obtained by Hinode. Magne.c field

More information

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE? Chemical

More information