Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model

Size: px
Start display at page:

Download "Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 58 62, doi: /jgra.50098, 2013 Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model Edward J. Smith 1 Received 28 August 2012; revised 15 November 2012; accepted 23 December 2012; published 31 January [1] A difference in solar wind speed inside and outside a Coronal Hole Boundary (CHB) causes the field and solar wind to expand rapidly with distance to form a Corotating Rarefaction Region (CRR). In the Parker model, field lines inside the CRR form spirals determined by the local solar wind speed. Observationally, however, CRR fields often diverge from the Parker spiral by tens of degrees and in a more radial direction. In a model developed by Schwadron (2002), in addition to the velocity gradient, the field lines rotate differentially across the CHB. The solar wind speed then varies along the field lines rather than remaining constant as in the Parker model. The plausibility of the model is supported by calculations using nominal model parameters that reproduce the systematic deviations from the Parker spiral. The present study establishes the validity of the model by comparing observations of nine CRRs between 1 and 4 AU with model predictions. Estimates are obtained for the width, velocity gradient, differential velocity of the CRR, and the transit time of the magnetic field. These parameters are obtained at the surface near 10 solar radii where the pressure of the coronal magnetic field first becomes balanced. Citation: Smith E. J. (2013), Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model, J. Geophys. Res. Space Physics, 118, 58 62, doi: /jgra Introduction [2] Large systematic deviations of the Heliospheric Magnetic Field (HMF) from the characteristic spiral angle associated with the Parker model of the solar wind [Parker, 1963] were first observed on the Pioneer 10 and 11 mission in early studies of Corotating Interaction Regions (CIRs) and their companion Corotating Rarefaction Regions (CRRs) [e.g., Smith and Wolfe, 1979]. Inside CRRs, the spiral angle, obtained from measured values of the radial and azimuthal field components, B r and B f, f B = atan (B f /B r ), was systematically more radial by tens of degrees than the Parker spiral, f P = invtan ( Ω r sin θ /V r ), where Ω, r,θ, and V r are the Sun s angular rotation rate, the radial distance, the colatitude angle (all quantities are in spherical polar coordinates), and the radial solar wind speed. Since the Parker model is such a good approximation in all other large-scale structures, why do these deviations occur and how does the model need to be modified? [3] Early observations of energetic solar particles inside CRRs also revealed a related anomaly. When the energetic particles within a CRR were extrapolated back to the Sun, they were found to originate at the same source longitude and were then called dwells [Roelof and Krimigis, 1973]. A further 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA. Corresponding author: E. J. Smith, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA. (Edward.J.Smith@jpl.nasa.gov) American Geophysical Union. All Rights Reserved /13/ /jgra finding was that the dwells coincided with the trailing edges of coronal holes, i.e., the Coronal Hole Boundary (CHB). [4] Using Ulysses data, Murphy et al. [2002] reviewed these observations and introduced a model developed by N. A. Schwadron that was capable of explaining the spiral angle departures of the HMF. A companion publication, Schwadron [2002], presented a more detailed description of the model and reproduced the departures qualitatively using nominal values of the model parameters. [5] The study reported here tests the validity of the Schwadron model by comparing observed and predicted values of f B. An additional objective, once the model validity is established, is to derive properties of the CRR near the Sun, specifically the width, the velocity gradient, and the time it takes the solar wind and magnetic field to cross the boundary. 2. The Schwadron Model and Its Origin [6] In the model, the Polar Coronal Hole (PCH) rotates at the solar equatorial rotation rate, Ω =2p / 25.4 days, as observed. Differential rotation causes the magnetic field to rotate through the coronal hole at the photospheric differential rotation rate in the corona. As the field crosses the CHB, the solar wind decreases from a fast speed, V F, inside to a slow speed, V S, outside, a change that occurs along the moving field line. It is this variation in solar wind speed along the field lines that produces the CRR and distinguishes this model from the Parker model in which the speed is constant along field lines. [7] The Schwadron model is an extension of a model developed by Fisk [1996]. In addition to the differential rotation, the Fisk model includes the non-radial expansion 58

2 of the magnetic field and the solar wind caused by the nonuniform magnetic pressure of the dipole-like field inside the coronal hole. The non-radial expansion continues until the gradient in magnetic pressure is eliminated and the pressure balance restored. The solar wind flow is then radial as in the Parker model. Evidence of the expansion was obtained from Ulysses measurements reported in Smith et al. [1995] and cited in Fisk [1996]. [8] The principal goal of the Fisk model was to explain why low-energy particles accelerated by CIRs at latitudes below 30 could reach latitudes up to 80 and be observed by Ulysses. The model showed that field lines did not remain at fixed latitudes as in the Parker model but expanded equatorward and allowed particles from low latitudes to reach high latitudes. However, the evidence provided by CIR energetic particle data was not conclusive because an alternative explanation was available based on cross-field diffusion of the particles from low- to high-latitude field lines, e.g., Kota and Jokipii [1995]. [9] Direct evidence of the non-radial flow was provided by Ulysses measurements showing that the streamline magnetic flux, r 2 B r, was independent of latitude from the equator to midlatitudes in Smith et al. [1995] and then in Smith and Balogh [1995] when the absence of the latitude gradient was confirmed at all latitudes. Smith and Balogh [1995] independently concluded that the enhanced magnetic pressure gradient associated with the Sun s dipolar magnetic field was causing non-linear fields and flows near the Sun that eventually produced an equilibrium in pressure and constant r 2 B r beyond which the solar wind flow was radial in agreement with the Parker model. Theoretical estimates based on both potential field and MHD source surface models were that pressure equilibrium occurred within 5 10 solar radii [Suess and Smith, 1996]. [10] Further implications of the Fisk model were published in Fisk et al. [1999] that addressed the slow motions of the coronal fields and plasma at low latitudes that returned them to the polar hole and maintained the total magnetic flux. Such motion was attributed to the reconnection of the open field lines with adjacent closed field lines that resulted in the required global transport of the open flux and was described as a diffusive process in Fisk and Schwadron [2001]. The Fisk model then provided Schwadron [2002] with the basis to explain the behavior of CRRs. [11] The non-radial flow and pressure balance have important implications for the Schwadron model. In this report, the Pressure Balance Boundary will be abbreviated PBB (a boundary rather than a surface, in part, to avoid confusion with Pressure Balance Structures (PBS) observed in the solar wind). It is difficult to convert the location of the CHB to its location on the PBB without detailed knowledge of the magnetic field inside the PCH and details of the CHB. Furthermore, the model needed to refer to measurements in the solar wind so that the CRR measurements far from the Sun could be compared with the Parker spiral. These issues resulted in the Schwadron model referring the initial conditions to the PBB instead of the CHB. Consequently, the CRR parameters in the model that are sought in this study are appropriate to this solar wind boundary/pbb rather than to the CHB. [12] The spiral angle inside the expanding CRR derived in Schwadron [2002] is as follows: tanf BM ¼ B f =B r ¼ ½ ðω þ oþ r sinθš= ½V ðordv=vdf 0 ÞŠ: [13] At the PBB, the field crosses the CRR with a width, df 0, at longitudinal angular rate, o, and with solar wind decreasing from a fast speed, V F, to a slow speed, V S. The mean velocity is V = (V F +V S ) / 2. The change in speed, dv=v F V S, is assumed to be linear, the speed gradient is dv/df 0, and the time to cross the boundary is dt= df 0 / (Ω + o) (and is positive since df 0 is negative). [14] The CRR starts at the Parker spiral angle of the fast solar wind and ends at the spiral angle of the slow wind. Inside the CRR, the field lines are nearly straight at large distances and depart significantly from the fast and slow Parker spirals in a more radial direction [Schwadron, 2002, Figure 2]. If o vanishes, the expression reduces to the Parker spiral, as required because the field lines remain inside or outside the coronal hole so the solar wind speeds are constant along the field lines. The model contains additional equations for other field properties such as B Y and the field magnitude, B. [15] Coincidentally, another model was published at about the same time that also assumes a change in solar wind velocity along field lines [Gosling and Skoug, 2001]. The intent of that model was to describe the decreasing speed profile and strictly radial magnetic fields that are observed occasionally in the solar wind. As such, that model is not relevant to this discussion since the Schwadron model addresses departures from the Parker spiral in general. It may be noted that the Schwadron model reduces to the Gosling and Skoug [2002] model with B f = 0 and the field radial when o = Ω, i.e., the field lines are not rotating. 3. Approach and Choice of Data [16] InSchwadron [2002, Figure 3], f B and f P are plotted vs. radial distance for nominal values of V F = 600 and V S = 300 km/s, o = 0.1 Ω and df 0 = 5. The approach adopted here is to test the model by a similar comparison of the measured f B with the model, f BM, assuming different values of o and df 0 while searching for a good fit. The single equation for f BM containing two unknowns means that different pairs of o and df 0 need to be assumed. [17] The model was tested using data acquired by Pioneers 10 and 11 in near solar minimum. The two data sets contain a large number of CIR-CRRs. Another advantage is the absence of Interplanetary Coronal Mass Ejections (ICMEs) that would create a problem if unrecognized since they also exhibit a decrease in plasma velocity and a tendency to originate at a single source longitude. Pioneer measurements of the solar wind magnetic field, velocity, density, and temperature were used to sort out the few ICMEs that were present. The Pioneer vector helium magnetometer and plasma analyzer are described in Smith et al. [1975]and Wolfe et al. [1974]. 4. Analysis [18] The Pioneer 10 and 11 data are archived at omniweb. gsfc.nasa.gov/cgi/nx1/cgi. This site also includes software to tabulate and plot the data, make histograms, find averages and standard deviations, etc. The Pioneer data were inspected to identify CRRs and obtain averages of B f and 59

3 B r and values of f B. Hourly averages of the two field components inside the CRR were examined visually, an interval of about 2 days was chosen, and the components averaged over that interval to obtain f B. Rarefaction might have been expected to lead to a marked decrease in magnetic fluctuations attributed to waves, discontinuities, etc. However, visual inspection of many CRRs showed that the peak-peak amplitude of these magnetic fluctuations often appeared to be as large as or larger than averages of the components. The reason for that is not the subject of this analysis, but it is mentioned because it led to choosing intervals when this noise background was suitably low instead of averaging over the entire CRR. This procedure should not affect the comparison with f BM because the model assumes that the spiral angle is essentially constant inside the CRR. Furthermore, the results obtained justify this approach. [19] For each f B, the standard error, e, the ratio of the standard deviation to the square root of N which is the number of data in the averaging interval, was calculated. The standard deviation is the square root of the variance of f B including the variance in tan f B and the effect of taking the inverse tangent. The variances in the measurements, obtained over the same interval as the averages of tan f B, are s i 2 where i = 1,...9. Since the average, <tan f Bi > is the ratio of the averages, < B fi > and < B ri >, s i 2 is obtained from the variances of B f and B r, i.e., s i 2 = s i 2 (B f )/< B f > 2 + s i 2 (B r ]/ <B r > 2. Since f B is obtained by taking the inverse tangent, the variance is s i 2 (f B) = s i 2 [1/(1+ < tan f Bi > 2 ] 2 [Bevington, 1969, p.58]. The standard error is then e i = s i (f B ) / (N) 1/2.The solar wind velocity along with the orbital parameters, r and θ, was used to calculate f P corresponding to f B. [20] Figure 1 contains f B, e, and f P between 1.8 and 4.0 AU. The two observables do not overlap so that f B is statistically well separated from f P. An unanticipated feature is the U-shaped variation in f B with distance that is only slightly present in f P. The likely cause is a similar systematic variation in velocity, a time dependence, evident in Figure 2, a plot of V vs. distance. The increase of f B with V is contrary to the 1/V dependence in the Parker spiral and is a point in favor of the model. The figure also contains the slow speeds, V S =V dv/2, in part, as a way of showing the variation in dv, an important measureable appearing in the Schwadron equation. [21] Figure 3 is a comparison of tan f B with tan f BM based on the nominal values of o = 0.1 Ω and df 0 = 5. The tangents of f BM and f B were used in the figure in order to avoid any non-linearity associated with the inverse tangents in favor of a linear analysis. [22] The two profiles are similar, but tan f B appears to be shifted above tan f BM by an equivalent 10 to 20. The Schwadron model appears capable of reproducing the deviations from the Parker model, but values of o and df 0 need to be found that will produce a better agreement between the data and the model. [23] The usual Goodness of Fit between a model and data, the Chi-squared test, was used to find the best-fit pairofthe values of o and df 0. The usual definition is w 2 = Σ(y i y(x i )) 2 / s i 2 where both y(x i ), the model value of tan f BM (o, df 0 ), and y i =tanf B, the measured value, are at the same x i =r.thes i 2 are the variances in the measurements over the same interval as the averages of tan f Bi as described above. [24] The minimum in w 2 was found by trial and error while inspecting simultaneous plots of tan f BM and tan f B for the improvement in fit that could easily be seen as w 2 decreased. The fit associated with the minimum w 2 = is shown in Figure 4. The improvement compared to Figure 3, for which w 2 = 16.82, is obvious. The best-fit w 2 value may not be the Figure 1. Variation in the observed and Parker spiral angles with distance. Pioneer 10 and 11 data in were used to obtain the observed field spiral angles between 1 and 4 AU. The corresponding Parker spiral angles were computed from the usual expression given in the text using the measured solar wind speed. The large discrepancies with the observed fields that are significantly more radial than predicted are the subject of this report. Figure 2. The average velocity observed inside the CRRs. The average velocities, V = (V f +V s ) / 2, are shown for the nine test CRRs. The systematic upward curvature reproduces that in the observed Phi angles in Figure 1. This correspondence is consistent with the model dependence on V. The slow speeds, V S =V dv / 2, are included essentially to provide a record of dv. 60

4 Figure 3. Comparison of the tangents of the observed and model spiral angles. The observed angles are the same as in Figure 1, but tan f B =(B f /B r ) is shown. The model values, tan Φ BM, use measured values of V and dv and the nominal values of o / Ω = 0.1 and df 0 = 5 published in Schwadron [2002]. The tangents are used instead of the angles to avoid possible non-linearity associated with taking the inverse tangents especially when finding the Chi-square goodness of fit. The model predicts values that are systematically too low. Figure 4. A fit of the model to the data that satisfies the Chisquare test for goodness of fit. The tangents of the observed and model spiral angles are shown as in Figure 3 in order to avoid the non-linear effect of taking the inverse tangents. This fit was obtained by trial and error while varying o and df 0 and calculating w 2 at each step. The sequence converged rapidly with w 2 decreasing to (the result shown here). The agreement between the model and the data is statistically significant at a confidence level of 99%, establishing the validity of the model and o / Ω =0.20anddf 0 = 2.5. absolute minimum but must be close, and in any case, that doesn t matter because it shows unequivocally that the model fits the data with a high level of confidence. [25] Statistics books typically contain tables that list the probability, P (w 2, n), that for a set of random data, w 2 will exceed a specific value associated with the number of degrees of freedom (n =9 2 = 7, in this case). Table C-4 in Bevington [1969] that lists the reduced value, w 2 / n, shows that 0.772/7 = will be exceeded 99% of the time for data that are randomly distributed. Alternatively, the level of confidence of the goodness of fit exceeds 99%, or there is only a chance of 1 in 100 that the data fit is random. [26] It is also significant that the fit is not only based on r, the independent parameter, but also depends on large variations in the average velocity, V ( km/s), and the difference between fast and slow winds, dv (25 to 180 km/s). In addition to errors in measurements of B f and B r, the residuals in Figure 4 could contain contributions from differences in o and df 0 from one coronal hole to another. The goodness of fit implies that the associated pair of values is a reasonable approximation to average values over the nine examples. [27] The fit in Figure 4 yields o = 0.20 Ω and a longitudinal width df 0 = 2.5 at the PBB. These values differ from the nominal values adopted in Schwadron [2002]. Disregarding possible latitudinal motions, the transit time of the field lines across the CRR at the PBB is dt= df 0 / (Ω + o) = 3.52 h. The velocity gradient dv/df 0, varies between 10.0 and 120 km/s deg. 5. Discussion [28] The preceding analysis shows that the Schwadron [2002] model accounts for the large departures from the Parker spiral angles inside CRRs. It explains why the magnetic field inside the CRR characteristically turns away from the Parker spiral angle toward a more radial direction. It also provides valuable information about the CHB although relative to the CHB shadow on the Pressure Balance Boundary/PBB rather than in the corona. The model fit yields two previously unknown parameters, o, the differential angular velocity, and dj 0, the angular width of the shadow CHB. The measured dv along with dj 0 yields the longitudinal speed gradient, and o and dj 0 lead to the transit time to cross the shadow CHB. [29] The success of the model improves our understanding of the solar origin and structure of corotating rarefaction regions that dominate the heliosphere throughout the solar minimum phase. It provides modifications within CRRs of the Parker model, the gold standard that has proven so successful in describing the solar wind and HMF throughout most of the heliosphere. [30] The distinctive feature of the Schwadron model is the change in speed of magnetic field lines as they cross the trailing coronal hole boundary. The model is based on the solar wind-magnetic field model of Fisk [1996] that incorporates both the differential field line motion and the excessive magnetic pressure in the coronal hole that causes the field and solar wind to expand in latitude and longitude until the pressure balance boundary is reached beyond which the solar wind flows radially outward and obeys the Parker model. At the CHB, the solar wind velocity changes from very fast to very slow in a narrow longitude range but then expands first to the PBB and by many tens of degrees with increasing distance to form the usual CRR that occupies a large fraction of the heliosphere. 61

5 [31] It has long been known that CRRs are associated with a velocity gradient at the coronal hole source, i.e., a decrease in V from fast to slow and when extrapolated back to the solar source map back to a very limited range of longitudes. The Parker model was originally thought to produce this result while ignoring the differential motion across the CHB and assuming that the velocity of the field lines changes from V F inside to V S outside the coronal hole with V F and V S remaining constant as the wind propagates outward. However, the field lines inside the CRR then conform to the Parker spiral and gradually change from the spiral appropriate to V F to that appropriate to V S. That behavior proved to be contrary to observation. [32] Assuming for simplicity, and in the absence of evidence to the contrary, that the velocity gradient is linear, the Schwadron model connects the spirals conforming to V F and V S at the edges of the CRR by nearly straight field line segments that deviate toward the radial direction as observed. The success of the model is a further demonstration that the field lines near the Sun are not fixed in latitude and longitude but are driven by the spatial variation of the magnetic field pressure within the coronal hole as represented by the parameter. [33] The availability of a more realistic model provides opportunities for further investigation of the CRR structure and its properties at the PBB. The complete set of Schwadron equations contains other parameters of interest such as the latitudinal angular velocity of the solar wind and magnetic field. The study of the same CRR at two or more locations has the potential to determine specific values of o and df 0 separately as well as other properties for individual CRRs that could demonstrate how they vary from one CRR to another. Although not the subject of this analysis, the random field variations inside CRRs appear to be larger than might be expected in the presence of the large on-going expansion. As such, they deserve further inquiry to explore their strength, nature, and origin. [34] Acknowledgments. Prior to 2002, in a private conversation on the departures inside CRRs, Gene Parker suggested that a change in solar wind speed along the field line could be the cause. In a subsequent discussion of Ulysses CRRs, Tim Horbury of Imperial College made the same suggestion. However, it was Nathan Schwadron who independently came to the same conclusion and derived the equations describing this phenomenon. Joyce Wolf generated large numbers of CRR plots for this study and assisted in preparing the final figures. The Heliospheric COHO website at the GSFC National Space Science Data Center provided the magnetic field and solar wind data, and their companion software was useful in the analysis. The results reported here represent one aspect of research carried out by the California Institute of Technology Jet Propulsion Laboratory for the National Aeronautics and Space Administration. References Bevington, P. R. (1969), Data Reduction and Error Analysis for the Physical Sciences, McGraw- Hill Book Co., New York. Fisk, L. A. (1996), Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes, J. Geophys. Res., 101(A7), 15,547 15,553. Fisk, L. A., T. H. Zurbuchen, and N. A. Schwadron (1999), On the coronal magnetic field: Consequences of large-scale motions, Astrophys. J., 521, 868. Fisk, L. A., and N. A. Schwadron (2001), The behavior of the open magnetic flux of the sun, Astrophys. J., 560, 425. Gosling, J. T., and R. M. Skoug (2001), On the origin of radial fields in the heliosphere, J. Geophys. Res., 107, doi: /2002ja Kota, J., and J. R. Jokipii (1995), Corotating variations of cosmic rays near the south heliospheric pole, Science, 268, Murphy, N., E. J. Smith, and N. A. Schwadron (2002), Strongly underwound magnetic fields in co-rotating rarefaction regions: Observations and implications, Geophys. Res. Lett., 29, NO.22, doi: /2002gl Parker, E.N. (1963), Interplanetary Dynamical Processes, p. 138, Interscience Publishers, New York. Roelof, E. C., and S. M. Krimigis (1973), Analysis and synthesis of coronal and interplanetary energetic particle, plasma and magnetic field observations over three solar rotations, J. Geophys. Res., 78, Schwadron, N. A. (2002), An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the sun, Geophys. Res. Lett., 29, NO. 14, doi / 2002GL Smith, E. J., and J. H. Wolfe (1979), Fields and plasmas in the outer solar system, Space Sci. Rev., 23, Smith, E. J., B. V. Connor, and G. T. Foster (1975), Measuring the magnetic fields of Jupiter and the outer solar system, IEEE Trans. Magn., MAG-11, 962. Smith, E. J., M. Neugebauer, A. Balogh, S. J. Bame, R. P. Lepping, and B. T. Tsurutani (1995), Ulysses observations of latitude gradients in the heliospheric magnetic field: Radial component and variances, Space Sci. Rev., 72, 165. Smith, E. J., and A. Balogh (1995), Ulysses observations of the radial magnetic field, Geophys. Res. Lett., 23, Suess, S. T., and E. J. Smith (1996), Latitudinal dependence of the radial IMF component: Coronal imprint, Geophys. Res. Lett., 23, NO.22, Wolfe, J. H., J. D. Mihalov, H. R. Collard, D. D. McKibben, L. A. Frank, and D. S. Intriligator (1974), Pioneer 10 observations of the solar wind interaction with Jupiter, J. Geophys. Res., 79,

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole Astron. Astrophys. 316, 287 295 (1996) ASTRONOMY AND ASTROPHYSICS The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole R.J. Forsyth 1, A. Balogh 1, T.S. Horbury 1,G.Erdös

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

The new Heliospheric Magnetic Field: Observational Implications

The new Heliospheric Magnetic Field: Observational Implications The new Heliospheric Magnetic Field: Observational Implications T. H. Zurbuchen, L. A. Fisk, S. Hefti and N. A. Schwa&on Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann

More information

On radial heliospheric magnetic fields: Voyager 2 observation and model

On radial heliospheric magnetic fields: Voyager 2 observation and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1205, doi:10.1029/2002ja009809, 2003 On radial heliospheric magnetic fields: Voyager 2 observation and model C. Wang, 1,2 J. D. Richardson, 3 L. F. Burlaga,

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

The Heliospheric Magnetic Field over the Hale Cycle

The Heliospheric Magnetic Field over the Hale Cycle Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Astrophysics and Space Sciences Transactions The Heliospheric Magnetic Field over the Hale Cycle N. A. Schwadron,

More information

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Bala Poduval and Xue Pu Zhao Hansen Experimental Physics Laboratory Stanford

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010723, 2005 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema, and

More information

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation Annales Geophysicae (2003) 21: 1257 1261 c European Geosciences Union 2003 Annales Geophysicae How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

More information

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014449, 2009 Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet 1 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University,

More information

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013631, 2009 Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits

More information

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L05105, doi:10.1029/2006gl028932, 2007 Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity

More information

North-South Offset of Heliospheric Current Sheet and its Causes

North-South Offset of Heliospheric Current Sheet and its Causes North-South Offset of Heliospheric Current Sheet and its Causes X. P. Zhao, J. T. Hoeksema, P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Abstract Based on observations

More information

by the American Association for the Advancement of Science

by the American Association for the Advancement of Science Reprint Series 19 May 1995, Volume 268, pp. 1030-1033 J. L. Phillips, S. J. Same, W. C. Feldman, S. E. Goldstein, J. To Gosling, C. M. Hammond, D. J. McComas, M. Neugebauer, E. E. Scime, and S. T. Suess

More information

Weaker solar wind from the polar coronal holes and the whole Sun

Weaker solar wind from the polar coronal holes and the whole Sun Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L18103, doi:10.1029/2008gl034896, 2008 Weaker solar wind from the polar coronal holes and the whole Sun D. J. McComas, 1,2 R. W. Ebert,

More information

Global structure of the out-of-ecliptic solar wind

Global structure of the out-of-ecliptic solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010875, 2005 Global structure of the out-of-ecliptic solar wind Y. C. Whang Department of Mechanical Engineering, Catholic University of America,

More information

magnetic field with large excursions in latitude

magnetic field with large excursions in latitude JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. All, PAGES 24,175-24,181, NOVEMBER 1, 1997 Direct observational evidence for a heliospheric magnetic field with large excursions in latitude T. H. Zurbuchen,

More information

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012207, 2007 Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere W. R.

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum X. P. Zhao and J. T. Hoeksema W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085

More information

Downstream structures of interplanetary fast shocks associated with coronal mass ejections

Downstream structures of interplanetary fast shocks associated with coronal mass ejections GEOPHYSICAL RESEARCH LETTERS, VOL. 32,, doi:10.1029/2005gl022777, 2005 Downstream structures of interplanetary fast shocks associated with coronal mass ejections R. Kataoka, S. Watari, N. Shimada, H. Shimazu,

More information

Coronal diffusion and high solar latitude recurrent energetic particle increases

Coronal diffusion and high solar latitude recurrent energetic particle increases Astron Astrophys 316, 56 51 (1996) ASTRONOMY AND ASTROPHYSICS Coronal diffusion and high solar latitude recurrent energetic particle increases JJ Quenby 1, A Witcombe 1, B Drolias 4,1,MFränz 2,3, and E

More information

Implications of the observed anticorrelation between solar wind speed and coronal electron temperature

Implications of the observed anticorrelation between solar wind speed and coronal electron temperature JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1158, doi:10.1029/2002ja009286, 2003 Implications of the observed anticorrelation between solar wind speed and coronal electron temperature George Gloeckler

More information

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS D. Lario (1), Q. Hu (2), G. C. Ho (1), R. B. Decker (1), E. C. Roelof (1),

More information

Estimating total heliospheric magnetic flux from single-point in situ measurements

Estimating total heliospheric magnetic flux from single-point in situ measurements Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013677, 2008 Estimating total heliospheric magnetic flux from single-point in situ measurements M. J. Owens, 1,2

More information

Sources of the solar wind at solar activity maximum

Sources of the solar wind at solar activity maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A12, 1488, doi:10.1029/2001ja000306, 2002 Sources of the solar wind at solar activity maximum M. Neugebauer, 1 P. C. Liewer, and E. J Smith Jet Propulsion

More information

On the variations of the solar wind magnetic field about the Parker spiral direction

On the variations of the solar wind magnetic field about the Parker spiral direction JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja015040, 2010 On the variations of the solar wind magnetic field about the Parker spiral direction Joseph E. Borovsky 1 Received 29 October

More information

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15107, doi:10.1029/2006gl026419, 2006 Observations of an interplanetary slow shock associated with magnetic cloud boundary layer P. B.

More information

Polar Coronal Holes During Solar Cycles 22 and 23

Polar Coronal Holes During Solar Cycles 22 and 23 Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 5, 531 538 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Polar Coronal Holes During Solar Cycles 22 and 23 Jun Zhang 1,2,J.Woch 2 and

More information

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU Preprint of the Institute of terrestrial magnetism (IZMIRAN), 2011 On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU O. Khabarova V. Obridko Heliophysical

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind!

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind! Remember: how to measure the solar wind The principle of electrostatic analyzers Spherical deflection plates with an applied voltage let charged particles pass if their energy/charge fits. E/q = m/2 *

More information

An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum

An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7525 7531, doi:10.1002/2013ja019404, 2013 An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE DEPENDENCE

A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE DEPENDENCE The Astrophysical Journal, 674:511Y519, 008 February 10 # 008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE

More information

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21112, doi:10.1029/2006gl027578, 2006 Correlation between energetic ion enhancements and heliospheric current sheet crossings in the

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

Solar wind velocity at solar maximum: A search for latitudinal effects

Solar wind velocity at solar maximum: A search for latitudinal effects Annales Geophysicae (24) 22: 3721 3727 SRef-ID: 1432-576/ag/24-22-3721 European Geosciences Union 24 Annales Geophysicae Solar wind velocity at solar maximum: A search for latitudinal effects B. Bavassano,

More information

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 3. Deflection of speed vector Abstract Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev This work is a continuation

More information

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND WDS'10 Proceedings of Contributed Papers, Part II, 128 134, 2010. ISBN 978-80-7378-140-8 MATFYZPRESS Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND A. Lynnyk, J. Šafránková, Z. Němeček

More information

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Lan K. Jian 1, C.T. Russell 1, J.G. Luhmann 2, A.B. Gavin 3, D. Odstrcil 4, P.J. MacNeice 5 1 Inst. of Geophysics & Planetary

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

Disruption of a heliospheric current sheet fold

Disruption of a heliospheric current sheet fold GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047822, 2011 Disruption of a heliospheric current sheet fold V. G. Merkin, 1 J. G. Lyon, 2 S. L. McGregor, 2 and D. M. Pahud 3 Received 16 April

More information

Large-scale velocity fluctuations in polar solar wind

Large-scale velocity fluctuations in polar solar wind Annales Geophysicae, 23, 25 3, 25 SRef-ID: 432-576/ag/25-23-25 European Geosciences Union 25 Annales Geophysicae Large-scale velocity fluctuations in polar solar wind B. Bavassano, R. Bruno, and R. D Amicis

More information

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907 3ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING Acceleration of energetic particles by compressible plasma s of arbitrary scale sizes MING ZHANG Department of Physics and Space Sciences, Florida Institute

More information

Interplanetary and solar surface properties of coronal holes observed during solar maximum

Interplanetary and solar surface properties of coronal holes observed during solar maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1144, doi:10.1029/2002ja009538, 2003 Interplanetary and solar surface properties of coronal holes observed during solar maximum J. Zhang, 1,2 J. Woch,

More information

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND John D. Richardson, Ying Liu, and John W. Belcher Massachusetts Institute of Technology Cambridge, MA, USA jdr@space.mit.edu Abstract Interplanetary

More information

Ooty Radio Telescope Space Weather

Ooty Radio Telescope Space Weather Ooty Radio Telescope Space Weather P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India mano@ncra.tifr.res.in Panel Meeting

More information

A first step towards proton flux forecasting

A first step towards proton flux forecasting Advances in Space Research xxx (2005) xxx xxx www.elsevier.com/locate/asr A first step towards proton flux forecasting A. Aran a, *, B. Sanahuja a, D. Lario b a Departament dõastronomia i Meteorologia,

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

Interplanetary coronal mass ejections that are undetected by solar coronagraphs

Interplanetary coronal mass ejections that are undetected by solar coronagraphs Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012920, 2008 Interplanetary coronal mass ejections that are undetected by solar coronagraphs T. A. Howard 1 and

More information

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Dr. Simon R. Thomas & Prof. Silvia Dalla University of Central Lancashire Thanks to: Markus Battarbee, Timo Laitinen,

More information

STRUCTURE OF A MAGNETIC DECREASE OBSERVED

STRUCTURE OF A MAGNETIC DECREASE OBSERVED Journal of the Korean Astronomical Society http://dx.doi.org/1.33/jkas.216.49.1.19 49: 19 23, 216 February pissn: 122-4614 eissn: 2288-89X c 216. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Magnetic Effects Change Our View of the Heliosheath

Magnetic Effects Change Our View of the Heliosheath Magnetic Effects Change Our View of the Heliosheath M. Opher Λ, P. C. Liewer Λ, M. Velli, T. I. Gombosi ΛΛ, W.Manchester ΛΛ,D. L. DeZeeuw ΛΛ,G.Toth ΛΛ and I. Sokolov ΛΛ Λ Jet Propulsion Laboratory, MS

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Association of solar wind proton flux extremes with pseudostreamers

Association of solar wind proton flux extremes with pseudostreamers JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 8, 2834 284, doi:.2/jgra.5335, 23 Association of solar wind proton flux extremes with pseudostreamers L. Zhao,,2 S. E. Gibson, and L. A. Fisk 2 Received

More information

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Solar Resource: The Active Sun as a Source of Energy Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Sun: A Source of Energy Solar Structure Solar Wind Solar Cycle Solar Activity

More information

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND LA-UR- -2241 Title: Author@): PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND J. T. Gosling I Submitted tu: Scientific Basis for Robotic Explorations Close to the Sun Los Alamos NATIONAL LABORATORY is operated

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34,, doi:10.1029/2007gl031492, 2007 Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

In-Situ Signatures of Interplanetary Coronal Mass Ejections

In-Situ Signatures of Interplanetary Coronal Mass Ejections In-Situ Signatures of Interplanetary Coronal Mass Ejections Ian G. Richardson, NASA/Goddard Space Flight Center and CRESST/Department of Astronomy, University of Maryland, College Park ~Two dozen in-situ

More information

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle S. R. Cranmer, J. L. Kohl, M. P. Miralles, & A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics Extended Coronal

More information

Probing the magnetic polarity structure of the heliospheric current sheet

Probing the magnetic polarity structure of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A8, 1316, doi:10.1029/2002ja009649, 2003 Probing the magnetic polarity structure of the heliospheric current sheet S. W. Kahler Space Vehicles Directorate,

More information

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs GM01012_CH29.qxd 11/8/06 12:02 PM Page 309 Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs David Lario The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland,

More information

Solar Sector Structure: Fact or Fiction?

Solar Sector Structure: Fact or Fiction? Solar Sector Structure: Fact or Fiction? Leif Svalgaard Stanford University LMSAL, August 18, 2011 1 Discovery of Sector Structure Quasi-Stationary Corotating Structure in the Interplanetary Medium John

More information

ICMES at very large distances

ICMES at very large distances Advances in Space Research 38 (2006) 528 534 www.elsevier.com/locate/asr ICMES at very large distances J.D. Richardson a,b, *, Y. Liu a, C. Wang b, L.F. Burlaga c a Kavli Center for Astrophysics and Space

More information

Solar energetic particles and cosmic rays

Solar energetic particles and cosmic rays Solar energetic particles and cosmic rays Energetic particles in the heliosphere Solar energetic particles and cosmic rays Energy spectra and acceleration Particle propagation and transport Pick-up ions,

More information

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004 Annales Geophysicae () : 19 1 SRef-ID: 1-7/ag/--19 European Geosciences Union Annales Geophysicae Open solar flux estimates from near-earth measurements of the interplanetary magnetic field: comparison

More information

Differential velocity between solar wind protons and alpha particles in pressure balance structures

Differential velocity between solar wind protons and alpha particles in pressure balance structures JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010274, 2004 Differential velocity between solar wind protons and alpha particles in pressure balance structures Yohei Yamauchi and Steven

More information

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Article Accepted Version Owens, M. J., Crooker, N. U. and Lockwood, M. (2013) Solar origin

More information

Space Weather at 75 AU

Space Weather at 75 AU Space Weather at 75 AU R. A. Mewaldt California Institute of Technology, Pasadena, CA 91125, USA Abstract. Recent outer-heliosphere observations are reviewed from a space weather point of view by comparing

More information

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044466, 2010 A plasmapause like density boundary at high latitudes in Saturn s magnetosphere D. A. Gurnett, 1 A. M. Persoon, 1 A. J. Kopf, 1 W.

More information

Petschek-type magnetic reconnection exhausts in the solar wind well

Petschek-type magnetic reconnection exhausts in the solar wind well Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011863, 2006 Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios J. T. Gosling,

More information

HELIOSPHERIC RADIO EMISSIONS

HELIOSPHERIC RADIO EMISSIONS 1 2 3 4 5 6 7 8 9 10 TWO RECENT khz OUTER HELIOSPHERIC RADIO EMISSIONS SEEN AT VOYAGER 1 - WHAT ARE THE INTERPLANETARY EVENTS THAT TRIGGER THEM AND WHERE ARE THESE EVENTS WHEN THE RADIO EMISSIONS START?

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

Heliospheric magnetic field strength out to 66 AU: Voyager 1,

Heliospheric magnetic field strength out to 66 AU: Voyager 1, JOURNAL OF GEOPHYSICAL RESEARCH, VOL 103, NO 10, PAGES 23,727-23,732, OCTOBER 1, 1998 Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978-1996 L F Burlaga Laboratory for Extraterrestrial

More information

ESS 7. Lectures 6, 7 and 8 April 9, 12 and 14

ESS 7. Lectures 6, 7 and 8 April 9, 12 and 14 ESS 7 Lectures 6, 7 and 8 April 9, 12 and 14 The Heliosphere The Exploding Sun At times the Sun explosively sends plasma into space. This occurs most dramatically during CMEs. Hallowe en Storm 2003 Note

More information

What Voyager cosmic ray data in the outer heliosphere tells us about 10 Be production in the Earth s polar atmosphere in the recent past

What Voyager cosmic ray data in the outer heliosphere tells us about 10 Be production in the Earth s polar atmosphere in the recent past Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014532, 2010 What Voyager cosmic ray data in the outer heliosphere tells us about 10 Be production in the Earth

More information

Interplanetary Field During the Current Solar Minimum

Interplanetary Field During the Current Solar Minimum Interplanetary Field During the Current Solar Minimum C.T. Russell 1, L.K. Jian 1, J. G. Luhmann 2, T.L. Zhang 3 1 UCLA, 2 UCB, 3 SRI, OEAW SOHO 23 Understanding a Peculiar Solar Minimum Asticou Inn, Northeast

More information

Hale cycle in solar-rotation related recurrence of galactic cosmic rays

Hale cycle in solar-rotation related recurrence of galactic cosmic rays Hale cycle in solar-rotation related recurrence of galactic cosmic rays Institute of Mathematics and Physics, Siedlce University, 3 Maja 54, 08-0 Siedlce, Poland E-mail: gila@uph.edu.pl Kalevi Mursula

More information

Chapter 3. The Solar Wind in the Vicinity of Earth and Jupiter

Chapter 3. The Solar Wind in the Vicinity of Earth and Jupiter Chapter 3 The Solar Wind in the Vicinity of Earth and Jupiter Planetary bow shocks form in order to divert the supersonic solar wind around planetary obstacles. In the case of magnetized planets such as

More information

Sheared magnetic field structure in Jupiter s dusk magnetosphere: Implications for return currents

Sheared magnetic field structure in Jupiter s dusk magnetosphere: Implications for return currents JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A7, 1116, 10.1029/2001JA000251, 2002 Sheared magnetic field structure in Jupiter s dusk magnetosphere: Implications for return currents Margaret G. Kivelson,

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Article Drift induced deceleration of Solar Energetic Particles Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Available at http://clok.uclan.ac.uk/12041/ Dalla, Silvia, Marsh, Michael and

More information

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/809/2/177 SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 Gang Qin

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

P472G. The Solar Wind

P472G. The Solar Wind P472G The Solar Wind Copyright No9ce The material presented during this course may contain items collected from third- party sources and are presented to you for your personal study. The US Copyright Act

More information

W. Drzge H. Kunow. A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando C. Rastoin C. Paizis J.

W. Drzge H. Kunow. A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando C. Rastoin C. Paizis J. Title: Aufhor(s): Submitted to: EFFECTS OF COROTATING INTERACTION REGIONS ON ULYSSES HIGH ENERGY PARTICLES W. Drzge H. Kunow A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando

More information

Modelling cosmic ray intensities along the Ulysses trajectory

Modelling cosmic ray intensities along the Ulysses trajectory Annales Geophysicae,, 6 7, 5 SRef-ID: -576/ag/5--6 European Geosciences Union 5 Annales Geophysicae Modelling cosmic ray intensities along the Ulysses trajectory D. C. Ndiitwani, S. E. S. Ferreira, M.

More information

Solar Activity during the Rising Phase of Solar Cycle 24

Solar Activity during the Rising Phase of Solar Cycle 24 International Journal of Astronomy and Astrophysics, 213, 3, 212-216 http://dx.doi.org/1.4236/ijaa.213.3325 Published Online September 213 (http://www.scirp.org/journal/ijaa) Solar Activity during the

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Correlation of solar wind entropy and oxygen ion charge state ratio

Correlation of solar wind entropy and oxygen ion charge state ratio JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010010, 2004 Correlation of solar wind entropy and oxygen ion charge state ratio A. C. Pagel and N. U. Crooker Center for Space Physics, Boston

More information

Tri-diurnal anisotropy of cosmic ray daily variation for the solar cycle 23

Tri-diurnal anisotropy of cosmic ray daily variation for the solar cycle 23 Indian Journal of Radio & Space Physics Vol. 39, December 2010, pp. 341-345 Tri-diurnal anisotropy of cosmic ray daily variation for the solar cycle 23 Kamlesh Singh & Pankaj K Shrivastava $,* Department

More information

The Energetic Particle Populations of the Distant Heliosphere

The Energetic Particle Populations of the Distant Heliosphere The Energetic Particle Populations of the Distant Heliosphere F. B. McDonald *, A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, and W. R. Webber * Institute for Physical Science and Technology, University

More information

Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane Annales Geophysicae (2003) 21: 1229 1243 c European Geosciences Union 2003 Annales Geophysicae Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information