Magnetic Reconnection in ICME Sheath

Size: px
Start display at page:

Download "Magnetic Reconnection in ICME Sheath"

Transcription

1 WDS'11 Proceedings of Contributed Papers, Part II, 14 18, ISBN MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. Magnetic reconnection is a phenomenon where the energy stored in magnetic field dissipates into heating and particle acceleration. It can occur on boundaries connecting plasma with different magnetic field topology. We can frequently find magnetic reconnection in ICME sheaths, where plasma is compressed and different plasma topologies encounter each other. In these regions we can recognize magnetic reconnection by number of plasma signatures such as temperature enhancement, or changes in magnetic field and bulk flow direction. A brief introduction into Interplanetary Coronal Mass Ejection (ICME), magnetic reconnection and its properties are presented and short statistics on shear angle dependence are provided. We have found dependence of temperature enhancement inside reconnection exhaust on shear angle. We have also obtained dependence of reconnection outflow speed on shear angle. Introduction Interplanetary Coronal Mass Ejections (ICMEs) are one of the most studied solar wind phenomena. Their source is in the solar corona, above active regions, where coronal mass ejections (CMEs) originates [Forbes, 2000]. The ejection of CME can be seen in Fig. 1. After ejection the CME propagates into interplanetary space where we refer to it as ICME. As the CME propagate into interplanetary space it stretches and changes its shape. There is usually strong magnetic field which dominates over other forces and determines ICMEs behavior. Typical ICMEs propagation velocity is much higher than the ambient solar wind velocity. As a consequence, the fast forward shock (FFS) forms on the leading edge. After FFS a sheath region follows. Plasma in sheath region is compressed, piled up and flows around the ICME [Kaymaz and Siscoe, 2006; Siscoe and Odstrcil, 2008]. Typical signatures of this region are higher proton temperature and jumps in magnetic field and velocity directions. Reconnections of magnetic field lines are frequently observed in this region [Gosling, 2011, 2006; McComas et al., 1994]. The next region contains ejected mass, which has different parameters such as composition or temperature. This region can be identified by numerous of signatures [Zurbuchen and Richardson, 2006; Russell and Shinde, 2005], for instance, enhanced alpha to proton ratio [Borrini et al., 1982] or decreased proton temperature. In a lot of cases we observe magnetic clouds (MCs) within the region with ejected mass [Lepping et al., 2006]. Magnetic clouds can be described as a magnetic flux rope with its tips connected to the Sun surface [Lepping et al., 1990]. The flux rope can be identified by magnetic field variance decrease, slow magnetic field rotation and low plasma beta parameter. In this paper we search 29 ICME events which were measured by the Wind spacecraft during a period of reconnection events were found inside the ICME sheath regions. We try to discuss dependence of reconnection parameters on shear angle. Figure 1. An example of rising CME, side-view (SOHO spacecraft by the EIT instrument). 14

2 Figure 2. Example of spacecraft trajectory through the magnetic reconnection exhaust. Magnetic field rotation can be observed as the spacecraft passes through the reconnection exhaust. The solar wind is accelerated away from the reconnection zone [Gosling et al., 2005]. Magnetic reconnection The magnetic field in the solar wind is frozen into the plasma. Magnetic reconnection [Gosling, 2005] can be explained using a model where plasma with oppositely directed magnetic field lines (shear angle Θ = 180 ) are carried into a current sheath. In the current sheath, magnetic field lines are no longer frozen into the plasma and can reconnect (Fig. 2). Magnetic field lines reconnect into topology with less magnetic energy. Released magnetic field energy is dissipated into heating and particle acceleration. Plasma is accelerated away from the reconnection region to the exhaust region. The plasma in the exhaust region is accelerated close to the Alfven speed V a and heated [Shay et al., 2001]. Data measured onboard the spacecraft which crosses the exhaust region reveal correlated rotation of the magnetic field, temporary velocity change, and temperature enhancement [Gosling, 2011; Gosling et al., 2005; Phan et al., 2010]. Magnetic reconnection in ICMEs Magnetic reconnection often occurs within the ICME [McComas et al., 1994]. Typical region where magnetic reconnection occurs is the boundary between the sheath region and the magnetic cloud or in the tail of ICMEs [Farrugia et al., 2001]. We can also find magnetic reconnection in the sheath region, where a number of current sheaths are frequently present. Not all discontinuities in the magnetic field are connected with magnetic reconnection because certain conditions are needed to allow reconnection. Some of these conditions are still unknown. Magnetic reconnection is likely to occur when β 2 and the difference in plasma β values on the two sides of the current sheath is low [Phan et al., 2010]. Flow into the reconnection site is either driven by compression or occurs spontaneously and is then sustained by pressure gradient forces associated with the pressure drop produced by the exhaust outflows [Gosling, 2011]. We derived a simple reconnection index that marks regions where correlation in change of the magnetic field and velocity occurs. Irec = db.dv (1) When we obtain correlation and anti-correlation immediately after each other, it is possible that it corresponds to the reconnection outflow region. Enhancement in the proton density, temperature and counter-streaming protons inside the reconnection outflow can be often found and used to verify the finding [Gosling, 2011; Gosling et al., 2005]. Statistic results Data from the WIND spacecraft during the period of were used to track magnetic reconnection in the ICME sheath. We use the 3DP instrument plasma and magnetic field data from the MFI instrument. We have processed 29 ICME events; 61 reconnection events inside the ICME sheaths were found. A small scale statistics was computed in order to provide basic characteristics of the magnetic reconnection events inside the ICME sheath. Average values from 61 reconnection events were computed firstly. Due to the small number of events, the error in estimation of average values is quite large. In the table below, these parameters are presented: shear angle, average magnetic field measured outside 15

3 Figure 3. Examples of reconnection measured by WIND. Rotation of the magnetic field in X and Z axes on :24 12:27 UT; magnetic field rotation in all axes on :16 5:18 UT can be seen in correlation with a double change in the solar wind speed. the exhaust, velocity rotation magnitude, which was obtained as a maximum velocity deviation inside the exhaust from the average speed, temperature enhancement inside the reconnection exhaust, density enhancement inside the exhaust and plasma β. Θ[ ] 89 ± 42 B[nT] 14 ± 6 V rot [km/s] 33 ± 25 T enhance [%] 23 ± 27 N enhance [%] 17 ± 21 β 0.04 ± 0.04 The average values for T enhance and N enhance can hardly be calculated, because a large number of reconnections occurs on the boundary between plasma with different temperatures and densities as it can be seen in Fig. 3. Therefore, the enhancement is difficult to find. Despite this, we can find a dependence of T enhance and N enhance on the shear angle, Θ (see Fig. 4). Other statistic results are focused on comparison of the Alfven speed V a and V rot which should represent the magnitude of plasma acceleration inside the exhaust. Two Alfven speeds were computed, V a average was computed from average values of the plasma parameters outside the exhaust, second V a exhaust was computed from the plasma parameters measured inside the exhaust. Fig. 5 shows that V rot almost never exceeds the average Alfven speed, but it exceeds the exhaust Alfven speed in several cases. This could happen because of measurement errors inside the exhaust, where parameters are not stable. Discussion and conclusion On the basis of our small-scale statistics we can conclude that there is a dependence of T enhance on the shear angle. Reason for this should be in the shear angle of reconnection, which is in basic theory considered as 180 [Kivelson and Russell, 1996]. For reconnection which occurs at the shear angle < 180, the reconnected magnetic field line releases less energy and we measure lower T enhance. V rot which should represent the plasma outflow speed from the reconnection zone and which can be expected V a is almost in all cases smaller (see Fig. 6) in comparison with the average Alfven speed V a average and even in comparison with the Alfven speed computed inside the exhaust V a exhaust. 16

4 Figure 4. Enhancements of the temperature T and the plasma density N inside the exhaust as a function of the shear angle Θ. Figure 5. Alfven speed as a function of the velocity rotation magnitude. Dots correspond to the Alfven speed computed from average values outside the exhaust, circles correspond to the Alfven speed computed from values measured inside the reconnection exhaust. Figure 6. The velocity rotation magnitude V rot to the Alfven speed V a ratio as a function of the shear angle Θ. The Alfven speed was computed from average values outside the exhaust and the values inside the exhaust. The dependence of V rot on the shear angle was also found (see Fig. 6). Values of V rot /V a are systematically lower than expected values even for the shear angle close to 180. We assume this to be an effect of the low number of events or the effect of the distance between the reconnection zone and the measurement point, which is for all measurements unknown. 17

5 Acknowledgment. We thank to WIND and SOHO working team and CDAWeb data center for providing data and images. The present work was supported by the Czech Grant Agency under contract 205/07/0694. References Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C., Helium abundance enhancements in the solar wind, J. Geophys. Res., 87, , DOI: /JA087iA09p07370, Farrugia, C. J., Vasquez, B., Richardson, I. G., Torbert, R. B., Burlaga, L. F., Biernat, H. K., Mühlbachler, S., Ogilvie, K. W., Lepping, R. P., Scudder, J. D., Berdichevsky, D. E., Semenov, V. S., Kubyshkin, I. V., Phan, T.-D., and Lin, R. P., A reconnection layer associated with a magnetic cloud, Adv. Space Res., 28, , Forbes, J. T., A review on the genesis of coronal mass ejections, J. Geophys. Res., 105, 23,153 23,165, Gosling, J. T., Magnetic reconnection in the solar wind: A brief overview, Proceedings of the Solar Wind 11 / SOHO 16, Connecting Sun and Heliosphere, Gosling, J. T., Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 au: Helios, J. Geophys. Res., 111, Gosling, J. T., Magnetic reconnection in the solar wind, Space Sci. Rev., DOI: /s , Gosling, J. T., Skoug, R. M., McComas, D. J., and Smith, C. W., Direct evidence for magnetic reconnection in the solar wind near 1AU, J. Geophys. Res., 110, DOI: /2004JA010809, Kaymaz, Z. and Siscoe, G., Field-line draping around ICMEs, Solar Phys., 239, , DOI: /s x, Kivelson, M. G. and Russell, C. T., Introduction to space physics, Cambridge University Press, ISBN , Lepping, R. P., Jones, J. A., and Burlaga, L. F., Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11,957 11,965, Lepping, R. P., Berdichevsky, D. B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A. J., and Quivers, A. J., A summary of WIND magnetic clouds for years : model-fitted parameters, associated errors and classfications, Ann. Geophys., 24, , DOI: /angeo , McComas, D. J., Gosling, J. T., Hammond, C. M., Moldwin, M. B., Phillips, J. L., and Forsyth, R. J., Magnetic reconnection ahead of a coronal mass ejection, Geophys. Res. Lett., 21, , Phan, T. D., Gosling, J. T., Paschmann, G., Pasma, C., Drake, J. F., ieroset, M. O., Larson, D., Lin, R. P., and Davis, M. S., The dependence of magnetic reconnection on plasma beta and magnetic shear: evidence from solar wind observations, ApJL, 719, , DOI: / /719/2/L199, Russell, C. T. and Shinde, A. A., On defining interplanetary coronal mass ejections from fluid parameters, Solar Phys, 229, , Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E., Alfvenic collisionless magnetic reconnection and the hall terme, J. Geophys. Res., 106, , Siscoe, G. and Odstrcil, D., Ways in which ICME sheaths differ from magnetosheaths, J. Geophys. Res., 113, DOI: /2008JA013142, Zurbuchen, T. H. and Richardson, I. G., In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31 43, DOI: /s ,

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND WDS'10 Proceedings of Contributed Papers, Part II, 128 134, 2010. ISBN 978-80-7378-140-8 MATFYZPRESS Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND A. Lynnyk, J. Šafránková, Z. Němeček

More information

In-Situ Signatures of Interplanetary Coronal Mass Ejections

In-Situ Signatures of Interplanetary Coronal Mass Ejections In-Situ Signatures of Interplanetary Coronal Mass Ejections Ian G. Richardson, NASA/Goddard Space Flight Center and CRESST/Department of Astronomy, University of Maryland, College Park ~Two dozen in-situ

More information

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15107, doi:10.1029/2006gl026419, 2006 Observations of an interplanetary slow shock associated with magnetic cloud boundary layer P. B.

More information

Y. Wang 1,2,F.S.Wei 1,X.S.Feng 1,P.B.Zuo 1,J.P.Guo 1,X.J.Xu 3, and Z. Li 4,5

Y. Wang 1,2,F.S.Wei 1,X.S.Feng 1,P.B.Zuo 1,J.P.Guo 1,X.J.Xu 3, and Z. Li 4,5 C 212. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:.88/4-637x/749/1/82 VARIATIONS OF SOLAR ELECTRON AND PROTON FLUX IN MAGNETIC CLOUD BOUNDARY LAYERS AND COMPARISONS

More information

Petschek-type magnetic reconnection exhausts in the solar wind well

Petschek-type magnetic reconnection exhausts in the solar wind well Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011863, 2006 Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios J. T. Gosling,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34,, doi:10.1029/2007gl031492, 2007 Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending

More information

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND John D. Richardson, Ying Liu, and John W. Belcher Massachusetts Institute of Technology Cambridge, MA, USA jdr@space.mit.edu Abstract Interplanetary

More information

A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds

A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011272, 2006 A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds Fengsi Wei, 1 Xueshang Feng,

More information

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 3. Deflection of speed vector Abstract Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev This work is a continuation

More information

Downstream structures of interplanetary fast shocks associated with coronal mass ejections

Downstream structures of interplanetary fast shocks associated with coronal mass ejections GEOPHYSICAL RESEARCH LETTERS, VOL. 32,, doi:10.1029/2005gl022777, 2005 Downstream structures of interplanetary fast shocks associated with coronal mass ejections R. Kataoka, S. Watari, N. Shimada, H. Shimazu,

More information

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013631, 2009 Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits

More information

The largest geomagnetic storm of solar cycle 23 occurred on 2003 November 20 with a

The largest geomagnetic storm of solar cycle 23 occurred on 2003 November 20 with a Solar source of the largest geomagnetic storm of cycle 23 N. Gopalswamy 1, S. Yashiro 1,2, G. Michalek, H. Xie 1,2, R. P. Lepping 1, and R. A. Howard 3 1 NASA Goddard Space Flight Center, Greenbelt, MD,

More information

ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002

ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002 ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002 NEDELIA ANTONIA POPESCU, CRISTIANA DUMITRACHE Astronomical Institute of Romanian Academy Str. Cutitul de Argint

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /, JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Multiple-spacecraft Study of an Extended Magnetic Structure in the Solar Wind P. Ruan, 1 A. Korth, 1 E. Marsch, 1 B. Inhester, 1 S. Solanki,

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

High-latitude Bow Shock: Tilt Angle Effects

High-latitude Bow Shock: Tilt Angle Effects WDS'7 Proceedings of Contributed Papers, Part II, 9 33, 7. ISBN 978-8-7378-1 MATFYZPRESS High-latitude Bow Shock: Tilt Angle Effects K. Jelínek, Z. Němeček, and J. Šafránková Charles University, Faculty

More information

Interaction of ICMEs with the Solar Wind

Interaction of ICMEs with the Solar Wind Interaction of ICMEs with the Solar Wind Pascal Démoulin Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex, France Abstract. Interplanetary Coronal Mass Ejections (ICMEs) are

More information

Space Weather Effects of Coronal Mass Ejection

Space Weather Effects of Coronal Mass Ejection J. Astrophys. Astr. (2006) 27, 219 226 Space Weather Effects of Coronal Mass Ejection K. N. Iyer 1,, R. M. Jadav 1, A. K. Jadeja 1, P. K. Manoharan 2, Som Sharma 3 and Hari Om Vats 3 1 Department of Physics,

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during and implications for storm forecasting

Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during and implications for storm forecasting SPACE WEATHER, VOL. 9,, doi:10.1029/2011sw000670, 2011 Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 2009 and implications for storm forecasting I. G. Richardson 1,2

More information

Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms

Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja015140, 2010 Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic

More information

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& &

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Although&most&of&the&planets&in&the&Solar&System&have&an&intrinsic&magnetic&field&

More information

Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation

Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation A.M. Gulisano, S. Dasso, C.H. Mandrini, P. Démoulin, Instituto de Astronomía

More information

THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS

THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/734/1/7 THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS A. P. Rouillard 1,2, N. R. Sheeley,

More information

Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds Ann. Geophys., 24, 3383 3389, 2006 European Geosciences Union 2006 Annales Geophysicae Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds C.-C. Wu 1,2,3 and R. P. Lepping

More information

Probing the magnetic polarity structure of the heliospheric current sheet

Probing the magnetic polarity structure of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A8, 1316, doi:10.1029/2002ja009649, 2003 Probing the magnetic polarity structure of the heliospheric current sheet S. W. Kahler Space Vehicles Directorate,

More information

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND LA-UR- -2241 Title: Author@): PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND J. T. Gosling I Submitted tu: Scientific Basis for Robotic Explorations Close to the Sun Los Alamos NATIONAL LABORATORY is operated

More information

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland M. Swisdak University of Maryland T. Phan UC Berkeley E. Quatert UC Berkeley R. Lin UC Berkeley S. Lepri U Michican

More information

Modelling interplanetary CMEs using magnetohydrodynamic simulations

Modelling interplanetary CMEs using magnetohydrodynamic simulations Annales Geophysicae (2002) 20: 879 890 c European Geophysical Society 2002 Annales Geophysicae Modelling interplanetary CMEs using magnetohydrodynamic simulations P. J. Cargill and J. M. Schmidt Space

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS D. Lario (1), Q. Hu (2), G. C. Ho (1), R. B. Decker (1), E. C. Roelof (1),

More information

Planar magnetic structures in coronal mass ejection-driven sheath regions arxiv: v1 [astro-ph.sr] 30 Jan 2017

Planar magnetic structures in coronal mass ejection-driven sheath regions arxiv: v1 [astro-ph.sr] 30 Jan 2017 Manuscript prepared for J. Name with version 4.2 of the L A TEX class copernicus.cls. Date: 18 September 2018 Planar magnetic structures in coronal mass ejection-driven sheath regions arxiv:1701.08739v1

More information

Magnetic field reconnection is said to involve an ion diffusion region surrounding an

Magnetic field reconnection is said to involve an ion diffusion region surrounding an The magnetic field reconnection site and dissipation region by P.L. Pritchett 1 and F.S. Mozer 2 1. Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 2. Space Sciences Laboratory, University

More information

Correlation of solar wind entropy and oxygen ion charge state ratio

Correlation of solar wind entropy and oxygen ion charge state ratio JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010010, 2004 Correlation of solar wind entropy and oxygen ion charge state ratio A. C. Pagel and N. U. Crooker Center for Space Physics, Boston

More information

Solar energetic electron probes of magnetic cloud field line lengths

Solar energetic electron probes of magnetic cloud field line lengths JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja015328, 2011 Solar energetic electron probes of magnetic cloud field line lengths S. W. Kahler, 1 S. Krucker, 2 and A. Szabo 3 Received 2 February

More information

The January 10{11, 1997 magnetic cloud: Multipoint. measurements. J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I.

The January 10{11, 1997 magnetic cloud: Multipoint. measurements. J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I. 1 The January 1{11, 1997 magnetic cloud: Multipoint measurements J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I. Paularena 3, N. Nikolaeva 2, M. Nozdrachev 2,A.Skalsky 2, T. Mukai 4 Short title:

More information

Strong bulk plasma acceleration in Earth s magnetosheath: A magnetic slingshot effect?

Strong bulk plasma acceleration in Earth s magnetosheath: A magnetic slingshot effect? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L14102, doi:10.1029/2007gl030024, 2007 Strong bulk plasma acceleration in Earth s magnetosheath: A magnetic slingshot effect? B. Lavraud,

More information

Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness

Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012996, 2008 Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness Y. Liu, 1,2 W. B. Manchester IV, 3 J. D. Richardson,

More information

Propagation and evolution of a magnetic cloud from ACE to Ulysses

Propagation and evolution of a magnetic cloud from ACE to Ulysses Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012482, 2007 Propagation and evolution of a magnetic cloud from ACE to Ulysses D. Du, 1,2 C. Wang, 1 and Q. Hu

More information

Relationship of interplanetary coronal mass ejections with geomagnetic activity

Relationship of interplanetary coronal mass ejections with geomagnetic activity Indian Journal of Radio & Space Physics Vol. 37, August 2008, pp. 244-248 Relationship of interplanetary coronal mass ejections with geomagnetic activity Pankaj K Shrivastava Department of Physics, Govt.

More information

From Rankine-Hugoniot relation fitting procedure: Tangential discontinuity or intermediate/slow shock?

From Rankine-Hugoniot relation fitting procedure: Tangential discontinuity or intermediate/slow shock? JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012311, 2007 From Rankine-Hugoniot relation fitting procedure: Tangential discontinuity or intermediate/slow shock? H. Q. Feng, 1 C. C. Lin,

More information

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs GM01012_CH29.qxd 11/8/06 12:02 PM Page 309 Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs David Lario The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland,

More information

PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE

PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE CHINESE JOURNAL OF GEOPHYSICS Vol.45, No.6, 2002, pp: 793 802 PREDICTION OF THE IMF B z USING A 3-D KINEMATIC CODE WANG Chuan-Bing 1) CHAO Ji-Kun 2) CHEN He-Hong 2) LI Yi 1) WANG Shui 1) SUN Wei 3) Akasofu

More information

Understanding electron heat flux signatures in the solar wind

Understanding electron heat flux signatures in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010767, 2005 Understanding electron heat flux signatures in the solar wind C. Pagel, 1 N. U. Crooker, 1 D. E. Larson, 2 S. W. Kahler, 3 and

More information

arxiv: v2 [physics.space-ph] 14 Oct 2018

arxiv: v2 [physics.space-ph] 14 Oct 2018 Preprint 16 October 2018 Compiled using MNRAS LATEX style file v3.0 The first insitu observation of torsional Alfvén waves during the interaction of large-scale magnetic clouds. arxiv:1710.05755v2 [physics.space-ph]

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year 2005 At 1 AU

Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year 2005 At 1 AU ITERATIOAL JOURAL OF SCIETIFIC & TECHOLOGY RESEARCH VOLUME 3, ISSUE 6, JUE 4 ISS 77-866 Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year At AU D.S.Burud, R.S. Vhatkar,

More information

MULTIPLE MAGNETIC CLOUDS IN INTERPLANETARY SPACE. 1. Introduction

MULTIPLE MAGNETIC CLOUDS IN INTERPLANETARY SPACE. 1. Introduction MULTIPLE MAGNETIC CLOUDS IN INTERPLANETARY SPACE Y. M. WANG, S. WANG and P. Z. YE School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China (E-mail: wym@mail.ustc.edu.cn)

More information

Large-scale magnetic field inversions at sector boundaries

Large-scale magnetic field inversions at sector boundaries JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010278, 2004 Large-scale magnetic field inversions at sector boundaries N. U. Crooker Center for Space Physics, Boston University, Boston,

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Ala-Lahti, Matti M.; Kilpua, Emilia

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

, B z. ) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

, B z. ) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period Research Paper J. Astron. Space Sci. 28(2), 2-2 (2) DOI:./JASS.2.28.2.2 Variation of Magnetic Field (B y, B z ) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

More information

ICMES at very large distances

ICMES at very large distances Advances in Space Research 38 (2006) 528 534 www.elsevier.com/locate/asr ICMES at very large distances J.D. Richardson a,b, *, Y. Liu a, C. Wang b, L.F. Burlaga c a Kavli Center for Astrophysics and Space

More information

Magnetic Reconnection in Space Plasmas

Magnetic Reconnection in Space Plasmas Magnetic Reconnection in Space Plasmas Lin-Ni Hau et al. Institute of Space Science Department of Physics National Central University, Taiwan R.O.C. EANAM, 2012.10.31 Contents Introduction Some highlights

More information

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole Astron. Astrophys. 316, 287 295 (1996) ASTRONOMY AND ASTROPHYSICS The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole R.J. Forsyth 1, A. Balogh 1, T.S. Horbury 1,G.Erdös

More information

Evolution of interplanetary coronal mass ejections and magnetic clouds in the heliosphere

Evolution of interplanetary coronal mass ejections and magnetic clouds in the heliosphere IAUS300, Nature of prominences and their role in Space Weather Proceedings IAU Symposium No. S300, 2014 B. Schmieder, J.M. Malherbe & S.T. Wu, eds. c 2014 International Astronomical Union DOI: 00.0000/X000000000000000X

More information

Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs

Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs V. Yurchyshyn a, Q.Hu b, R.P. Lepping c, B.J. Lynch d, and J. Krall e a Big Bear Solar Observatory,

More information

The Heliospheric Magnetic Field over the Hale Cycle

The Heliospheric Magnetic Field over the Hale Cycle Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Astrophysics and Space Sciences Transactions The Heliospheric Magnetic Field over the Hale Cycle N. A. Schwadron,

More information

by the American Association for the Advancement of Science

by the American Association for the Advancement of Science Reprint Series 19 May 1995, Volume 268, pp. 1030-1033 J. L. Phillips, S. J. Same, W. C. Feldman, S. E. Goldstein, J. To Gosling, C. M. Hammond, D. J. McComas, M. Neugebauer, E. E. Scime, and S. T. Suess

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event Chin Chun Wu 1, Kan Liou 2, Bernard Jackson 3, Hsiu Shan Yu 3, Lynn Hutting 1, R. P. Lepping 4, Simon Plunkett

More information

On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of

On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010112, 2004 On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Plasma properties at the Voyager 1 crossing of the heliopause

Plasma properties at the Voyager 1 crossing of the heliopause Journal of Physics: Conference Series PAPER Plasma properties at the Voyager 1 crossing of the heliopause Recent citations - Reconnection at the Heliopause: Predictions for Voyager 2 S. A. Fuselier and

More information

Solar wind electron distribution functions inside magnetic clouds

Solar wind electron distribution functions inside magnetic clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012703, 2008 Solar wind electron distribution functions inside magnetic clouds Teresa Nieves-Chinchilla 1 and Adolfo F. Viñas 1 Received 31

More information

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR JUSTIN C. KASPER HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS GYPW01, Isaac Newton Institute, July 2010

More information

Interplanetary Field During the Current Solar Minimum

Interplanetary Field During the Current Solar Minimum Interplanetary Field During the Current Solar Minimum C.T. Russell 1, L.K. Jian 1, J. G. Luhmann 2, T.L. Zhang 3 1 UCLA, 2 UCB, 3 SRI, OEAW SOHO 23 Understanding a Peculiar Solar Minimum Asticou Inn, Northeast

More information

Scaling of asymmetric Hall magnetic reconnection

Scaling of asymmetric Hall magnetic reconnection Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L1910, doi:10.109/008gl03568, 008 Scaling of asymmetric Hall magnetic reconnection P. A. Cassak 1 and M. A. Shay 1 Received 7 July 008;

More information

Understanding the Nature of Collision of CMEs in the Heliosphere. Wageesh Mishra Postdoctoral Researcher with Yuming Wang

Understanding the Nature of Collision of CMEs in the Heliosphere. Wageesh Mishra Postdoctoral Researcher with Yuming Wang Understanding the Nature of Collision of CMEs in the Heliosphere Wageesh Mishra Postdoctoral Researcher with Yuming Wang University of Science and Technology of China (USTC), China Email ID: wageesh@ustc.edu.cn

More information

Numerical simulation of the 12 May 1997 interplanetary CME event

Numerical simulation of the 12 May 1997 interplanetary CME event JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010135, 2004 Numerical simulation of the 12 May 1997 interplanetary CME event D. Odstrcil 1 Cooperative Institute for Research in Environmental

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft

Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A7, 1272, doi:10.1029/2002ja009760, 2003 Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft Pete

More information

Connecting remote and in situ observations of 22 coronal mass ejections from the Sun to 1 AU

Connecting remote and in situ observations of 22 coronal mass ejections from the Sun to 1 AU Connecting remote and in situ observations of 22 coronal mass ejections from the Sun to 1 AU Christian Möstl University of Graz, Austria with K. Amla, J.R. Hall, P.C. Liewer, E. De Jong, M. Temmer, J.A.

More information

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA Page 1 Stability of the High-Latitude Reconnection Site for Steady Northward IMF S. A. Fuselier, S. M. Petrinec, K. J. Trattner Lockheed Martin Advanced Technology Center, Palo Alto, CA Abstract: The stability

More information

Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data

Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010649, 2005 Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data J. H. King 1 QSS Group, Inc.,

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Orientation and Geoeffectiveness of Magnetic Clouds as Consequences of Filament Eruptions

Orientation and Geoeffectiveness of Magnetic Clouds as Consequences of Filament Eruptions Coronal and Stellar Mass Ejections Proceedings IAU Symposium No. 226, 2005 K.P.Dere,J.Wang&Y.Yan,eds. c 2005 International Astronomical Union doi:10.1017/s1743921305001018 Orientation and Geoeffectiveness

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause

Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L09104, doi:10.1029/2006gl025756, 2006 Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause T. D. Phan, 1 H. Hasegawa,

More information

Ambient solar wind s effect on ICME transit times

Ambient solar wind s effect on ICME transit times Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15105, doi:10.1029/2008gl034493, 2008 Ambient solar wind s effect on ICME transit times A. W. Case, 1 H. E. Spence, 1 M. J. Owens, 1

More information

Lecture 5 CME Flux Ropes. February 1, 2017

Lecture 5 CME Flux Ropes. February 1, 2017 Lecture 5 CME Flux Ropes February 1, 2017 energy release on the Sun in a day CMEs best seen by coronagraphs LASCO C2 CMEs best seen by coronagraphs LASCO C3 The three-part white light CME Front Core Cavity

More information

CMEs, solar wind and Sun-Earth connections: unresolved issues

CMEs, solar wind and Sun-Earth connections: unresolved issues CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany Schwenn@mps.mpg.de In recent years, an unprecedented

More information

Forecas(ng the Magne(c Field Configura(on of CMEs

Forecas(ng the Magne(c Field Configura(on of CMEs Volker Bothmer University of Göttingen Institute for Astrophysics 26 October 2015 ISEST Workshop, UNAM, Mexico City Forecas(ng the Magne(c Field Configura(on of CMEs Outline 1. Magnetic field configuration

More information

On radial heliospheric magnetic fields: Voyager 2 observation and model

On radial heliospheric magnetic fields: Voyager 2 observation and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1205, doi:10.1029/2002ja009809, 2003 On radial heliospheric magnetic fields: Voyager 2 observation and model C. Wang, 1,2 J. D. Richardson, 3 L. F. Burlaga,

More information

Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations

Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011903, 2006 Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations

Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1457 1461, doi:10.1002/grl.50336, 2013 Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations Fang Shen,

More information

Solar eruptive filament studies at USO for the COMESEP project

Solar eruptive filament studies at USO for the COMESEP project International Symposium on Solar Terrestrial Physics ASI Conference Series, 2013, Vol. 10, pp 67 71 Edited by N. Gopalswamy, S. S. Hasan, P. B. Rao and Prasad Subramanian Solar eruptive filament studies

More information

On the source and acceleration of energetic He + : A long-term observation with ACE/SEPICA

On the source and acceleration of energetic He + : A long-term observation with ACE/SEPICA JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A10, 8040, doi:10.1029/2003ja009938, 2003 On the source and acceleration of energetic He + : A long-term observation with ACE/SEPICA H. Kucharek, 1 E. Möbius,

More information

Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation

Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017624, 2012 Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation A. Ruffenach, 1,2 B. Lavraud,

More information

Work Group 2: Theory

Work Group 2: Theory Work Group 2: Theory Progress report (Sept. 2017- ) Bojan Vršnak & Yuming Wang Hvar, Croatia, Sept. 2018 Brief History kick-off meeting of the ISEST program: June 2013, Hvar Observatory, Croatia four groups

More information

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER Indian J.Sci.Res.3(2) : 121-125, 2012 EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER a1 b c SHAM SINGH, DIVYA SHRIVASTAVA AND A.P. MISHRA Department of Physics, A.P.S.University, Rewa,M.P.,

More information

Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections

Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections Solar Physics DOI: 10.1007/ - - - - Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections P. Démoulin 1, M.S. Nakwacki 2, S. Dasso 2,3, C.H. Mandrini

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

Heliospheric plasma sheets

Heliospheric plasma sheets University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 3-26-2004 Heliospheric plasma sheets N. U. Crooker Chia-Lin L. Huang hcl@guero.sr.unh.edu S. M.

More information

STRUCTURE OF A MAGNETIC DECREASE OBSERVED

STRUCTURE OF A MAGNETIC DECREASE OBSERVED Journal of the Korean Astronomical Society http://dx.doi.org/1.33/jkas.216.49.1.19 49: 19 23, 216 February pissn: 122-4614 eissn: 2288-89X c 216. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org

More information

Transient shocks beyond the heliopause

Transient shocks beyond the heliopause Journal of Physics: Conference Series PAPER Transient shocks beyond the heliopause To cite this article: R L Fermo et al 2015 J. Phys.: Conf. Ser. 642 012008 View the article online for updates and enhancements.

More information

Mechanisms for particle heating in flares

Mechanisms for particle heating in flares Mechanisms for particle heating in flares J. F. Drake University of Maryland J. T. Dahlin University of Maryland M. Swisdak University of Maryland C. Haggerty University of Delaware M. A. Shay University

More information