Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques

Size: px
Start display at page:

Download "Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques"

Transcription

1 Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab SDO Summer School ~ August 2010 ~ Yunnan, China

2 Some facts Coronal dynamics controlled by magnetic field B A large range of length and time scales are involved most energy input occurs on scale of granulation reconnection occurs in a very small space field is global, as field lines connect seemingly isolated regions energy can be released gradually (non-eruptive reconnection) or very quickly (impulsive eruptions) eruptive events often result in large-scale reconfiguration of B B is important, but it is difficult to measure directly in the corona! (However, clues are provided by EUV, X-rays, and possibly chromospheric lines.)

3 So, can we model B? Models come in different types: Potential Field Source Surface (PFSS) Extrapolations Force-Free Field Extrapolations MHD Solutions I will provide an overview of the strengths and weaknesses of each type of model.

4 PFSS* model (and other current-free models) Strengths: Readily computed from Laplace equation, due to current-free assumption: B = Φ 2 Φ = 0 since B = 0 Reproduces many large-scale features of corona Can be computed faster than real-time Can be used in a predictive capacity Weaknesses: Agreement isn t perfect (e.g. variation of heliospheric field with latitude is contradicted by Ulysses) The corona does have currents, especially in regions of interest (e.g., above active regions) Can only capture quiescent state (no transient phenomena) * PFSS = potential field source surface, introduced by Schatten et al. (1969)

5 Hairy Sun fieldline rendering lines of B white lines indicate closed field green and magenta lines are open to heliosphere, with color indicative of polarity

6 Topological Separation Maps

7 (SOHO vacation) July 1996 July 1997 July 1998 July 1999 July 2000 July 2001 July 2002 July 2003 July 2004 July 2005 July 2006 July 2007

8 Sources of the Heliospheric Field Model predicts active region field open to the heliosphere SOHO TRACE from Schrijver & DeRosa (2003) see also Luhmann et al. (2002), Neugebauer et al. (2002), and Wang & Sheeley (2003)

9 Sources of the Heliospheric Field Model predicts active region field open to the heliosphere (white = open, black = closed) e SOHO TRACE from Schrijver & DeRosa (2003) see also Luhmann et al. (2002), Neugebauer et al. (2002), and Wang & Sheeley (2003)

10 Coronal hole maps Black contour indicates coronal hole boundary on photosphere. Black-and-white contour denotes neutral line at source surface.

11 Helmet streamers PFSS fieldlines from Wang/Sheeley model overlaid on (edgeenhanced) photo of 2006 eclipse Some streamers overlie large loop arcades that separate open field having opposite polarity Others overlie interface between two regions of open field having like polarity from Wang et al. (2007)

12 Helmet streamers Quasi-steady evolution Only fieldlines around source-surface neutral line are drawn. High, miter-shaped structures in corona are evident. Seen face-on, these appear to be well correlated with locations of helmet streamers (e.g., Wang & Sheeley 2007). φ = phase of cycle

13 Ecliptic field lines (close to solar maximum) (north pole tipped 40 toward observer)

14 Base field strengths for IMF (can be used to model wind speeds) Noisy past, with smoothly evolving future BUT: Around solar maximum, the source strength of the heliospheric field can be accurately forecast only a few days ahead of time, because (a) active regions evolve quickly, and (b) active regions are seen too late. Sub-Earth point Past Future Carrington

15 Wind speed / polarity comparison (sector boundary) (WSA model, courtesy Nick Arge) see also Schrijver (2005) see also Arge & Pizzo (2000)

16 NLFFF* model Strengths: More physically realistic, allows currents as long as corona is (Lorentz-) force-free: J = αb B = αb. Computational demands are manageable, fastest method takes ~1 hr using 4 CPUs for a pixel domain Weaknesses: It has proven difficult to get accurate estimates of free energy above active regions (so far) Photospheric B not force-free (but maybe can be dealt with) No global models exist (yet), but coupled local NLFFF and global PFSS models in development * NLFFF = nonlinear force-free field

17 NLFFF model We* have tested the candidate methods on both analytic and simulated fields, finding: Correct solution is largely recovered by all methods when a chromospheric vector magnetogram is used (i.e., a magnetogram containing no net Lorentz force or magnetic torque). Correct solution is not recovered when a photospheric vector magnetogram is used (i.e., a magnetogram containing forces and torques). Photospheric boundary data can be pre-processed to remove forces and torques. However, getting accurate measurements of physical quantities (such as free energies) remains difficult. * see Schrijver et al. (2006), Metcalf et al. (2008), Schrijver et al. (2008), and DeRosa et al. (2009)

18 MHD* model Strengths: Most physically realistic, solves MHD equations either in a spherical shell or in a spherical wedge Can capture transient phenomena Compares well with large-scale characteristics (such as streamer observations) Weaknesses: Not all needed boundary conditions are measured (necessary BC s include B, V, and two state variables at lower boundary) Energy equation / heating model in corona is also uncertain (polytropic is not good enough) Very computationally demanding, even at low resolution, and cannot be done in real-time *MHD = magnetohydrodynamic

19 Eclipse Predictions predicted brightness observed eclipse (edge enhanced) courtesy Zoran Mikić / Jon Linker image copyright Koen van Gorp

20 Observational Limitations (for all models) Calibration, saturation, polar correction, inversion difficulties (for vector magnetograms) affect large-scale field. Current-free models need B r, others need full vector B at some lower boundary radius. Measurements of B at photosphere are (usually) used, but this may not be optimal. For global problem, need B everywhere, including at poles and around back! synoptic maps data assimilation models

21 Some Conclusions B controls dynamics in corona, but cannot be directly measured, so it is important to have models. A potential field captures many aspects of the largescale corona reasonably well, but Need more physically realistic models for many studies. Need to capture some global characteristics. Need MHD models for transient phenomena, though NLFFF models may be a faster way to provide an estimate of free energy without doing MHD. Evolving, data assimilation models (such as those in terrestrial weather forecasting) will likely be used for space weather forecasting in the future.

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Tutorial: The magnetic Connection between the Sun and the Heliosphere. Karel Schrijver

Tutorial: The magnetic Connection between the Sun and the Heliosphere. Karel Schrijver Tutorial: The magnetic Connection between the Sun and the Heliosphere Karel Schrijver The connection between Sun and Earth The problem: Focus of this presentation 2 Overview From ideal to real Five pieces

More information

Coronal Modeling and Synchronic Maps*

Coronal Modeling and Synchronic Maps* Coronal Modeling and Synchronic Maps* Jon A. Linker, Roberto Lionello, Zoran Mikic, Pete Riley, and Cooper Downs Predictive Science, Inc. (PSI), San Diego, CA 92121 http://www.predsci.com Carl Henney and

More information

North-South Offset of Heliospheric Current Sheet and its Causes

North-South Offset of Heliospheric Current Sheet and its Causes North-South Offset of Heliospheric Current Sheet and its Causes X. P. Zhao, J. T. Hoeksema, P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Abstract Based on observations

More information

A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results

A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results Submitted to Ap. J. A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results Pete Riley, J. A. Linker, Z. Mikic, R. Lionello Science Applications International

More information

Coronal Holes. Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model. Elizabeth M. Dahlburg

Coronal Holes. Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model. Elizabeth M. Dahlburg Coronal Holes Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model Elizabeth M. Dahlburg Montana State University Solar Physics REU 2011 August 3, 2011 Outline Background Coronal Holes

More information

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT SDO SUMMER SCHOOL ~ August 2010 ~ Yunnan, China Marc DeRosa (LMSAL) ~ derosa@lmsal.com WHAT IS SDO? The goal of Solar Dynamics Observatory (SDO) is to understand:

More information

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model In this lab activity we will use results from the MAS (Magnetohydrodynamics Around a Sphere) model of the solar

More information

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind Sun, X. and Hoeksema, J. T. W.W. Hansen Experimental Physics Laboratory (HEPL), Stanford University Abstract:

More information

Comparison between the polar coronal holes during the Cycle22/23 and Cycle 23/24 minima using magnetic, microwave, and EUV butterfly diagrams

Comparison between the polar coronal holes during the Cycle22/23 and Cycle 23/24 minima using magnetic, microwave, and EUV butterfly diagrams Comparison between the polar coronal holes during the Cycle22/23 and Cycle 23/24 minima using magnetic, microwave, and EUV butterfly diagrams N. Gopalswamy, S. Yashiro, P. Mäkelä, K. Shibasaki & D. Hathaway

More information

Global Network of Slow Solar Wind

Global Network of Slow Solar Wind Global Network of Slow Solar Wind N. U. Crooker 1 Center for Space Physics, Boston University, Boston, Massachusetts S. K. Antiochos NASA Goddard Space Flight Center, Greenbelt, Maryland X. Zhao W. W.

More information

A Numerical Framework for Operational Solar Wind Prediction )

A Numerical Framework for Operational Solar Wind Prediction ) A Numerical Framework for Operational Solar Wind Prediction ) Ljubomir NIKOLIĆ, Larisa TRICHTCHENKO and David BOTELER Geomagnetic Laboratory, Natural Resources Canada, 7 Observatory Crescent, Ottawa, ON,

More information

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Pete Riley, Roberto Lionello, Jon Linker, and Zoran Mikic Predictive Science, Inc. (PSI),

More information

Recurrent 3 He-rich Solar Energetic Particles

Recurrent 3 He-rich Solar Energetic Particles MPS Solar Group Seminar, 2013 December 10 Recurrent 3 He-rich Solar Energetic Particles Radoslav Bučík see paper Bučík, Innes, Mall, Korth, Mason, Gómez-Herrero 2013, ApJ, submitted Bučík, Innes, Mall,

More information

Extrapolating Solar Dynamo Models throughout the Heliosphere

Extrapolating Solar Dynamo Models throughout the Heliosphere Extrapolating Solar Dynamo Models throughout the Heliosphere Taylor Cox Bridgewater College Mentors: Mark Miesch, Kyle Augustson, Nick Featherstone Solar Convection Convection arises from heat in the Sun

More information

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered Solar Phys (2011) 269: 367 388 DOI 10.1007/s11207-010-9699-9 Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be

More information

EFFECTS OF MAGNETIC TOPOLOGY ON CME KINEMATIC PROPERTIES

EFFECTS OF MAGNETIC TOPOLOGY ON CME KINEMATIC PROPERTIES EFFECTS OF MAGNETIC TOPOLOGY ON CME KINEMATIC PROPERTIES Wei Liu (1), Xue Pu Zhao (1), S. T. Wu (2), Philip Scherrer (1) (1) W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford,

More information

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 9 Tues 13 Feb 2018 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur+ Helioseismology:

More information

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 9 Tues 14 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Helioseismology:

More information

Interplanetary Field During the Current Solar Minimum

Interplanetary Field During the Current Solar Minimum Interplanetary Field During the Current Solar Minimum C.T. Russell 1, L.K. Jian 1, J. G. Luhmann 2, T.L. Zhang 3 1 UCLA, 2 UCB, 3 SRI, OEAW SOHO 23 Understanding a Peculiar Solar Minimum Asticou Inn, Northeast

More information

Question: Origin of coronal eruptions?

Question: Origin of coronal eruptions? Magnetic field extrapolation methods: state-of-the-art applications Motivation: Instabilities in the coronal magnetic field cause eruptions. Thomas Wiegelmann Max-Planck-Institut für Sonnensystemforschung

More information

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection Week 2 Lecture Notes Solar-Terrestrial Physics The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection www.cac.cornell.edu/~slantz The Solar Corona is the Sun s Extended Atmosphere Scattered light

More information

1. Solar Atmosphere Surface Features and Magnetic Fields

1. Solar Atmosphere Surface Features and Magnetic Fields 1. Solar Atmosphere Surface Features and Magnetic Fields Sunspots, Granulation, Filaments and Prominences, Coronal Loops 2. Solar Cycle: Observations The Sun: applying black-body radiation laws Radius

More information

Polar Coronal Holes During Solar Cycles 22 and 23

Polar Coronal Holes During Solar Cycles 22 and 23 Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 5, 531 538 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Polar Coronal Holes During Solar Cycles 22 and 23 Jun Zhang 1,2,J.Woch 2 and

More information

BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT

BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT The Astrophysical Journal, 693:1178 1187, 2009 March 10 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/693/2/1178 BREAKOUT CORONAL MASS EJECTION

More information

EMPIRICAL SOLAR WIND FORECASTING FROM THE CHROMOSPHERE

EMPIRICAL SOLAR WIND FORECASTING FROM THE CHROMOSPHERE The Astrophysical Journal, 659:738Y742, 2007 April 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A EMPIRICAL SOLAR WIND FORECASTING FROM THE CHROMOSPHERE R. J. Leamon

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

MHD simulation of solar wind using solar photospheric magnetic field data

MHD simulation of solar wind using solar photospheric magnetic field data 6-16P, LWS workshop 2004 March, Boulder MHD simulation of solar wind using solar photospheric magnetic field data Keiji Hayashi (Stanford University) keiji@quake.stanford.edu Introduction Time-dependent

More information

Solar cycle changes in coronal holes and space weather cycles

Solar cycle changes in coronal holes and space weather cycles JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1154, 10.1029/2001JA007550, 2002 Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann, 1 Y. Li, 1 C. N. Arge, 2 P. R. Gazis, 3

More information

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle S. R. Cranmer, J. L. Kohl, M. P. Miralles, & A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics Extended Coronal

More information

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations Click Here for Full Article SPACE WEATHER, VOL. 6,, doi:10.1029/2007sw000380, 2008 Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1

More information

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission SOLI INVICTO ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission Andrei Zhukov Principal Investigator of PROBA-3/ASPIICS Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

More information

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum X. P. Zhao and J. T. Hoeksema W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085

More information

arxiv: v1 [astro-ph.sr] 28 Apr 2009

arxiv: v1 [astro-ph.sr] 28 Apr 2009 Draft version November 6, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 INITIATION OF CORONAL MASS EJECTIONS IN A GLOBAL EVOLUTION MODEL A. R. Yeates 1 Harvard-Smithsonian Center for

More information

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity Deep roots of solar activity Michael Thompson University of Sheffield Sheffield, U.K. michael.thompson@sheffield.ac.uk With thanks to: Alexander Kosovichev, Rudi Komm, Steve Tobias Connections between

More information

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012 Outline of Presentation Karen Meyer 1 Duncan Mackay 1 Aad van Ballegooijen 2 Magnetic Carpet 2D Photospheric Model Non-Linear Force-Free Fields 3D Coronal Model Future Work Conclusions 1 University of

More information

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation by Liang Zhao A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

arxiv: v1 [astro-ph.sr] 7 Jul 2015

arxiv: v1 [astro-ph.sr] 7 Jul 2015 arxiv:1507.01910v1 [astro-ph.sr] 7 Jul 2015 Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov Démoulin Magnetic Flux Rope Model Chaowei Jiang, Xueshang Feng SIGMA Weather Group,

More information

EUHFORIA: Modeling the dangers of the sun.

EUHFORIA: Modeling the dangers of the sun. EUHFORIA: Modeling the dangers of the sun. 1 Introduction When we look at the Sun in visible light, it looks rather boring. However, when we observe the Sun at other wavelengths, it gets very interesting!

More information

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation

Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012441, 2008 Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation Han He 1,2

More information

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Bala Poduval and Xue Pu Zhao Hansen Experimental Physics Laboratory Stanford

More information

Modern observational techniques for coronal studies

Modern observational techniques for coronal studies Modern observational techniques for coronal studies Hardi Peter Kiepenheuer-Institut für Sonnenphysik Freiburg solar eclipse, 11.8.1999, Wendy Carlos and John Kern The spectrum of the Sun RADIO observing

More information

arxiv: v2 [astro-ph.sr] 27 Nov 2016

arxiv: v2 [astro-ph.sr] 27 Nov 2016 Data Constrained Coronal Mass Ejections in A Global Magnetohydrodynamics Model M. Jin 1,2, W. B. Manchester 3, B. van der Holst 3, I. Sokolov 3, G. Tóth 3, R. E. Mullinix 4, A. arxiv:1605.05360v2 [astro-ph.sr]

More information

Recent Highlights on Solar Coronal Abundances from Hinode

Recent Highlights on Solar Coronal Abundances from Hinode Recent Highlights on Solar Coronal Abundances from Hinode David H. Brooks George Mason University Honolulu, August 10, 2015 Ignacio Ugarte-Urra/GMU Harry Warren/NRL First Ionization Potential (FIP) Effect

More information

A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet

A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet Karen Meyer, Duncan Mackay, Clare Parnell University of St Andrews Aad van Ballegooijen Harvard-Smithsonian Center for Astrophysics Magnetic

More information

Received 2002 January 19; accepted 2002 April 15; published 2002 May 6

Received 2002 January 19; accepted 2002 April 15; published 2002 May 6 The Astrophysical Journal, 571:L181 L185, 2002 June 1 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. LARGE-SCALE SOLAR CORONAL STRUCTURES IN SOFT X-RAYS AND THEIR RELATIONSHIP

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame

The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame 1 The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Short

More information

Understanding Eruptive Phenomena with Thermodynamic MHD Simulations

Understanding Eruptive Phenomena with Thermodynamic MHD Simulations Understanding Eruptive Phenomena with Thermodynamic MHD Simulations Jon Linker, Zoran Mikic, Roberto Lionello, Pete Riley, and Viacheslav Titov Science Applications International Corporation San Diego,

More information

arxiv: v1 [astro-ph.sr] 20 Jun 2014

arxiv: v1 [astro-ph.sr] 20 Jun 2014 Astronomy & Astrophysics manuscript no. paper_1_aa ESO 2014 June 23, 2014 The Solar Cycle Variation of Topological Structures in the Global Solar Corona S. J. Platten 1, C. E. Parnell 1, A. L. Haynes 1,

More information

Modelling Solar Activity for Space Weather

Modelling Solar Activity for Space Weather Modelling Solar Activity for Space Weather Thierry Dudok de Wit (LPCE, CNRS and University of Orléans) special thanks to T. Amari, V. Carbone, R. Lallement, H. Lundstedt, T. Woods Space Weather Week -

More information

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code V. J. Pizzo Code R/SEC NOAA/Space Environment Center Code R/SEC 325 Broadway Boulder, CO 80305 phone: (303) 497-6608 fax:

More information

arxiv: v1 [astro-ph.sr] 6 Sep 2017

arxiv: v1 [astro-ph.sr] 6 Sep 2017 arxiv:1709.01730v1 [astro-ph.sr] 6 Sep 2017 Impact of Non-potential Coronal Boundary Conditions on Solar Wind Prediction M. Weinzierl and F.-X. Bocquet and A.R. Yeates October 17, 2018 Abstract Predictions

More information

Solar Sector Structure: Fact or Fiction?

Solar Sector Structure: Fact or Fiction? Solar Sector Structure: Fact or Fiction? Leif Svalgaard Stanford University LMSAL, August 18, 2011 1 Discovery of Sector Structure Quasi-Stationary Corotating Structure in the Interplanetary Medium John

More information

The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame

The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame 1 The Synchronic Frame of Photospheric Magnetic field: The Improved Synoptic Frame X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Short

More information

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations Solar Orbiter T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations 2 nd Solar-C definition meeting, Tokyo, Japan Content Science Objectives of Solar Orbiter

More information

Sources of the solar wind at solar activity maximum

Sources of the solar wind at solar activity maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A12, 1488, doi:10.1029/2001ja000306, 2002 Sources of the solar wind at solar activity maximum M. Neugebauer, 1 P. C. Liewer, and E. J Smith Jet Propulsion

More information

Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models

Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10108, doi:10.1029/2009gl038346, 2009 Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models Bertalan Zieger,

More information

Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU)

Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU) -MPS SGS 2014 Oct 14- MPS PRESS RELEASE STEREO & ACE SCIENCE HIGHLIGHTS nominated to NASA HELIOPHYSICS GPRAMA ITEM Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU)

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Lecture 17 The Sun October 31, 2018

Lecture 17 The Sun October 31, 2018 Lecture 17 The Sun October 31, 2018 1 2 Exam 2 Information Bring a #2 pencil! Bring a calculator. No cell phones or tablets allowed! Contents: Free response problems (2 questions, 10 points) True/False

More information

Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO

Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO Constraining 3D Magnetic Field Extrapolations Using The Twin Perspectives of STEREO Paul A. Conlon and Peter T. Gallagher Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin

More information

Long range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO

Long range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016224, 2011 Long range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO C. J. Schrijver 1 and

More information

ON THE SOLAR ORIGINS OF OPEN MAGNETIC FIELDS IN THE HELIOSPHERE

ON THE SOLAR ORIGINS OF OPEN MAGNETIC FIELDS IN THE HELIOSPHERE The Astrophysical Journal, 687:635 645, 2008 November 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE SOLAR ORIGINS OF OPEN MAGNETIC FIELDS IN THE HELIOSPHERE

More information

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138 Solar wind modeling: a computational tool for the classroom Lauren N. Woolsey Harvard University 60 Garden St, M.S. 10, Cambridge, MA 02138 lwoolsey@cfa.harvard.edu ABSTRACT: This article presents a Python

More information

Empirical Testing of Solar Coronal and Solar Wind Models

Empirical Testing of Solar Coronal and Solar Wind Models Empirical Testing of Solar Coronal and Solar Wind Models Lauren Woolsey University of Maryland - College Park (2011) Mentor: Dr. Leonard Strachan Introduction What is the Solar Wind? * Outflow of particles

More information

arxiv: v1 [astro-ph.sr] 25 Oct 2013

arxiv: v1 [astro-ph.sr] 25 Oct 2013 Bull. Astr. Soc. India (213) 41, 1 12 Magnetic structure of solar active region NOAA 11158 arxiv:131.6895v1 [astro-ph.sr] 25 Oct 213 P. Vemareddy 1, A. Ambastha 1 and T. Wiegelmann 2 1 Udaipur Solar Observatory,

More information

Disruption of a heliospheric current sheet fold

Disruption of a heliospheric current sheet fold GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047822, 2011 Disruption of a heliospheric current sheet fold V. G. Merkin, 1 J. G. Lyon, 2 S. L. McGregor, 2 and D. M. Pahud 3 Received 16 April

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

arxiv: v1 [astro-ph.sr] 19 Dec 2013

arxiv: v1 [astro-ph.sr] 19 Dec 2013 arxiv:1312.5389v1 [astro-ph.sr] 19 Dec 2013 1 Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare A. Malanushenko 1,2, C. J. Schrijver 2, M. L. DeRosa

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

arxiv: v1 [astro-ph.sr] 13 Dec 2015

arxiv: v1 [astro-ph.sr] 13 Dec 2015 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling Judith de Patoul 1,2, Claire Foullon 1, and Pete Riley 3 arxiv:112.13v1 [astro-ph.sr

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 MULTIPLE CHOICE 1. Granulation is caused by a. sunspots. * b. rising gas below the photosphere. c. shock waves in the corona. d. the

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections

Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections C. Verbeke, J. Pomoell, S. Poedts ISEST workshop, Jeju, 19.09.2017 Overview Introduction Constraining CME model

More information

CISM Model Development Roadmap

CISM Model Development Roadmap CISM Model Development Roadmap Overview of Model Development Approach CISM s research goal is to develop a comprehensive suite of physics-based numerical simulation models that describes the space environment

More information

THE SCIENCE OF SOLAR HURRICANES

THE SCIENCE OF SOLAR HURRICANES THE SCIENCE OF SOLAR HURRICANES 2016 SWC Seminar Series Vadim Uritsky CUA/Physics, NASA/GSFC Special thanks: Dr. Antti Pulkkinen, NASA/GSFC Space weather research & forecasting at CUA http://spaceweathercenter.cua.edu

More information

arxiv: v1 [astro-ph.sr] 29 Apr 2014

arxiv: v1 [astro-ph.sr] 29 Apr 2014 Research in Astron. & Astrophys. Vol.0 (200x) No.0, 000 000 (http://www.raa-journal.org) Research in Astronomy and Astrophysics Disappearance of a coronal hole induced by a filament activation arxiv:1404.7223v1

More information

Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes

Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes Overview What is the kink instability? Determining twist from observables

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares Multi-Wavelength Investigations of Solar Activity Proceedings of IAU Symposium No. 223, 2004 A.V. Stepanov, E.E. Benevolenskaya & A.G. Kosovichev, eds. Multi-wavelength VLA and Spacecraft Observations

More information

A PREDICTION OF THE CORONAL STRUCTURE OF THE 21 AUGUST 2017 GREAT AMERICAN SOLAR ECLIPSE

A PREDICTION OF THE CORONAL STRUCTURE OF THE 21 AUGUST 2017 GREAT AMERICAN SOLAR ECLIPSE Draft version August 20, 2017 Typeset using LATEX default style in AASTeX61 A PREDICTION OF THE CORONAL STRUCTURE OF THE 21 AUGUST 2017 GREAT AMERICAN SOLAR ECLIPSE Dibyendu Nandy, 1, 2 Prantika Bhowmik,

More information

Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields

Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields Non-Linear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields Thomas R. Metcalf 1, Marc L. DeRosa 2, Carolus J. Schrijver

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

Coronal Magnetic Field Extrapolations

Coronal Magnetic Field Extrapolations 3 rd SOLAIRE School Solar Observational Data Analysis (SODAS) Coronal Magnetic Field Extrapolations Stéphane RÉGNIER University of St Andrews What I will focus on Magnetic field extrapolation of active

More information

The Sun's atmosphere and magnetic field

The Sun's atmosphere and magnetic field The Sun's atmosphere and magnetic field The Sun's corona and magnetic field EUV radiation of the corona The magnetic network Doppler spectroscopy in EUV Small-scale dynamics and turbulence Temperature

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet 1 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University,

More information

Solar Origins of Space Weather: Confronting Models with Observations

Solar Origins of Space Weather: Confronting Models with Observations Solar Origins of Space Weather: Confronting Models with Observations John Harvey National Solar Observatory P. O. Box 26732 Tucson, AZ 85726 phone: (520) 318-8337 fax: (520) 318-8278 e-mail: jharvey@noao.edu

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University Solar-B Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University The mission overview Japanese mission as a follow-on to Yohkoh. Collaboration with USA

More information

rising phase of solar cycle 24 based on

rising phase of solar cycle 24 based on 11th European Space Weather Week, November 17-21 2014, Liège, Belgium Analysis of solar wind sources during the rising phase of solar cycle 24 based on the AIA/SDO EUV images Yulia Shugay 1 and Vladimir

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

Space Weather. Predictions of the solar wind speed by the probability distribution function model RESEARCH ARTICLE 10.

Space Weather. Predictions of the solar wind speed by the probability distribution function model RESEARCH ARTICLE 10. RESEARCH ARTICLE Key Points: Solar wind speed prediction up to 5days Probability distribution functions of the solar wind velocity Periodicity of the solar wind velocity related to the rotation of the

More information

Is the polar region different from the quiet sun? Hinode Observations on polar fields

Is the polar region different from the quiet sun? Hinode Observations on polar fields Is the polar region different from the quiet sun? Hinode Observations on polar fields Saku Tsuneta (NAOJ) Ulysses (McComas etal 2000) What is going on in polar region? Source of fast solar wind Location

More information

Ambient solar wind s effect on ICME transit times

Ambient solar wind s effect on ICME transit times Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15105, doi:10.1029/2008gl034493, 2008 Ambient solar wind s effect on ICME transit times A. W. Case, 1 H. E. Spence, 1 M. J. Owens, 1

More information