Disruption of a heliospheric current sheet fold

Size: px
Start display at page:

Download "Disruption of a heliospheric current sheet fold"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi: /2011gl047822, 2011 Disruption of a heliospheric current sheet fold V. G. Merkin, 1 J. G. Lyon, 2 S. L. McGregor, 2 and D. M. Pahud 3 Received 16 April 2011; revised 31 May 2011; accepted 31 May 2011; published 23 July [1] We present results from a new magnetohydrodynamic model of the inner heliosphere. We focus in this study on Carrington rotation 1892 which occurred during solar minimum, and simulate the solar wind and heliospheric magnetic field from 0.1 to 2 AU. We demonstrate the development of small scale ( solar radius) structure, such as folds and ripples, on the surface of the heliospheric current sheet. In particular, we analyze the evolution of a current sheet fold forming by 1 AU, significantly narrowing by 1.5 AU ( 1 in width), and quickly disrupting afterwards. The disruption constitutes a process whereby the lower part of the current sheet fold separates from the main surface and, on a heliocentric spherical surface, appears as an island of outward polarity in the sea of the field of inward polarity. We show that this process is associated with non radial motion of plasma and magnetic field induced inside a stream interaction region. In addition, we discuss evidence of magnetic reconnection in our simulation that involves flux tubes in the vicinity of the heliospheric current sheet. The simulations presented here provide a useful global 3 dimensional context for interpreting multiple current sheet crossings commonly observed by spacecraft as well as observations of magnetic reconnection in the solar wind. Citation: Merkin, V. G., J. G. Lyon,S.L.McGregor,andD.M.Pahud(2011),Disruptionofa heliospheric current sheet fold, Geophys. Res. Lett., 38,, doi: /2011gl Introduction [2] The Heliospheric Current Sheet (HCS) separates regions of solar magnetic field of opposite polarities. Its shape on the large scale is determined by the interplay of the distribution of the magnetic field and plasma velocity at the sun, and the inclination of the sun s magnetic axis with respect to its axis of rotation [e.g., Smith, 2001]. The geometry of the HCS changes dramatically between solar minimum and solar maximum, owing to the fundamentally different structure of the solar magnetic field even in the absence of transients such as Coronal Mass Ejections (CME) [Riley and Linker, 2002]. In this Letter, we are concerned with the HCS structure during solar minimum on the mesoscale defined here as spatial distances much smaller than the size of the heliosphere, limited in this work to a few Astronomical Units (AU), but much larger than the width of the current sheet, 10,000 km at 1 AU [Winterhalter et al., 1994]. More precisely, we will 1 Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA. 2 Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire, USA. 3 Department of Astronomy, Boston University, Boston, Massachusetts, USA. Copyright 2011 by the American Geophysical Union /11/2011GL be dealing with HCS phenomena occurring on spatial scales l such that 1 R ] l <10R, where R is the solar radius. [3] Earlier studies predicted, based on kinematic expansion of the solar wind, that a smooth current sheet near the sun will distort and form folds due to velocity inhomogeneities as the radial distance increases [Suess and Hildner, 1985]. Later, such HCS structures were reproduced in magnetohydrodynamic (MHD) simulations with significant folding developing by 10 AU [Pizzo, 1994] and closer (2.5 5 AU) [Riley and Linker, 2002]. In these previous works, HCS folds formed on scales of >10 in azimuth at the above distances [Pizzo, 1994, Figure 1; Riley and Linker, 2002, Figure 3]. Large scale distortions of the HCS were also discussed in the context of global heliosphere simulations [Czechowski et al., 2010] and simulations of the corona with foot point motion [Lionello et al., 2006]. [4] In this Letter, we present results from a new MHD model of the inner heliosphere with sufficient spatial resolution to study HCS and other heliosphere phenomena at a scale of at least an order of magnitude smaller. We show that the formation and properties of these folds (as well as other mesoscale HCS structures, such as ripples) is highly dependent on the simulation resolution. The resolution also determines the radial distance at which the structure will form. We show a specific example of an HCS fold forming by 1 AU, significantly narrowing by 1.5 AU ( 1 in width), and quickly disrupting afterwards. We suggest that the disruption may occur as a consequence of non radial motion within a narrow stream interaction region, which leads to the formation of an island of magnetic field of one polarity inside a sea of field of the opposite polarity. These simulations provide a modeling context for observations of the local structure of the HCS, such as multiple HCS crossings often registered by spacecraft [e.g., Blanco et al., 2006; Neugebauer, 2008; Foullon et al., 2009], particularly, those occurring on time scales of multiple hours. [5] A complementary result we report here is evidence of magnetic reconnection in our simulations. Reconnection occurs on magnetic field lines in the vicinity of the HCS and results in folding of magnetic field lines on themselves so that segments of opposite polarities become magnetically connected. Although reconnection appears to occur on field lines involved in the HCS fold discussed above, invoking reconnection is not necessary to explain the formation of the fold and its disruption. 2. Simulation Method [6] The MHD code used for this study is a version of the Lyon Fedder Mobarry (LFM) model adapted to the environment of the inner heliosphere. We will refer to this new version of the code as LFM helio. LFM is a well established MHD code that has been primarily used for simulations of the terrestrial magnetosphere. Limited applications to the global 1of6

2 Figure 1. Radial velocity (Figures 1a, 1c, and 1e) and magnetic field (Figures 1b, 1d, and 1f) at (a b) the inner boundary of the simulation (0.1 AU), and at (c f) 1.5 AU. Lower (Figures 1c and 1d) and higher (Figures 1e and 1f) resolution simulations are shown at 1.5 AU. Magnetic field at 0.1 AU is scaled down by a factor 2/3 100 to be shown in the same color range (the field strength is 230 nt). The HCS is calculated as the surface where the radial magnetic field vanishes and is shown as a white contour on the velocity plots and black contour on the magnetic field plots. heliosphere [McNutt et al., 1999] and other planetary magnetospheres [Kallio et al., 1998] have also been carried out. The numerical algorithms underlying the LFM code have been described in detail elsewhere [Lyon et al., 2004]. The distinct feature of the LFM model is its high resolving power leading to the ability to resolve MHD shocks and discontinuities in 1 2 simulation grid cells. The LFM numerical algorithms are used without modification within LFM helio. In brief, LFM helio uses a different grid, modified boundary and initial conditions. [7] The inner boundary condition of LFM helio assumes super sonic and super Alfvénic solar wind and thus must be located beyond the critical point. For the simulations presented below we used a regular spherical grid with the inner boundary located at 21.5 R (0.1 AU) and the outer boundary at 430 R (2 AU). The specification of the boundary condition was obtained from steady state solutions of the Wang Sheeley Arge (WSA) model [Arge and Pizzo, 2000; Arge et al., 2004]. The velocity, Vr, at the inner boundary was calculated from the WSA magnetic field according to McGregor et al. [2011] (equation (2) with V0 = 200 km/s, V1 = 750 km/s, = 3.8, and b = 3.6), who derived a recalibration of the empirical velocity relation previously used by Arge et al. [2004]. The azimuthal magnetic field is inferred by assuming corotation: B = (V /Vr) Br, where V is the solar rotation speed at the radial distance of the boundary, (2p/27days) 0.1 AU. The plasma density was obtained from an empirical fit to Helios data [McGregor, 2011]: n [cm 3] = / (Vr [km/s])2, while the temperature was determined by assuming uniform thermal pressure, nt = n0t 0, where T 0 = K and n0 = 300 cm 3. The latter assumption is commonly used in modeling studies [Odstrcil and Pizzo, 1999; Riley et al., 2001] and is usually justified by the requirement to inhibit non radial plasma flow. [8] Unlike the magnetospheric LFM, the LFM helio grid does not typically extend to the poles. This is not a fundamental limitation of the model and is done to avoid computing small time steps resulting from convergent grid lines near the axis. In the simulations presented here, the grid extended to 10 heliographic colatitude. Free outflow conditions are applied on the side and outward boundaries. Calculations are performed in the inertial reference frame. All results presented here correspond to the same moment of time when the simulation reaches a steady state. Animations S1 and S2, included as auxiliary material, demonstrate the time evolution of simulated structures for 20 days following that moment of time, and show that the simulation remains in steady state to a good accuracy, in particular, the HCS structures considered below.1 3. Results and Discussion [9] We performed two simulations of Carrington rotation (CR) 1892, one with uniform resolution in radial, polar and azimuthal directions, respectively, and the other, at double that, sub degree resolution in both angular directions and 1 solar radius in the radial direction. Figures 1a and 1b show the radial velocity and magnetic field 1 Auxiliary materials are available in the HTML. doi: / 2011GL of 6

3 Figure 2. (a c) Evolution of the HCS fold with radial distance is shown within the area marked with the green square. Color coded is the cosine of the magnetic field declination angle from the radial direction, cosd = ^r B/B; red is outward, blue is inward. (d) The 3 D surface of the HCS (cosd = 0) colored by the plasma velocity magnitude. The semi transparent spherical surface marks the 1.5 AU heliocentric distance and shows cosd in the same format as Figures 2a 2c. The HCS in figure (d) extends to the outer edge of the simulation grid (2 AU), and the outer rim of the HCS is indicated by the white contour. The HCS fold is seen inside the 1.5 AU sphere as a single ridge; beyond that distance a flux tube bundle detached from the main HCS surface can be seen. at the inner boundary of the simulation. Importantly, the boundary condition specification is the same in both lower and higher resolution simulations: the corresponding values are interpolated from the WSA grid ( ) to the LFM helio grid of the corresponding resolution. Figures 1a and 1b show a smooth HCS at 0.1 AU which develops into the warped, structured surface at 1.5 AU shown in Figures 1c and 1d (lower resolution) and Figures 1e and 1f (higher resolution). We note that many smaller scale features evident in the higher resolution simulation are absent in the lower resolution simulation. This is an important observation as our high resolution grid cell size (at 1 AU) in both angular directions is 1 AU 1 4 R km, which is 2 3 orders of magnitude greater than the width of the current sheet. The fact that the MHD simulation with a relatively smooth inner boundary condition self consistently develops structure that is clearly still under resolved, i.e. occurs on the scale of the grid, suggests that there is much to be learned about the dynamics of the solar wind that operate on MHD spatio temporal scales unresolved by current models. [10] Although many smaller scale HCS folds and ripples can be seen in the higher resolution simulation, in this Letter we concentrate on the HCS fold seen around 150 longitude in Figure 1e. Figures 1c and 1d show the formation of this fold, which has a greater width than in the higher resolution case. Although the structure does become narrower with increasing radial distance in the lower resolution simulation, the resolution is never sufficient to capture its subsequent disruption evident in the high resolution case that is discussed below. Thus we will focus on the high resolution simulation hereafter. Figures 2a 2c show the evolution of this fold with radial distance. Comparison with Figure 1 shows that this structure develops in front of a high speed stream from a smooth current sheet at 0.1 AU. Such folding of the HCS associated with velocity inhomogeneities was predicted based on kinematic expansion [Suess and Hildner, 1985] and later reproduced in MHD simulations [Pizzo, 1994; Riley and Linker, 2002], but at larger radial distances. Here we demonstrate that not only can such significant HCS folding develop much closer to the sun, but also that the process is highly dependent on the resolution of the simulation. Furthermore, Figures 2a 2c reveal a remarkable detail: the HCS fold narrows down significantly between 1 and 1.5 AU as the high speed flow behind it runs into the slow flow in front of it, and is eventually disrupted within a short distance from 1.5 to 1.6 AU. The small island of positive polarity in the sea of negative polarity is evident in Figure 2c and is the remainder of the original fold. [11] Figure 2d clarifies the physical picture of the fold disruption. It shows a 3 dimensional depiction of the surface of the HCS, defined here as the iso surface of the zero radial magnetic field. The surface is color coded with the magnitude of the plasma velocity. Also shown is a semi transparent sphere of radius 1.5 AU. One can clearly see a ridge in the 3 of 6

4 Figure 3. A zoom in on the HCS fold shown in Figure 2. The background shows q the ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi magnitude of the non radial plasma velocity V = V 2 þ V 2, while arrows show the corresponding velocity vectors (at 1.5 AU). The white contour is the HCS surface defined as in Figure 2. The background indicates that the fold thickness is essentially one grid cell underscoring the fact that sufficiently fine resolution is required to reproduce such a structure. HCS surface inside the sphere. Outside the sphere, a bundle of magnetic flux tubes of outward polarity separates from the ridge toward south. It is clear that the east side of the ridge (a 3D representation of the HCS fold) has a higher velocity associated with it in accordance with the high speed stream running into the HCS fold seen in Figure 1e. Although this stream does not have extremely high velocity, forces acting within the interaction region are sufficient to considerably distort the shape of the HCS and eventually lead to the disruption of the HCS fold. [12] While Figure 2d shows the evolution of the magnetic field leading to the fold disruption, the physical mechanism of the process remains unclear. The question is, What leads to the north south deflection of a bundle of flux tubes whose foot points back at the corona were just above the smooth current sheet? The formation of the fold is closely associated with a stream interaction region. It has long been known that non radial solar wind flows are induced inside stream interactions [Pizzo, 1982]. Thus we surmise that non radial gradients in thermal and magnetic pressure within the stream interaction lead to the corresponding deflection of the plasma belonging to the flux tubes populating the inside of the HCS fold. To support this conjecture with evidence from the simulation, we plot in Figure 3 a detailed representation of the non radial solar wind flow in the regions surrounding the HCS fold at 1.5 AU. It is clear from Figure 3 that the plasma in the lower and middle parts of the fold experiences substantial motion in the southwest (down and to the right) direction. We hypothesize that this can create a squeezing effect: the outward magnetic flux from the middle of the fold is redistributed and moved southward resulting in the apparent disappearance of outward magnetic field seen in Figure 2d above the detached flux tube bundle. Also included in Figure 3 for comparison are much stronger stream interactions at lower latitudes corresponding to the transitional region from the slow to fast wind. [13] The discussion above offers an explanation of how an HCS fold can break up without a change in the magnetic topology: by non radial deflection of plasma and magnetic field from the interior of the fold. However, further analysis of our simulation results shows a rather complicated topology of magnetic field in the vicinity of the fold. Figure 4a depicts a number of magnetic field lines traced from the lower part of the HCS fold originating at the radial distance of 1.5 AU indicated by the arrow. Figure 4a shows a large number of sigmoid field lines that appear to have been doubly reconnected, once on each side of the current sheet fold. Figure 4b illustrates the picture schematically. The dashed lines in Figure 4b represent a planar cut through the HCS surface (assume the plane to be the ecliptic for simplicity). If reconnection occurs according to the simplistic scenario in Figure 4b, then it cannot be responsible for the disruption of the fold, because the field inside the fold (between the dashed lines) retains outward polarity regardless of whether the fieldlines have been reconnected or not. Therefore, a spherical cut through the simulation will always show a connected fold, as in Figure 2b, not a disconnected one, as in Figure 2c, unless the spherical cut is made at the radial distance of a reconnection site. In addition, unlike the situation in the sketch, the simulated picture is intrinsically 3 dimensional: the outward (red) segment of the sigmoid shaped field lines is located southward of the west side inward (blue) segment and northward of the east side one. Determining whether reconnection occurs at the site of the fold disruption, or, more generally, at any given location in a 3D MHD simulation is a significant challenge [Ouellette et al., 2010], and thus we cannot at this point confirm whether magnetic reconnection Figure 4. (a) Magnetic field topology in the vicinity of the HCS fold in the simulation. The spherical cut shows the cosine of the magnetic field declination angle from the radial direction at 1 AU in the same format as in Figure 2. The magnetic field lines shown are colored by the same quantity (cosd) indicating segments of opposite polarity belonging to the same field line. (b) A 2D schematic representation (not to scale) of the simulated magnetic field topology. The dashed lines show the surface of the zero radial magnetic field, used here to indicate the HCS. 4of6

5 contributed to the fold disruption. In fact, our supposition that reconnection occurs in the simulation is based only on the inferred topology of the magnetic field (the sigmoid field lines as well as closed loops as in Figure 4b). If these field lines are created by reconnection, it is still unclear whether they are created locally at the site of the fold disruption or they have been convected by the flow from smaller radial distances. [14] Evidence of magnetic reconnection at the HCS in our simulations is important for placing the corresponding spacecraft observations [Gosling et al., 2005; Phan et al., 2006] in the global 3D context. However, more work needs to be done. Since the HCS is created at the inner boundary of the simulation as a tangential discontinuity with anti parallel fields on the two sides of the sheet, reconnection is made possible by numerical dissipation mechanisms [Lyon et al., 2004], given a favorable alignment of the plasma flow. Observationally, the magnetic field does not go to zero inside the HCS, suggesting that it is either a rotational discontinuity or that the tangential field rotates through the current sheet without reaching zero [Smith, 2001]. In the former case, our simulation disregards the possibility that the HCS can already be a rotational discontinuity at the inner boundary of the simulation, created, for example, by reconnection in the corona below the boundary, and then convected into the simulation domain. In the latter case, our simulation disregards the presence of a guide field in the reconnection process. Simulating either of these circumstances will necessarily entail more elaborate boundary conditions on the magnetic field, in particular, including a component normal to the current sheet or a shear angle different from 180. Inferring such conditions from a potential coronal magnetic field solution, e.g. WSA, is not possible. However, contrived numerical experiments to this end or simulations driven by MHD coronal solutions are feasible and should be pursued. [15] The work presented here focused on the simulations of CR The simulations were carried out as part of a larger effort [Pahud et al., 2009] to validate LFM helio against Ulysses spacecraft observations during its fast latitude scan, which occurred from January to April of 1995, during solar minimum [e.g., McComas et al., 2000]. Interestingly, our simulation of the following CR (1893) did not form the HCS fold, presented here, owing to the different structure of plasma flows and magnetic fields. Our preliminary analysis of Ulysses data (the spacecraft passed through this region during CR 1893) shows no evidence of the fold formation either. We plan to specifically look for HCS mesoscale features, such as those presented here, in Ulysses observations [e.g., Neugebauer, 2008] and perform comparisons with our simulations during those periods. [16] In summary, we have presented a high resolution (sub degree, solar radius) simulations of the inner heliosphere using an MHD model that is capable of resolving shocks and discontinuities within 1 2 grid cells. A particular feature, a narrow fold in the heliospheric current sheet, has been the focus of this study. We tracked the radial evolution of this fold and its eventual disruption owing to separation of a bundle of outward directed magnetic flux tubes into the southern hemisphere populated by the inward magnetic flux. We discussed two processes associated with the fold formation and disruption: Non radial flows excited within a stream interaction region pushing the heliospheric current sheet and magnetic reconnection which led to sigmoid shaped magnetic field lines. Neither of these processes could be identified definitively as the cause of the fold disruption. [17] Acknowledgments. V.G.M. thanks N. Schwadron for his support and encouragement during the initial development of LFM helio as well as W. J. Hughes, G. Mason, N. E. Raouafi, E. Roelof, M. Sitnov, and A. J. Ukhorskiy for useful discussions. The authors are grateful to C. N. Arge for the use of the WSA model. This research was supported by the National Science Foundation under agreement ATM , which funds the Center for Integrated Space Weather Modeling (CISM) project of the Science and Technology Center (STC) program. The computations were performed on Kraken and visualized partly on Nautilus at the National Institute for Computational Sciences ( through an allocation of advanced computing resources provided by the National Science Foundation. [18] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper. References Arge, C. N., and V. J. Pizzo (2000), Improvement in the prediction of solar wind conditions using near real time solar magnetic field updates, J. Geophys. Res., 105, 10,465 10,479. Arge, C. N., J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li (2004), Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66, Blanco, J. J., J. Rodríguez Pacheco, M. A. Hidalgo, and J. Sequeiros (2006), Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets, J. Atmos. Sol. Terr. Phys., 68, Czechowski, A., M. Strumik, J. Grygorczuk, S. Grzedzielski, R. Ratkiewicz, and K. Scherer (2010), Structure of the heliospheric current sheet from plasma convection in time dependent heliospheric models, Astron. Astrophys., 516, A17. Foullon, C., et al. (2009), The apparent layered structure of the heliospheric current sheet: Multi spacecraft observations, Solar Phys., 259, Gosling,J.T.,R.M.Skoug,D.J.McComas,andC.W.Smith(2005), Magnetic disconnection from the Sun: Observations of a reconnection exhaust in the solar wind at the heliospheric current sheet, Geophys. Res. Lett., 32, L05105, doi: /2005gl Kallio, E., J. G. Luhmann, and J. G. Lyon (1998), Magnetic field near Venus: A comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation, J. Geophys. Res., 103, , doi: /97ja Lionello, R., J. A. Linker, Z. Mikic, and P. Riley (2006), The latitudinal excursion of coronal magnetic field lines in response to differential rotation: MHD simulations, Astrophys. J., 642(1), L69 L72. Lyon, J. G., J. A. Fedder, and C. M. Mobarry (2004), The Lyon Fedder Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, , doi: /j.jastp McComas, D. J., et al. (2000), Solar wind observations over Ulysses first full polar orbit, J. Geophys. Res., 105, 10,419 10,433, doi: / 1999JA McGregor, S. L. (2011), On tracing the origins of the solar wind, Ph.D. thesis, Boston Univ., Boston, Mass. McGregor, S. L., W. J. Hughes, C. N. Arge, M. J. Owens, and D. Odstrcil (2011), The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind, J. Geophys. Res., 116, A03101, doi: / 2010JA McNutt, R. L., J. Lyon, C. C. Goodrich, and M. Wiltberger (1999), 3D MHD simulations of the heliosphere VLISM interaction, AIP Conf. Proc., 471, , doi: / Neugebauer, M. (2008), Heliospheric sector boundaries: Single or multiple?, J. Geophys. Res., 113, A12106, doi: /2008ja Odstrcil, D., and V. J. Pizzo (1999), Distortion of the interplanetary magnetic field by three dimensional propagation of coronal mass ejections in a structured solar wind, J. Geophys. Res., 104, 28,225 28,239, doi: /1999ja Ouellette, J. E., B. Rogers, M. Wiltberger, and J. Lyon (2010), Magnetic reconnection at the dayside magnetopause in global Lyon Fedder Mobarry simulations, J. Geophys. Res., 115, A08222, doi: / 2009JA Pahud, D. M., V. G. Merkin, W. J. Hughes, J. Lyon, and S. L. McGregor (2009), LFM helio MHD model and comparisons with Ulysses Fast Latitude Scan data, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract SH13B Phan, T. D., et al. (2006), A magnetic reconnection X line extending more than 390 Earth radii in the solar wind, Nature, 439, of6

6 Pizzo, V. J. (1982), A three dimensional model of corotating streams in the solar wind: 3. Magnetohydrodynamic streams, J. Geophys. Res., 87, Pizzo, V. J. (1994), Global, quasi steady dynamics of the distant solar wind: 2. Deformation of the heliospheric current sheet, J. Geophys. Res., 99, Riley, P., and J. Linker (2002), Modeling the heliospheric current sheet: Solar cycle variations, J. Geophys. Res., 107(A7), 1136, doi: / 2001JA Riley, P., J. A. Linker, and Z. Mikic (2001), An empirically driven global MHD model of the solar corona and inner heliosphere, J. Geophys. Res., 106, 15,889 15,902. Smith, E. J. (2001), The heliospheric current sheet, J. Geophys. Res., 106, 15,819 15,831. Suess, S. T., and E. Hildner (1985), Deformation of the heliospheric current sheet, J. Geophys. Res., 90, Winterhalter, D., E. J. Smith, M. E. Burton, N. Murphy, and D. J. McComas (1994), The heliospheric plasma sheet, J. Geophys. Res., 99, J. G. Lyon and S. L. McGregor, Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA. (lyon@tinman.dartmouth.edu; sarahlmcgregor@dartmouth.edu) V. G. Merkin, Johns Hopkins University Applied Physics Laboratory, Johns Hopkins Rd., Laurel, MD , USA. (Slava. Merkin@jhuapl.edu) D. M. Pahud, Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA. (dpahud@bu.edu) 6of6

Ambient solar wind s effect on ICME transit times

Ambient solar wind s effect on ICME transit times Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15105, doi:10.1029/2008gl034493, 2008 Ambient solar wind s effect on ICME transit times A. W. Case, 1 H. E. Spence, 1 M. J. Owens, 1

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

North-South Offset of Heliospheric Current Sheet and its Causes

North-South Offset of Heliospheric Current Sheet and its Causes North-South Offset of Heliospheric Current Sheet and its Causes X. P. Zhao, J. T. Hoeksema, P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Abstract Based on observations

More information

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum X. P. Zhao and J. T. Hoeksema W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085

More information

Global structure of the out-of-ecliptic solar wind

Global structure of the out-of-ecliptic solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010875, 2005 Global structure of the out-of-ecliptic solar wind Y. C. Whang Department of Mechanical Engineering, Catholic University of America,

More information

Downstream structures of interplanetary fast shocks associated with coronal mass ejections

Downstream structures of interplanetary fast shocks associated with coronal mass ejections GEOPHYSICAL RESEARCH LETTERS, VOL. 32,, doi:10.1029/2005gl022777, 2005 Downstream structures of interplanetary fast shocks associated with coronal mass ejections R. Kataoka, S. Watari, N. Shimada, H. Shimazu,

More information

Does the polar cap area saturate?

Does the polar cap area saturate? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L09107, doi:10.1029/2007gl029357, 2007 Does the polar cap area saturate? V. G. Merkin 1 and C. C. Goodrich 1 Received 15 January 2007;

More information

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab SDO Summer School ~ August 2010 ~ Yunnan, China Some

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

In-Situ Signatures of Interplanetary Coronal Mass Ejections

In-Situ Signatures of Interplanetary Coronal Mass Ejections In-Situ Signatures of Interplanetary Coronal Mass Ejections Ian G. Richardson, NASA/Goddard Space Flight Center and CRESST/Department of Astronomy, University of Maryland, College Park ~Two dozen in-situ

More information

Role of IMF B x in the solar wind magnetosphere ionosphere coupling

Role of IMF B x in the solar wind magnetosphere ionosphere coupling JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015454, 2010 Role of IMF B x in the solar wind magnetosphere ionosphere coupling Z. Peng, 1 C. Wang, 1 and Y. Q. Hu 2 Received 14 March 2010;

More information

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Lan K. Jian 1, C.T. Russell 1, J.G. Luhmann 2, A.B. Gavin 3, D. Odstrcil 4, P.J. MacNeice 5 1 Inst. of Geophysics & Planetary

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014449, 2009 Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

More information

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations Click Here for Full Article SPACE WEATHER, VOL. 6,, doi:10.1029/2007sw000380, 2008 Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34,, doi:10.1029/2007gl031492, 2007 Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending

More information

Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models

Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10108, doi:10.1029/2009gl038346, 2009 Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models Bertalan Zieger,

More information

The new Heliospheric Magnetic Field: Observational Implications

The new Heliospheric Magnetic Field: Observational Implications The new Heliospheric Magnetic Field: Observational Implications T. H. Zurbuchen, L. A. Fisk, S. Hefti and N. A. Schwa&on Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann

More information

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation Annales Geophysicae (2003) 21: 1257 1261 c European Geosciences Union 2003 Annales Geophysicae How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

More information

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L05105, doi:10.1029/2006gl028932, 2007 Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations

Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011903, 2006 Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010723, 2005 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema, and

More information

Global Network of Slow Solar Wind

Global Network of Slow Solar Wind Global Network of Slow Solar Wind N. U. Crooker 1 Center for Space Physics, Boston University, Boston, Massachusetts S. K. Antiochos NASA Goddard Space Flight Center, Greenbelt, Maryland X. Zhao W. W.

More information

Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model

Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 58 62, doi:10.1002/jgra.50098, 2013 Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model Edward

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions

Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014287, 2009 Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary

More information

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND WDS'10 Proceedings of Contributed Papers, Part II, 128 134, 2010. ISBN 978-80-7378-140-8 MATFYZPRESS Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND A. Lynnyk, J. Šafránková, Z. Němeček

More information

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15107, doi:10.1029/2006gl026419, 2006 Observations of an interplanetary slow shock associated with magnetic cloud boundary layer P. B.

More information

Estimating total heliospheric magnetic flux from single-point in situ measurements

Estimating total heliospheric magnetic flux from single-point in situ measurements Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013677, 2008 Estimating total heliospheric magnetic flux from single-point in situ measurements M. J. Owens, 1,2

More information

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Pete Riley, Roberto Lionello, Jon Linker, and Zoran Mikic Predictive Science, Inc. (PSI),

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

Weaker solar wind from the polar coronal holes and the whole Sun

Weaker solar wind from the polar coronal holes and the whole Sun Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L18103, doi:10.1029/2008gl034896, 2008 Weaker solar wind from the polar coronal holes and the whole Sun D. J. McComas, 1,2 R. W. Ebert,

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU Preprint of the Institute of terrestrial magnetism (IZMIRAN), 2011 On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU O. Khabarova V. Obridko Heliophysical

More information

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole Astron. Astrophys. 316, 287 295 (1996) ASTRONOMY AND ASTROPHYSICS The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole R.J. Forsyth 1, A. Balogh 1, T.S. Horbury 1,G.Erdös

More information

The Heliospheric Magnetic Field over the Hale Cycle

The Heliospheric Magnetic Field over the Hale Cycle Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Astrophysics and Space Sciences Transactions The Heliospheric Magnetic Field over the Hale Cycle N. A. Schwadron,

More information

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind Sun, X. and Hoeksema, J. T. W.W. Hansen Experimental Physics Laboratory (HEPL), Stanford University Abstract:

More information

Petschek-type magnetic reconnection exhausts in the solar wind well

Petschek-type magnetic reconnection exhausts in the solar wind well Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011863, 2006 Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios J. T. Gosling,

More information

Polar Coronal Holes During Solar Cycles 22 and 23

Polar Coronal Holes During Solar Cycles 22 and 23 Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 5, 531 538 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Polar Coronal Holes During Solar Cycles 22 and 23 Jun Zhang 1,2,J.Woch 2 and

More information

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Bala Poduval and Xue Pu Zhao Hansen Experimental Physics Laboratory Stanford

More information

Solar concept of flux transport by interchange reconnection applied to the magnetosphere

Solar concept of flux transport by interchange reconnection applied to the magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013140, 2008 Solar concept of flux transport by interchange reconnection applied to the magnetosphere V. G. Merkin 1 and N. U. Crooker 1 Received

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138 Solar wind modeling: a computational tool for the classroom Lauren N. Woolsey Harvard University 60 Garden St, M.S. 10, Cambridge, MA 02138 lwoolsey@cfa.harvard.edu ABSTRACT: This article presents a Python

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

Solar wind velocity at solar maximum: A search for latitudinal effects

Solar wind velocity at solar maximum: A search for latitudinal effects Annales Geophysicae (24) 22: 3721 3727 SRef-ID: 1432-576/ag/24-22-3721 European Geosciences Union 24 Annales Geophysicae Solar wind velocity at solar maximum: A search for latitudinal effects B. Bavassano,

More information

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS C. P. T. GROTH, D. L. DE ZEEUW and T. I. GOMBOSI Space Physics Research Laboratory, Department of Atmospheric, Oceanic

More information

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21112, doi:10.1029/2006gl027578, 2006 Correlation between energetic ion enhancements and heliospheric current sheet crossings in the

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet 1 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University,

More information

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012207, 2007 Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere W. R.

More information

An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model

An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011343, 2005 An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model M.

More information

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND LA-UR- -2241 Title: Author@): PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND J. T. Gosling I Submitted tu: Scientific Basis for Robotic Explorations Close to the Sun Los Alamos NATIONAL LABORATORY is operated

More information

On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks

On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks A&A 432, 331 339 (2005) DOI: 10.1051/0004-6361:20042005 c ESO 2005 Astronomy & Astrophysics On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks E. Chané,

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Magnetopause erosion: A global view from MHD simulation

Magnetopause erosion: A global view from MHD simulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A6, 1235, doi:10.1029/2002ja009564, 2003 Magnetopause erosion: A global view from MHD simulation M. Wiltberger High Altitude Observatory, National Center

More information

Numerical simulation of the 12 May 1997 interplanetary CME event

Numerical simulation of the 12 May 1997 interplanetary CME event JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010135, 2004 Numerical simulation of the 12 May 1997 interplanetary CME event D. Odstrcil 1 Cooperative Institute for Research in Environmental

More information

Energy Analysis During the Collision of Two Successive CMEs

Energy Analysis During the Collision of Two Successive CMEs Numerical Modeling of Space Plasma Flows: ASTRONUM-2013 ASP Conference Series, Vol. 488 N.V.Pogorelov, E.Audit,and G.P.Zank,eds. c 2014 Astronomical Society of the Pacific Energy Analysis During the Collision

More information

Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget

Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget Article Published Version Owens, M. J. and Crooker, N. U. (2007) Reconciling the electron counterstreaming

More information

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Philip A. Isenberg a, Sean Oughton b, Charles W. Smith a and William H. Matthaeus c a Inst. for Study of Earth, Oceans and

More information

Probing the magnetic polarity structure of the heliospheric current sheet

Probing the magnetic polarity structure of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A8, 1316, doi:10.1029/2002ja009649, 2003 Probing the magnetic polarity structure of the heliospheric current sheet S. W. Kahler Space Vehicles Directorate,

More information

ICMES at very large distances

ICMES at very large distances Advances in Space Research 38 (2006) 528 534 www.elsevier.com/locate/asr ICMES at very large distances J.D. Richardson a,b, *, Y. Liu a, C. Wang b, L.F. Burlaga c a Kavli Center for Astrophysics and Space

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model In this lab activity we will use results from the MAS (Magnetohydrodynamics Around a Sphere) model of the solar

More information

Voyager observations of galactic and anomalous cosmic rays in the helioshealth

Voyager observations of galactic and anomalous cosmic rays in the helioshealth Voyager observations of galactic and anomalous cosmic rays in the helioshealth F.B. McDonald 1, W.R. Webber 2, E.C. Stone 3, A.C. Cummings 3, B.C. Heikkila 4 and N. Lal 4 1 Institute for Physical Science

More information

Sources of the solar wind at solar activity maximum

Sources of the solar wind at solar activity maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A12, 1488, doi:10.1029/2001ja000306, 2002 Sources of the solar wind at solar activity maximum M. Neugebauer, 1 P. C. Liewer, and E. J Smith Jet Propulsion

More information

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered Solar Phys (2011) 269: 367 388 DOI 10.1007/s11207-010-9699-9 Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be

More information

Magnetospheric modes and solar wind energy coupling efficiency

Magnetospheric modes and solar wind energy coupling efficiency Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014737, 2010 Magnetospheric modes and solar wind energy coupling efficiency T. I. Pulkkinen, 1 M. Palmroth, 1 H.

More information

A Numerical Framework for Operational Solar Wind Prediction )

A Numerical Framework for Operational Solar Wind Prediction ) A Numerical Framework for Operational Solar Wind Prediction ) Ljubomir NIKOLIĆ, Larisa TRICHTCHENKO and David BOTELER Geomagnetic Laboratory, Natural Resources Canada, 7 Observatory Crescent, Ottawa, ON,

More information

Solar cycle changes in coronal holes and space weather cycles

Solar cycle changes in coronal holes and space weather cycles JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1154, 10.1029/2001JA007550, 2002 Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann, 1 Y. Li, 1 C. N. Arge, 2 P. R. Gazis, 3

More information

On radial heliospheric magnetic fields: Voyager 2 observation and model

On radial heliospheric magnetic fields: Voyager 2 observation and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1205, doi:10.1029/2002ja009809, 2003 On radial heliospheric magnetic fields: Voyager 2 observation and model C. Wang, 1,2 J. D. Richardson, 3 L. F. Burlaga,

More information

Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations

Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1457 1461, doi:10.1002/grl.50336, 2013 Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations Fang Shen,

More information

Plasma properties at the Voyager 1 crossing of the heliopause

Plasma properties at the Voyager 1 crossing of the heliopause Journal of Physics: Conference Series PAPER Plasma properties at the Voyager 1 crossing of the heliopause Recent citations - Reconnection at the Heliopause: Predictions for Voyager 2 S. A. Fuselier and

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE

PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE CHINESE JOURNAL OF GEOPHYSICS Vol.45, No.6, 2002, pp: 793 802 PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE WANG Chuan-Bing 1) CHAO Ji-Kun 2) CHEN He-Hong 2) LI Yi 1) WANG Shui 1) SUN Wei 3) Akasofu

More information

Relation of substorm disturbances triggered by abrupt solar-wind changes to physics of plasma sheet transport

Relation of substorm disturbances triggered by abrupt solar-wind changes to physics of plasma sheet transport 1 Relation of substorm disturbances triggered by abrupt solar-wind changes to physics of plasma sheet transport L. R. Lyons, D.-Y. Lee, C.-P. Wang, and S. B. Mende 1. Introduction Abstract: Substorm onset

More information

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind!

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind! Remember: how to measure the solar wind The principle of electrostatic analyzers Spherical deflection plates with an applied voltage let charged particles pass if their energy/charge fits. E/q = m/2 *

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

Cluster observations of hot flow anomalies

Cluster observations of hot flow anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010016, 2004 Cluster observations of hot flow anomalies E. A. Lucek, T. S. Horbury, and A. Balogh Blackett Laboratory, Imperial College, London,

More information

Understanding Eruptive Phenomena with Thermodynamic MHD Simulations

Understanding Eruptive Phenomena with Thermodynamic MHD Simulations Understanding Eruptive Phenomena with Thermodynamic MHD Simulations Jon Linker, Zoran Mikic, Roberto Lionello, Pete Riley, and Viacheslav Titov Science Applications International Corporation San Diego,

More information

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Article Accepted Version Owens, M. J., Crooker, N. U. and Lockwood, M. (2013) Solar origin

More information

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code V. J. Pizzo Code R/SEC NOAA/Space Environment Center Code R/SEC 325 Broadway Boulder, CO 80305 phone: (303) 497-6608 fax:

More information

MHD simulation of solar wind using solar photospheric magnetic field data

MHD simulation of solar wind using solar photospheric magnetic field data 6-16P, LWS workshop 2004 March, Boulder MHD simulation of solar wind using solar photospheric magnetic field data Keiji Hayashi (Stanford University) keiji@quake.stanford.edu Introduction Time-dependent

More information

Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness

Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012996, 2008 Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness Y. Liu, 1,2 W. B. Manchester IV, 3 J. D. Richardson,

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

Interplanetary Field During the Current Solar Minimum

Interplanetary Field During the Current Solar Minimum Interplanetary Field During the Current Solar Minimum C.T. Russell 1, L.K. Jian 1, J. G. Luhmann 2, T.L. Zhang 3 1 UCLA, 2 UCB, 3 SRI, OEAW SOHO 23 Understanding a Peculiar Solar Minimum Asticou Inn, Northeast

More information

Magnetic Drivers of CME Defection in the Low Corona

Magnetic Drivers of CME Defection in the Low Corona Magnetic Drivers of CME Defection in the Low Corona C. Kay (Boston University) M. Opher (Boston University) R. M. Evans (NASA GSFC/ORAU T. I. Gombosi (University of Michigan) B. van der Holst (University

More information

EUHFORIA: Modeling the dangers of the sun.

EUHFORIA: Modeling the dangers of the sun. EUHFORIA: Modeling the dangers of the sun. 1 Introduction When we look at the Sun in visible light, it looks rather boring. However, when we observe the Sun at other wavelengths, it gets very interesting!

More information

DYNAMICS OF THE EARTH S MAGNETOSPHERE

DYNAMICS OF THE EARTH S MAGNETOSPHERE DYNAMICS OF THE EARTH S MAGNETOSPHERE PROF JIM WILD j.wild@lancaster.ac.uk @jim_wild With thanks to: Stan Cowley, Rob Fear & Steve Milan OUTLINE So far: Dungey cycle - the stirring of the magnetosphere

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field

Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L22109, doi:10.1029/2008gl035608, 2008 Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field

More information

Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere

Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere 1! 5 th SERENA-HEWG workshop (6/16/2014)! Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere K. Seki 1, M. Yagi 2, Y. Matsumoto 3, N. Terada 4,!

More information

Large-scale magnetic field inversions at sector boundaries

Large-scale magnetic field inversions at sector boundaries JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010278, 2004 Large-scale magnetic field inversions at sector boundaries N. U. Crooker Center for Space Physics, Boston University, Boston,

More information

Correlation of solar wind entropy and oxygen ion charge state ratio

Correlation of solar wind entropy and oxygen ion charge state ratio JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010010, 2004 Correlation of solar wind entropy and oxygen ion charge state ratio A. C. Pagel and N. U. Crooker Center for Space Physics, Boston

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF)

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L03202, doi:10.1029/2004gl021392, 2005 Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) Keiichiro Fukazawa and Tatsuki Ogino

More information

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 3. Deflection of speed vector Abstract Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev This work is a continuation

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, A07104, doi: /2007ja012814, 2008

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, A07104, doi: /2007ja012814, 2008 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012814, 2008 MHD simulations of the global solar corona around the Halloween event in 2003 using the synchronic frame format of the solar photospheric

More information

Modelling interplanetary CMEs using magnetohydrodynamic simulations

Modelling interplanetary CMEs using magnetohydrodynamic simulations Annales Geophysicae (2002) 20: 879 890 c European Geophysical Society 2002 Annales Geophysicae Modelling interplanetary CMEs using magnetohydrodynamic simulations P. J. Cargill and J. M. Schmidt Space

More information