Differential velocity between solar wind protons and alpha particles in pressure balance structures

Size: px
Start display at page:

Download "Differential velocity between solar wind protons and alpha particles in pressure balance structures"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi: /2003ja010274, 2004 Differential velocity between solar wind protons and alpha particles in pressure balance structures Yohei Yamauchi and Steven T. Suess NASA Marshall Space Flight Center, Huntsville, Alabama, USA John T. Steinberg Los Alamos National Laboratory, Los Alamos, New Mexico, USA Takashi Sakurai National Astronomical Observatory of Japan, Tokyo, Japan Received 2 October 2003; revised 15 January 2004; accepted 23 January 2004; published 11 March [1] Pressure balance structures (PBSs) are a common high-plasma beta feature in highlatitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfvén wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained. INDEX TERMS: 2169 Interplanetary Physics: Sources of the solar wind; 2134 Interplanetary Physics: Interplanetary magnetic fields; 2109 Interplanetary Physics: Discontinuities; 7507 Solar Physics, Astrophysics, and Astronomy: Chromosphere; KEYWORDS: solar wind, Ulysses, plumes, pressure balance structures, Alfvén waves Citation: Yamauchi, Y., S. T. Suess, J. T. Steinberg, and T. Sakurai (2004), Differential velocity between solar wind protons and alpha particles in pressure balance structures, J. Geophys. Res., 109,, doi: /2003ja Introduction [2] Pressure balance structures (PBSs) are intervals in the solar wind in which changes in the plasma and magnetic pressures balance one another while total pressure remains approximately constant. In fact, the solar wind is generally in near pressure balance everywhere except where dynamic interactions dominate, as, for example, at the fronts of corotating interaction regions (CIRs). However, PBSs have been identified as a well-defined class of features in highspeed, high-latitude wind that is associated with high-plasma Copyright 2004 by the American Geophysical Union /04/2003JA beta (b) intervals lasting several hours. These intervals permeate the high-speed wind and are suggested to be the interplanetary remnants of coronal plumes [McComas et al., 1996]. This is because they have compatible geometric and statistical properties and plumes are a common feature in coronal holes, in particular at solar activity minimum [Thieme et al., 1988, 1990; Velli et al., 1994; Casalbuoni et al., 1999]. Support for the plume-pbs relationship comes from a correlation between fluctuations in b and in helium abundance across PBSs [Reisenfeld et al., 1999]. Since solar wind abundances are fixed in the chromosphere and transition region and since polar coronal holes are source regions of high-speed solar wind, Reisenfeld et al. [1999] concluded that the solar origin for PBSs may be plumes. 1of10

2 [3] Plumes are rooted in concentrations of magnetic flux at the vertices of supergranules in the photosphere of the Sun [Suess et al., 1998]. Their geometric structure is defined by this flux concentration and other studies have shown that the formation of plumes is related to network activity (reconnection) as oppositely directed magnetic flux is advected up to the magnetic flux concentrations [Wang, 1998; DeForest et al., 1997]. Given this inherently magnetic structure of plumes at the Sun, it is logical to suggest that information on the magnetic structure of PBSs might be helpful in investigating the relationship between PBSs and plumes in more detail. Reconnection at the base of plumes could lead to PBSs containing magnetic features such as plasmoids or current sheets as a consequence of small-scale magnetic ejections. Yamauchi et al. [2002] looked for signs of such features inside PBSs by performing a minimum variance analysis (MVA) [Sonnerup and Cahill, 1967] on magnetic discontinuities in which the radial magnetic field changes sign. They found that tangential discontinuities dominate, in preference to rotational, so that magnetic discontinuities in PBSs have the character of current sheets or plasmoids. This is in contrast to structures in which the magnetic field reverses direction by folding back on itself in magnetic switchbacks, as in large-amplitude Alfvén waves, that would exhibit rotational discontinuities. A similar analysis was performed on discontinuous reversals in the radial magnetic field that did not lie inside high-b PBSs. The two samples displayed significantly different statistical properties, with the non-pbs discontinuities having a much greater probability of being rotational discontinuities such as in magnetic switchbacks. [4] Single-spacecraft MVA of discontinuities is subject to uncertainties [Horbury et al., 2001] so that an independent method of analyzing magnetic discontinuities that circumvents the uncertainties inherent in single spacecraft MVA studies would be an important step to validate the MVA results. One such method is to compare differential streaming of protons and alpha particles (He ++ ) on opposite sides of magnetic discontinuities. The radial flow speed of alpha particles in high-speed wind is typically larger than that of protons [Formisano et al., 1970; Robbins et al., 1970; Bollea et al., 1972; Ogilvie, 1975; Asbridge et al., 1976; Marsch et al., 1982; Neugebauer, 1981]. The difference is usually comparable to but less than the Alfvén speed. This property has been used by Steinberg et al. [1996] to show that the direction of differential flow between protons and alpha particles, V a V p (hereafter V ap ), is well correlated with the local magnetic field vector, B. This happens because any proton-alpha differential streaming must be aligned along the interplanetary magnetic field. In the context of a change in magnetic field direction at a discontinuity, this leads to three (possibly four) cases that might occur, as illustrated in Figure 1. The first of these (A) isa fold or Alfvénic fluctuation, the second (B) is an isolated current sheet that extends back to the Sun, and the third (C) is a loop which closes back to the Sun (or which could be closed back on itself, as in a plasmoid). In A, e r V ap reverses sign when e r B reverses sign, where e r is the unit vector in the radial direction. In B, only B reverses sign. In C, there will either be alpha particles streaming in both directions with respect to protons or there may be no net differential streaming, with the signature also depending Figure 1. (left) Cartoon of three possible configurations across discontinuities in the radial magnetic field. (right) Diagrams of the variation in radial magnetic field strength and alpha particle-proton differential streaming in the radial direction across the three classes of discontinuities. how the data are reduced from the original distribution function. Only in cases A and C does B have a normal component across the reversal. These three possibilities are diagrammed in the three panels on the right in Figure 1. This is discussed here in terms of e r V ap and e r B, even though the phenomenon is defined in terms of reversals in the vector quantity B. This is because we wish to compare our results with those of Yamauchi et al. [2002], where e r V ap and e r B were used. The reason this restriction seems successful here is discussed in section 2.2. [5] Differential streaming of alpha particles and protons thus presents a way of analyzing the magnetic topology in the vicinity of the short-duration magnetic field reversals observed inside PBSs. It is an alternative to 100 ev electron pitch angle distributions that have often been used to analyze the topology in magnetic clouds [Gosling et al., 1987]. Electron pitch angle distributions are less useful for PBSs because these data from Ulysses, the spacecraft that is used for this analysis, have a low time cadence due to the distance between Earth and Ulysses and the distance of Ulysses from the Sun. Ulysses is the only spacecraft sampling high heliographic latitude, high-speed wind. In particular, Ulysses passed over the south and north poles of the Sun in 1994 and 1995, respectively, when solar activity was minimum so that fast and nearly constant solar wind was coming from the polar regions [Phillips et al., 1995]. For these reasons, Ulysses has been used for detailed studies of PBSs and other high-latitude fine structures such as microstreams [Neugebauer et al., 1995]. The only other such studies are those using low-latitude Helios data. 2. Observations and Analysis 2.1. Identification of PBSs [6] The criteria for identifying PBSs are listed by Yamauchi et al. [2002]. For an isolated structure, they can be summarized as: (1) approximate local pressure balance across the structure, (2) duration of at least 6 hours, and (3) plasma b b avg + s b, where b avg is the average plasma b in highspeed wind, computed using the electron + proton + alpha particle pressure, normalized along with the magnetic field strength to 1 AU [McComas et al., 1996]. Here s b is the rms standard deviation of b avg. Yamauchi et al. [2002] 2of10

3 Figure 2. Plasma and magnetic field parameters for intervals on (a) 6 8 June 1994 and (b) 9 11 August These intervals are at the time Ulysses was at (Figure 2a) 67 latitude and a heliocentric distance of 2.9 AU and (Figure 2b) 77 latitude and a heliocentric distance of 2.5 AU. The individual panels show the solar wind velocity, the radial magnetic field (B r ) in RTN coordinates, the pressures (total: solid, thermal: dashed, and magnetic: dotted), and the plasma b normalized to 1 AU, respectively. With the plasma b is also shown the average value, b avg of the normalized quantity over the time Ulysses was south of 50 as a dash-dotted line and b avg + s b /2 as a dotted line. The PBSs and non-pbss are defined by the shading and heading at the top of Figures 2a and 2b. identified 53 PBSs in the high-speed wind from the southern polar coronal hole in 1994 using these criteria, along with a comparison sample of 70 non-pbss that were selected under similar criteria, except for requirement 3 on b. All of these PBSs had the distinction of containing at least one interval of reversal in B r. This is not a necessary condition for the identification of a PBS, but associating PBSs with plumes suggests that every PBS will contain at 3of10

4 Figure 3. Top two panels show time variation of B r and V ap_r (solid lines) and the correlation between the two, computed as described in the text (dotted line). Bottom two panels show altitude (q) and azimuth (f) of the magnetic field B (solid line) and proton-alpha differential velocity V ap ( and +) in the PBS observed at (UT) on 9 June The two dash-dotted vertical lines locate where the MVA was applied at a local reversal in B r by Yamauchi et al. [2002]. The times outside the PBS are lightly shaded in gray. least one pair of field reversals, even though a spacecraft passing through the PBS may not necessarily encounter it [Yamauchi et al., 2002]. For PBS identification, Ulysses 1-hour averaged plasma and magnetic field data from Solar Wind Observations Over the Poles of the Sun (SWOOPS) [Bame et al., 1992] and Vector Helium Magnetometer/ Fluxgate Magnetometer (VHM/FGM) [Balogh et al., 1992], respectively, were used. The data were taken in the south polar regions above 50 southern latitude from 18 January 1994 to 21 December The heliocentric distance of Ulysses in the period was AU. There is no a priori reason to expect that PBSs differ in the north; thus no northern hemisphere results are described here. [7] Figure 2 shows examples of PBSs and non-pbss in the 1-hour average data. Two examples are contained in the time intervals (a) 6 8 June 1994 and (b) 9 11 August The PBS and non-pbs are indicated by the shaded areas. The individual panels show the solar wind velocity, the radial magnetic field strength (B r ), the pressures (total (solid), thermal (dashed), and magnetic (dotted)), and b normalized to 1AU, respectively. In the plot of b, the dashdotted and dotted lines are b avg and b avg + s b /2, respectively. From this figure, it is obvious that isolated intervals containing either high b or reversals in B r are not uncommon. However, intervals containing all of the characteristics of PBSs constitute a finite, well-defined category, with high b intervals being identifiable with little ambiguity Analysis [8] To analyze differential streaming in the vicinity of B r reversals, the highest resolution plasma data were used, which were normally 4-min cadence, although occasionally only 8-min cadence data were available. More than 90% of the plasma data were of 4-min cadence. One-min average magnetometer data were smoothed with a simple moving boxcar average onto the same temporal grid as the plasma data so that cross-correlations between the plasma and field could be computed. Alpha particle flow vectors were measured by the SWOOPS instrument at the same cadence as the other plasma data. This completes the data set necessary for the analysis. [9] A typical example of the high correlation that normally exists between the two vector quantities V ap and B is shown in the bottom two panels of Figure 3, which display the time variation of the altitude (q) and azimuth (f) ofb (solid lines) and V ap (+ and ). The example, on 9 June 4of10

5 Figure 4. Two examples of a linear fit and correlation computed in a 1-hour window in the PBS displayed in Figure 3. (left) Here t = 0120 UT, showing a low correlation and poor linear fit. (right) Here t = 0231 UT, a high correlation and good linear fit. 1994, includes a PBS in the interval (UT). V ap has been plotted because the magnetic field in the southern hemisphere was sunward at this time in the 22 year solar Hale magnetic cycle. The magnetic field vector and the differential alpha-proton streaming tracked each other extremely well, both during continuous changes and across discontinuities. The strong correspondence between these angles for the magnetic field and the differential streaming is remarkable in that these angles for the plasma are not always strictly well determined from the plasma moments; the formal uncertainty can be large. These results suggest that the angles may often be better determined than expected from statistics based on the plasma moments. [10] The MVA study used reversals in the scalar quantity B r. However, because the average Parker spiral angle during the southern polar pass of Ulysses above 50 S is30 ± 13, jb f j < jb r j. This means that fluctuations in the magnetic field will be less likely to destroy a correlation between B r and V ap_r e r V ap than when the spiral angle is >45. The dispersion in the magnetic field direction increases in the higher resolution data so this is an important consideration. In spite of this qualification, the results in Figure 3 imply limitation to B r is not a severe difficulty. Nevertheless, we examine the full vector relationship in any ambiguous cases. [11] The top two panels in Figure 3 show the time variation of the radial magnetic field, B r, V ap_r, and the correlation, C BV (dotted line) between the two quantities. The correlation was computed using a moving 1-hour window and has been utilized here as a quantitative measure of the overall relation between B r and V ap_r and as a tool for identifying how well the two quantities track each other in any given PBS or non-pbs. The plotted value was taken from the center of the moving window. The correlation is very close to 1 near the time when the MVA was applied at the discontinuity in this example (at the dash-dotted vertical lines). The MVA indicated that this was a tangential discontinuity (TD). However, the good correlation between B r and V ap_r across the discontinuity in B r and the interpretation shown in Figure 1 indicates that this must be a magnetic switchback or (equivalently) a rotational discontinuity (RD). Therefore this is an example of contradictory results between the MVA and the differential streaming of protons and a-particles. The f- and q-angles in the bottom panels confirm the interpretation made using only the scalars B r and V ap_r. Potential reasons for this disagreement are discussed in section 4. [12] Looking at the correlation at other times in Figure 3, there are intervals when it fell to very small values, such as near the time 0100 UT. Besides the statement that the correlation was simply poor at that time, there are at least two physical explanations for why this might have happened. The first is that if the radial magnetic field was nearly zero while the total field intensity remained finite, then the differential streaming might have been primarily nonradial and the correlation based on the radial components of the two vectors might have fallen to small values. That would be an example in which it is necessary to examine the vector relationship between V ap and B. The second reason, and the explanation for the low correlation at 0100 UT in Figure 3, has to do with the finite width of the window used in computing the correlation and a situation in which both V ap_r and B r were approximately constant for an interval at least as long as the width of the window. For a 1-hour window over which the variables are constant except for small, random fluctuations, the correlation will fall to zero. This is illustrated in Figure 4, which shows a linear fit to the data used for the correlations in Figure 3 for two 1-hour windows centered at 0120 UT and 0231 UT. The first is at the time of low correlation and the data had small, nearly random scatter. The resulting straight line fit in the left panel is an extremely poor fit, with a correlation of just 0.1. Conversely, when the variables change across the window, as they did in the data centered at 0231 UT in the right panel, the resulting straight line fit is excellent, with a correlation of A wider window would avoid this problem, but would also limit the utility of the correlation for finding anomalous short intervals that potentially con- 5of10

6 Figure 5. B r and V ap_r (solid lines) and the correlation between the two (dotted line) for a non-pbs at (UT) on 6 December The times outside the non-pbs are lightly shaded in gray. tain plasmoids, loops which close back to the Sun, and/or true TDs. [13] For comparison with the PBS in Figure 3, a non-pbs interval observed at UT on 6 December 1994 is shown in Figure 5. A discontinuity at 0525 UT was identified as an RD in the MVA. The correlation is again almost 1 in the entire interval so the MVA result is in agreement with the differential streaming result for this case, in contrast to the example in Figure 3 where the MVA failed. Overall, the correlation here is similar to that shown in Figure 3 in a PBS and there is no reason to suggest a significant difference between PBSs and non-pbss based on these results. 3. Results [14] To evaluate, first, the overall relationship between the radial magnetic field and radial differential streaming in all the identified PBSs, the average correlation, hc VB i, was computed for intervals in the 53 PBSs lying between 1 hour before and 1 hour after the time at which the MVA was applied. The result is that hc VB i = 0.84 ± This is the average of values in the 1-hour window which, at most, was computed with 15 data points or 13 degrees of freedom. For a sample of this size, any correlation above 0.5 is statistically significant at the 99% level. The rms deviation (±0.17) was computed from the variations within the set of correlation coefficients and does not depend on the number of degrees of freedom for each individual coefficient. The conclusion that can be derived from this is that local reversals in B r in PBSs are commonly due to kinks in the magnetic field, magnetic switchbacks or large amplitude Alfvénic fluctuations containing RDs and not plasmoids or current sheets. This is a statistical statement about the most common result and does not say anything about specific individual cases which might deviate from the norm. [15] In the comparison sample outside PBSs, the average correlation in the vicinity of radial magnetic field reversals where an MVA was carried out in 70 non-pbss, derived in the same manner as for PBSs, is hc VB i = 0.86 ± This leads to the same conclusion as above, that reversals in B r in non-pbss where the MVA was applied are also commonly caused by magnetic switchbacks. It is entirely consistent with the earlier conclusions of Balogh et al. [1999], based on the propagation direction of waves during magnetic polarity inversions (reversals in B). The number of degrees of freedom is the same as for PBSs, and again this is a statistical statement about the most common case and does not say anything about specific individual cases which might deviate from the norm. [16] These overall statistical results confirm that the typical situation in high-latitude, high-speed solar wind when there is a reversal in the radial component of the magnetic field is a magnetic switchback. The magnetic field is locally folded back on itself but the overall field is continuous. In typical high-speed wind these are Alfvénic fluctuations [e.g., Balogh et al., 1999; Belcher and Davis, 1971], but we retain the switchback nomenclature since differential streaming is independent of Alfvénicity. This provides the basis to search for times which differ from this typical case. To do this, the entire set of PBSs and non-pbss was scanned for times when the correlation was distinctly positive, opposite to what is expected for the southern polar coronal hole at this time in the Hale magnetic cycle. The result of this search is that only at one time was there a significant local reversal in the sign of the correlation at the time of a reversal in B r. Furthermore, the correlation reversal, although in a PBS, took place at a different time, around a different local reversal in B r, than when the MVA was performed in Yamauchi et al. [2002]. [17] The time and PBS exhibiting a reversal in sign of the correlation is shown in Figure 6, where B r and V ap_r are plotted in a PBS that was observed at UT on 23 September An MVA had been carried out on a local reversal in B r at 1930 UT by Yamauchi et al. [2002] and that analysis identified the discontinuity as an ED (that is, it could be either a TD or an RD). The correlation between B r and V ap_r was large and negative throughout that time, showing that it was actually an RD. However, within the same PBS, at a different and rather brief local 6of10

7 Figure 6. (top) B r and V ap_r (solid lines) and the correlation between the two (dotted line) in a PBS observed at on 23 September (bottom) The f and q angles for B (solid line) and V ap in the PBS. The times outside the PBS are lightly shaded in gray. reversal in B r at 1500 UT, the correlation became positive for almost an hour and was greater than 0.5 for about 0.5 hours. This is a statistically significant result. The polar angles q and f of V ap and B, plotted in the lower two panels of Figure 6, confirm that there was a true positive correlation. What are shown here are two data points near 1450 UT for which the q and f angles of the magnetic field and plasma distinctly differed by 90. This appears to be a case where the correlation did reverse sign. The smoothness of the change in the correlation is an illusion caused by the width of the correlation window. This could be an instance of an isolated current sheet such as shown as case B in Figure 1. If so, this is a rare phenomenon. [18] A much more common condition is that C VB 0for 1 hour, similar to the case illustrated in Figure 3 near 0100 UT on 9 June However, in contrast to that case, not all the time periods with C VB 0 can be dismissed by one of the two explanations given above. Such an anomalous case is shown in Figure 7, for a PBS on 2 October 1994 at UT. Yamauchi et al. [2002] conducted an MVA on a local B r reversal at 0530 UT, identifying it as a TD. The correlation between B r and V ap_r remained very high at that time, and inspection of the f and q angles shown in the bottom two panels of the figure shows that the vector field and vector differential streaming tracked each other extremely well across the discontinuity and that it must therefore be an RD. However, elsewhere in the PBS at UT the correlation became 0. Over most of this interval, the radial field, although changing sign four times, was not small. Inspection of the f and q angles in the bottom two panels shows that the f angles of V ap and B failed to follow each other over the first two-thirds of the interval. In particular, they seem to have been 90 briefly out of phase at 0820 UT. Over the interval UT, V ap_r was mostly relatively small but there was a spike at the time of the phase reversal in the two f angles. [19] One possible explanation for this is that it could be a combination of a local current sheet (case B in Figure 1) and an advected loop (case C in Figure 1). However, it is also possible that the field changed direction in the middle of one or more plasma scans so that the plasma distributions in this case are not necessarily reliable and the poor correlations is thus an instrumental effect. Nevertheless, this example may contradict the paradigm that all reversals in B r in the highlatitude, high-speed solar wind are switchbacks. The number of such anomalies is relatively small and seems to be more-or-less evenly divided between PBSs and non-pbss. Therefore contrary to our initial expectation, it does not provide any support for the hypothesis that PBSs are the remnants of polar plumes. It is impossible to give a quantitative estimate of the rate these anomalous conditions occur. They are less common than PBSs since only a subset 7of10

8 Figure 7. (top) B r and V ap_r (solid lines) and the correlation between the two (dotted line) in a PBS observed at (UT) on 2 October (bottom) The f and q angles for B (solid line) and V ap in the PBS. The times outside the PBS are lightly shaded in gray. of our PBSs contained them. Similarly, only a subset of our non-pbss contained them. There seems to be no consistent relationship between any given reversal in B r and whether one of these anomalies exists. 4. Summary and Discussion [20] The differential streaming velocity between solar wind protons and alpha particles has been examined to identify magnetic structures in 53 PBSs and 70 non-pbss. The data were taken from high-speed solar wind observed by Ulysses at high southern solar latitudes in The study was limited to the behavior of the differential velocity and magnetic field in the radial direction in order to compare with the results of Yamauchi et al. [2002]. The analysis has been successful with this limitation only because the Parker spiral angle is relatively close to radial. It was found that there is nearly always a strong correlation between the differential streaming in the radial direction, V ap_r, and the radial magnetic field, B r. The average correlation is 0.84 in PBSs and 0.86 in non-pbss, respectively. This correlation is found to be statistically significant when considering the small sample size in the moving window used to compute the correlation. [21] The conclusion is that nearly all intervals when B r reverses sign in the high-latitude, high-speed solar wind are magnetic switchbacks (i.e., case A in Figure 1), since the correlation is close to 1. This result has been reported previously for the overall high-speed wind by Balogh et al. [1999]. What is new here is that this conclusion applies equally well to the subset of high-speed wind identified by large values of b as being PBSs. [22] As Balogh et al. [1999] discussed in reference to the origin of switchbacks, outward propagating Alfvén waves are expected to play an important role. However, Alfvén waves generated simply by random motions of the footpoint of magnetic fields at the Sun do not seem able to lead directly to switchbacks. The duration of the B r reversals is typically tens of minutes to 2 hours, which corresponds to a heliographic longitude span 1 (= 10 4 km) on the surface of the Sun at midlatitudes. This is roughly the width of the magnetic lanes of the network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks with B r reversal might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. Recently, Yamauchi et al. [2004] have found that many network-scale magnetic fields in polar coronal holes do erupt as loops, using Ha data from Big Bear Solar Observatory. [23] Minimum variance analysis of B r discontinuities in PBSs had identified the discontinuities as preferentially being 8of10

9 tangential discontinuities, while they are preferentially rotational discontinuities in non-pbss [Yamauchi et al., 2002]. The difference from the present results remains unexplained. However, in view of the present results, the MVA result cannot be used to conclude that there are plasmoids or expanding loops in PBSs. [24] In addition to computing the correlation between B r and V ap_r, each individual PBS and non-pbs was scanned for anomalous times when the correlation either reversed sign or went to zero. This search was motivated by the ideas illustrated in Figure 1, showing how differential streaming might be affected by the presence of a magnetic fold (A), an isolated current sheet (B), or an expanding loop (C). [25] There were no times when the correlation reversed sign in the vicinity of the same reversal in B r which had been analyzed in the MVA study of Yamauchi et al. [2002]. In scanning the PBSs and non-pbss, a single instance was identified, removed from one of the earlier selected reversals in B r, during which C VB did reverse sign. This case is illustrated in Figure 6 and evaluated in the associated discussion. Since this was an isolated instance, it is entirely possible that it was a statistical quirk. However, it could also be an example of an isolated pair of current sheets, case B in Figure 1. Without additional, independent data or more examples, it is impossible to determine more about this feature. [26] There were also several times when C VB! 0. There are two possible explanations for this (given in section 2.2) that do not invoke any of the phenomena illustrated in Figure 1. Some of the instances of C VB! 0 can be explained in this way. However, there were still several times when C VB!0 that could not be explained either by unusually small values of B r or by intervals with small overall variation, the situation illustrated in Figure 4. These remaining times are possibly magnetic loops being advected by the spacecraft. They do not have the nice reversal in correlation that would occur across a current sheet, and examination of the full vector variations shows that these instances are a true failure of the paradigm that V ap and B follow each other. One possible physical explanation is that there is counterstreaming, as might occur in case C in Figure 1. Another is a failure to accurately measure the plasma distribution in the presence of rapid, large amplitude magnetic field fluctuations. Further study of these instances, and possibly new measurements, will be required to make this determination. [27] The question still remains as to why the MVA results do not agree with those from analysis of proton-alpha differential streaming along the magnetic field. One possible scenario is that the folding of the magnetic field is more fully evolved in PBSs than in non-pbss by the time the solar wind has traveled to Ulysses. This would be the case if the solar wind speed was smaller in polar plumes, as has often been reported [Giordano et al., 2000; Teriaca et al., 2003]. In this case, an MVA might more commonly identify the discontinuities in PBSs defining the boundaries of the fold as TDs than RDs because the component of the magnetic vector normal to the discontinuity would be reduced as the thickness of a fold is reduced. Given the inherent uncertainties in MVAs that have been described by Horbury et al. [2001], another possibility is that some property of PBSs may give bias to the statistics of MVA results in PBSs. Such characteristics might include a spectrum of waves and turbulence that depends on the local value of b. Physically, it is entirely possible that local turbulence characteristics could depend on b. As a matter of fact, Horbury et al. [2001] attributed inaccuracies in MVA results to the presence of fluctuations on the surface defined by discontinuities; such a possibility may also exist. [28] Acknowledgments. This research has been supported by the Ulysses/SWOOPS solar wind plasma instrument team and we would like to thank the Ulysses/VHM/FGM magnetometer team for the use of their data. Y. Yamauchi is a NRC/NAS Resident Research Associate. [29] Shadia Rifai Habbal thanks Bruno Bavassano and Tim S. Horbury for their assistance in evaluating this paper. References Asbridge,J.R.,S.J.Bame,W.C.Feldman,andM.D.Montgomery (1976), Helium and hydrogen velocity difference in the solar wind, J. Geophys. Res., 81, Balogh, A., T. J. Beek, R. J. Forsyth, P. C. Hedgecock, R. J. Marquedant, E. J. Smith, D. J. Southwood, and B. T. Tsurutani (1992), The magnetic field investigation on the Ulysses mission: Instrumentation and preliminary scientific results, Astron. Astrophys., Suppl. Ser., 92, Balogh, A., R. J. Forsyth, E. A. Lucek, and T. S. Forbury (1999), Heliospheric magnetic field polarity inversions at high heliographic latitudes, Geophys. Res. Lett., 26, Bame, S. J., D. J. McComas, B. L. Barraclough, J. L. Phillips, K. J. Sofaly, J. C. Chavez, B. E. Goldstein, and R. K. Sakurai (1992), The Ulysses solar wind plasma experiment, Astron. Astrophys., Suppl. Ser., 92, Belcher, J. W., and L. Davis Jr. (1971), Large-amplitude Alfvén waves in the interplanetary medium: 2, J. Geophys. Res., 76, Bollea, D., V. Formisano, P. C. Hedgecock, G. Moreno, and F. Palimotto (1972), Helios 1 helium observations in the solar wind, NASA Spec. Publ., 308, 588. Casalbuoni, S., L. Del Zanna, S. R. Habbal, and M. Velli (1999), Coronal plumes and the expansion of pressure-balanced structures in the fast solar wind, J. Geophys. Res., 104, DeForest, C. E., J. T. Hoeksema, J. B. Gurman, B. J. Thompson, S. P. Plunkett, R. Howard, R. C. Harrison, and D. M. Hasslerz (1997), Polar plume anatomy: Results of a coordinated observation, Solar Phys., 175, Formisano, V., G. Moreno, and F. Palmiotto (1970), a-particle observations in the solar wind, Solar Phys., 15, 479. Giordano, S., E. Antonucci, G. Noci, M. Romoli, and J. L. Kohl (2000), Identification of the coronal sources of the fast solar wind, Astrophys J., 531, L79 L82. Gosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J. Smith (1987), Bidirectional solar wind electron heat flux events, J. Geophys. Res., 92, Horbury, T. S., D. Burgess, and M. Fränz (2001), Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, Marsch, E., K.-H. Muhlhauser, H. Rosenbauer, R. Schwenn, and F. M. Neubauer (1982), Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87, McComas, D. J., G. W. Hoogeveen, J. T. Gosling, J. L. Phillips, M. Neugebauer, A. Balogh, and R. Forsyth (1996), Ulysses observations of pressure-balance structures in the polar solar wind, Astron. Astrophys., 316, Neugebauer, M. (1981), Observations of solar-wind helium, Fund. Cosmic Phys., 7, 131. Neugebauer, M., B. E. Goldstein, D. J. McComas, S. T. Suess, and A. Balogh (1995), Ulysses observations of microstreams in the solar wind from coronal holes, J. Geophys. Res., 100, 23,389 23,395. Ogilvie, K. W. (1975), Differences between the bulk speeds of hydrogen and helium in the solar wind, J. Geophys. Res., 80, Phillips, J. L., et al. (1995), Ulysses solar wind plasma observations from pole to pole, Geophys. Res. Lett., 21, Reisenfeld, D. B., D. J. McComas, and J. T. Steinberg (1999), Evidence of a solar origin for pressure balance structures in the high-latitude solar wind, Geophys. Res. Lett., 26, Robbins, D. E., A. J. Hundhausen, and S. J. Bame (1970), Helium in the solar wind, J. Geophys. Res., 75, Sonnerup, B. U. Ö., and L. J. Cahill (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, Steinberg, J. T., A. J. Lazarus, K. W. Ogilvie, R. Lepping, and J. Byrnes (1996), Differential flow between solar wind protons and alpha particles: First WIND observations, Geophys. Res. Lett., 23, of10

10 Suess, S. T., A.-H. Wang, I. Cuseri, G. Poletto, and S. T. Wu (1998), The geometric spreading of coronal plumes and coronal holes, Solar Phys., 180, Teriaca, L., G. Poletto, M. Romoli, and D. A. Biesecker (2003), The nascent solar wind: Origin and acceleration, Astrophys J., 588, Thieme, K. M., E. Marsch, and R. Schwenn (1988), Relationship between structures in the solar wind and their source regions in the corona, in Proceedings of Sixth International Solar Wind Conference, Tech. Note NCAR/TN Proc., edited by V. J. Pizzo, T. E. Holzer, and D. G. Sime, pp , Natl. Cent. for Atmos. Res., Boulder, Colo. Thieme, K. M., E. Marsch, and R. Schwenn (1990), Special structures in high speed streams as signatures of fine structures in coronal holes, Ann. Geophys., 8, Velli, M., S. R. Habbal, and R. Esser (1994), Coronal plumes and fine scale structure in high speed solar wind streams, Space Sci. Rev., 70, 391. Wang, Y.-M. (1998), Network activity and the evaporative formation of polar plumes, Astrophys, 501, L145 L150. Yamauchi, Y., S. T. Suess, and T. Sakurai (2002), Relation between pressure balance structures and polar plumes from Ulysses high latitude observations, Geophys. Res. Lett., 29(10), 1383, doi: / 2001GL Yamauchi, Y., R. L. Moore, S. T. Suess, H. Wang, and T. Sakurai (2004), The magnetic structure of Ha macrospicules in solar coronal holes, Astrophys J., in press. T. Sakurai, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo , Japan. (sakurai@corona.mtk.nao.ac.jp) J. T. Steinberg, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. (jsteinberg@lanl.gov) S. T. Suess and Y. Yamauchi, NASA Marshall Space Flight Center, SD 50, Huntsville, AL 35812, USA. (steven.t.suess@nasa.gov; yohei.yamauchi@ msfc.nasa.gov) 10 of 10

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

Ulysses' rapid crossing of the polar coronal

Ulysses' rapid crossing of the polar coronal JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. A2, PAGES 1955-1967, FEBRUARY 1, 1998 Ulysses' rapid crossing of the polar coronal hole boundary D. J. McComas, P. Riley, and J. T. Gosling Space and Atmospheric

More information

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole Astron. Astrophys. 316, 287 295 (1996) ASTRONOMY AND ASTROPHYSICS The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole R.J. Forsyth 1, A. Balogh 1, T.S. Horbury 1,G.Erdös

More information

STRUCTURE OF A MAGNETIC DECREASE OBSERVED

STRUCTURE OF A MAGNETIC DECREASE OBSERVED Journal of the Korean Astronomical Society http://dx.doi.org/1.33/jkas.216.49.1.19 49: 19 23, 216 February pissn: 122-4614 eissn: 2288-89X c 216. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org

More information

Petschek-type magnetic reconnection exhausts in the solar wind well

Petschek-type magnetic reconnection exhausts in the solar wind well Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011863, 2006 Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios J. T. Gosling,

More information

Global structure of the out-of-ecliptic solar wind

Global structure of the out-of-ecliptic solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010875, 2005 Global structure of the out-of-ecliptic solar wind Y. C. Whang Department of Mechanical Engineering, Catholic University of America,

More information

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation Annales Geophysicae (2003) 21: 1257 1261 c European Geosciences Union 2003 Annales Geophysicae How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND WDS'10 Proceedings of Contributed Papers, Part II, 128 134, 2010. ISBN 978-80-7378-140-8 MATFYZPRESS Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND A. Lynnyk, J. Šafránková, Z. Němeček

More information

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Bala Poduval and Xue Pu Zhao Hansen Experimental Physics Laboratory Stanford

More information

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer

Observations of an interplanetary slow shock associated with magnetic cloud boundary layer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15107, doi:10.1029/2006gl026419, 2006 Observations of an interplanetary slow shock associated with magnetic cloud boundary layer P. B.

More information

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013631, 2009 Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits

More information

Weaker solar wind from the polar coronal holes and the whole Sun

Weaker solar wind from the polar coronal holes and the whole Sun Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L18103, doi:10.1029/2008gl034896, 2008 Weaker solar wind from the polar coronal holes and the whole Sun D. J. McComas, 1,2 R. W. Ebert,

More information

by the American Association for the Advancement of Science

by the American Association for the Advancement of Science Reprint Series 19 May 1995, Volume 268, pp. 1030-1033 J. L. Phillips, S. J. Same, W. C. Feldman, S. E. Goldstein, J. To Gosling, C. M. Hammond, D. J. McComas, M. Neugebauer, E. E. Scime, and S. T. Suess

More information

Probing the magnetic polarity structure of the heliospheric current sheet

Probing the magnetic polarity structure of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A8, 1316, doi:10.1029/2002ja009649, 2003 Probing the magnetic polarity structure of the heliospheric current sheet S. W. Kahler Space Vehicles Directorate,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L20108, doi: /2007gl031492, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34,, doi:10.1029/2007gl031492, 2007 Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending

More information

Downstream structures of interplanetary fast shocks associated with coronal mass ejections

Downstream structures of interplanetary fast shocks associated with coronal mass ejections GEOPHYSICAL RESEARCH LETTERS, VOL. 32,, doi:10.1029/2005gl022777, 2005 Downstream structures of interplanetary fast shocks associated with coronal mass ejections R. Kataoka, S. Watari, N. Shimada, H. Shimazu,

More information

The Heliospheric Magnetic Field over the Hale Cycle

The Heliospheric Magnetic Field over the Hale Cycle Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Astrophysics and Space Sciences Transactions The Heliospheric Magnetic Field over the Hale Cycle N. A. Schwadron,

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010723, 2005 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema, and

More information

Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model

Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 58 62, doi:10.1002/jgra.50098, 2013 Large deviations of the magnetic field from the Parker spiral in CRRs: Validity of the Schwadron model Edward

More information

On radial heliospheric magnetic fields: Voyager 2 observation and model

On radial heliospheric magnetic fields: Voyager 2 observation and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1205, doi:10.1029/2002ja009809, 2003 On radial heliospheric magnetic fields: Voyager 2 observation and model C. Wang, 1,2 J. D. Richardson, 3 L. F. Burlaga,

More information

In-Situ Signatures of Interplanetary Coronal Mass Ejections

In-Situ Signatures of Interplanetary Coronal Mass Ejections In-Situ Signatures of Interplanetary Coronal Mass Ejections Ian G. Richardson, NASA/Goddard Space Flight Center and CRESST/Department of Astronomy, University of Maryland, College Park ~Two dozen in-situ

More information

SOLAR WIND 9 XT 4-9,1998 BOSTON, MA

SOLAR WIND 9 XT 4-9,1998 BOSTON, MA . *.. LA-UR- 99-1375 -, Approvedforpubfic release; distributionis unlimited. Title: ~E~E~veo $EPO f PLASMA SIGNATURES OF RADIAL FI W&$ DROPOUTS ~# r/ Author(s), E. A. Lucek, Blackett Lab, Imperial College,

More information

The new Heliospheric Magnetic Field: Observational Implications

The new Heliospheric Magnetic Field: Observational Implications The new Heliospheric Magnetic Field: Observational Implications T. H. Zurbuchen, L. A. Fisk, S. Hefti and N. A. Schwa&on Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet 1 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University,

More information

North-South Offset of Heliospheric Current Sheet and its Causes

North-South Offset of Heliospheric Current Sheet and its Causes North-South Offset of Heliospheric Current Sheet and its Causes X. P. Zhao, J. T. Hoeksema, P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Abstract Based on observations

More information

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND John D. Richardson, Ying Liu, and John W. Belcher Massachusetts Institute of Technology Cambridge, MA, USA jdr@space.mit.edu Abstract Interplanetary

More information

Solar wind velocity at solar maximum: A search for latitudinal effects

Solar wind velocity at solar maximum: A search for latitudinal effects Annales Geophysicae (24) 22: 3721 3727 SRef-ID: 1432-576/ag/24-22-3721 European Geosciences Union 24 Annales Geophysicae Solar wind velocity at solar maximum: A search for latitudinal effects B. Bavassano,

More information

PUBLICATIONS. Journal of Geophysical Research: Space Physics

PUBLICATIONS. Journal of Geophysical Research: Space Physics PUBLICATIONS RESEARCH ARTICLE Key Points: The heliospheric magnetic field (HMF) is often twisted or inverted back on itself Inverted HMF accounts for nearly 20% of in-ecliptic, 1 AU solar wind observations

More information

Plasma Conditions in Polar Plumes and Interplume Regions in Polar Coronal Holes

Plasma Conditions in Polar Plumes and Interplume Regions in Polar Coronal Holes Plasma Conditions in Polar Plumes and Interplume Regions in Polar Coronal Holes S. R. Cranmer, J. L. Kohl, M. P. Miralles, and A. V. Panasyuk Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

More information

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014449, 2009 Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

More information

ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002

ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002 ANALYSIS OF THE INTERPLANETARY EVENTS OBSERVED BY ULYSSES BETWEEN 5 MAY 2002 AND 11 MAY 2002 NEDELIA ANTONIA POPESCU, CRISTIANA DUMITRACHE Astronomical Institute of Romanian Academy Str. Cutitul de Argint

More information

Large-scale velocity fluctuations in polar solar wind

Large-scale velocity fluctuations in polar solar wind Annales Geophysicae, 23, 25 3, 25 SRef-ID: 432-576/ag/25-23-25 European Geosciences Union 25 Annales Geophysicae Large-scale velocity fluctuations in polar solar wind B. Bavassano, R. Bruno, and R. D Amicis

More information

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND

PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND LA-UR- -2241 Title: Author@): PHYSICAL NATURE OF THE LOW-SPEED SOLAR WIND J. T. Gosling I Submitted tu: Scientific Basis for Robotic Explorations Close to the Sun Los Alamos NATIONAL LABORATORY is operated

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011528, 2006 Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind J. J. Podesta 1 Received 10 November

More information

A global study of hot flow anomalies using Cluster multi-spacecraft measurements

A global study of hot flow anomalies using Cluster multi-spacecraft measurements Ann. Geophys., 27, 2057 2076, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae A global study of hot flow anomalies using Cluster multi-spacecraft

More information

On the variations of the solar wind magnetic field about the Parker spiral direction

On the variations of the solar wind magnetic field about the Parker spiral direction JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja015040, 2010 On the variations of the solar wind magnetic field about the Parker spiral direction Joseph E. Borovsky 1 Received 29 October

More information

A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds

A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011272, 2006 A new non-pressure-balanced structure in interplanetary space: Boundary layers of magnetic clouds Fengsi Wei, 1 Xueshang Feng,

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget

Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget Article Published Version Owens, M. J. and Crooker, N. U. (2007) Reconciling the electron counterstreaming

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Polar Coronal Holes During Solar Cycles 22 and 23

Polar Coronal Holes During Solar Cycles 22 and 23 Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 5, 531 538 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Polar Coronal Holes During Solar Cycles 22 and 23 Jun Zhang 1,2,J.Woch 2 and

More information

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS D. Lario (1), Q. Hu (2), G. C. Ho (1), R. B. Decker (1), E. C. Roelof (1),

More information

Sources of the solar wind at solar activity maximum

Sources of the solar wind at solar activity maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A12, 1488, doi:10.1029/2001ja000306, 2002 Sources of the solar wind at solar activity maximum M. Neugebauer, 1 P. C. Liewer, and E. J Smith Jet Propulsion

More information

Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model

Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1328, doi:10.1029/2002ja009379, 2002 Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model L. F. Burlaga Laboratory for

More information

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Steven R. Cranmer University of Colorado Boulder, LASP A. Schiff, S. Van Kooten, C. Gilbert, L. N. Woolsey, A. A. van Ballegooijen,

More information

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L05105, doi:10.1029/2006gl028932, 2007 Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity

More information

Understanding electron heat flux signatures in the solar wind

Understanding electron heat flux signatures in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010767, 2005 Understanding electron heat flux signatures in the solar wind C. Pagel, 1 N. U. Crooker, 1 D. E. Larson, 2 S. W. Kahler, 3 and

More information

THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY ULYSSES

THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY ULYSSES The Astrophysical Journal, 679:862Y870, 2008 May 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

anp ( - ), where our best estimate for /* is between 1.5 and 1.7. The best fitting relation is Tp = (2.0 _+ 0.13) x 105 N '57.

anp ( - ), where our best estimate for /* is between 1.5 and 1.7. The best fitting relation is Tp = (2.0 _+ 0.13) x 105 N '57. JOURNAL OF GEOPHYSICAL RESEARCH, VOL 103, NO A7, PAGES 14,547-14,557, JULY 1, 1998 Ion energy equation for the high-speed solar wind: Ulysses observations W C Feldman, B L Barraclough, J T Gosling, D J

More information

Interplanetary and solar surface properties of coronal holes observed during solar maximum

Interplanetary and solar surface properties of coronal holes observed during solar maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1144, doi:10.1029/2002ja009538, 2003 Interplanetary and solar surface properties of coronal holes observed during solar maximum J. Zhang, 1,2 J. Woch,

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane Annales Geophysicae (2003) 21: 1229 1243 c European Geosciences Union 2003 Annales Geophysicae Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

More information

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev

Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 3. Deflection of speed vector Abstract Yu. I. Yermolaev, I. G. Lodkina, M. Yu. Yermolaev This work is a continuation

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /, JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Multiple-spacecraft Study of an Extended Magnetic Structure in the Solar Wind P. Ruan, 1 A. Korth, 1 E. Marsch, 1 B. Inhester, 1 S. Solanki,

More information

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers

Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers Article Accepted Version Owens, M. J., Crooker, N. U. and Lockwood, M. (2013) Solar origin

More information

Low latitude solar wind during the Fall 1998 SOHO Ulysses quadrature

Low latitude solar wind during the Fall 1998 SOHO Ulysses quadrature 1 Low latitude solar wind during the Fall 1998 SOHO Ulysses quadrature G. Poletto, 1 S. T. Suess, 2 D. A. Biesecker, 3 R. Esser, 4 G. Gloeckler, 5 Y.-K. Ko, 4 and T. H. Zurbuchen 6 Short title: 2 Abstract.

More information

Heliospheric magnetic field strength out to 66 AU: Voyager 1,

Heliospheric magnetic field strength out to 66 AU: Voyager 1, JOURNAL OF GEOPHYSICAL RESEARCH, VOL 103, NO 10, PAGES 23,727-23,732, OCTOBER 1, 1998 Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978-1996 L F Burlaga Laboratory for Extraterrestrial

More information

arxiv: v1 [physics.space-ph] 19 Jul 2018

arxiv: v1 [physics.space-ph] 19 Jul 2018 Manuscript prepared for Ann. Geophys. with version 1.3 of the L A TEX class copernicus.cls. Date: 20 July 2018 arxiv:1807.07368v1 [physics.space-ph] 19 Jul 2018 A global study of hot flow anomalies using

More information

Implications of the observed anticorrelation between solar wind speed and coronal electron temperature

Implications of the observed anticorrelation between solar wind speed and coronal electron temperature JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1158, doi:10.1029/2002ja009286, 2003 Implications of the observed anticorrelation between solar wind speed and coronal electron temperature George Gloeckler

More information

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum X. P. Zhao and J. T. Hoeksema W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085

More information

Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity

Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014225, 2009 Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity John Clem 1 and Paul Evenson

More information

Correlation of solar wind entropy and oxygen ion charge state ratio

Correlation of solar wind entropy and oxygen ion charge state ratio JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010010, 2004 Correlation of solar wind entropy and oxygen ion charge state ratio A. C. Pagel and N. U. Crooker Center for Space Physics, Boston

More information

Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft

Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A7, 1272, doi:10.1029/2002ja009760, 2003 Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft Pete

More information

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011030, 2005 Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions Xing Li Institute

More information

ICMES at very large distances

ICMES at very large distances Advances in Space Research 38 (2006) 528 534 www.elsevier.com/locate/asr ICMES at very large distances J.D. Richardson a,b, *, Y. Liu a, C. Wang b, L.F. Burlaga c a Kavli Center for Astrophysics and Space

More information

Heliospheric plasma sheets

Heliospheric plasma sheets University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 3-26-2004 Heliospheric plasma sheets N. U. Crooker Chia-Lin L. Huang hcl@guero.sr.unh.edu S. M.

More information

Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift: Hybrid simulations

Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift: Hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011318, 2006 Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift: Hybrid simulations Petr Hellinger and

More information

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs

Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs GM01012_CH29.qxd 11/8/06 12:02 PM Page 309 Radial and Latitudinal Variations of the Energetic Particle Response to ICMEs David Lario The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland,

More information

Neutral sheet normal direction determination

Neutral sheet normal direction determination Advances in Space Research 36 (2005) 1940 1945 www.elsevier.com/locate/asr Neutral sheet normal direction determination T.L. Zhang a, *, W. Baumjohann a, R. Nakamura a, M. Volwerk a, A. Runov a,z.vörös

More information

Heating of ions by low-frequency Alfven waves

Heating of ions by low-frequency Alfven waves PHYSICS OF PLASMAS 14, 433 7 Heating of ions by low-frequency Alfven waves Quanming Lu School of Earth and Space Sciences, University of Science and Technology of China, Hefei 36, People s Republic of

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

Estimating total heliospheric magnetic flux from single-point in situ measurements

Estimating total heliospheric magnetic flux from single-point in situ measurements Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013677, 2008 Estimating total heliospheric magnetic flux from single-point in situ measurements M. J. Owens, 1,2

More information

Disruption of a heliospheric current sheet fold

Disruption of a heliospheric current sheet fold GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047822, 2011 Disruption of a heliospheric current sheet fold V. G. Merkin, 1 J. G. Lyon, 2 S. L. McGregor, 2 and D. M. Pahud 3 Received 16 April

More information

Propagation and evolution of a magnetic cloud from ACE to Ulysses

Propagation and evolution of a magnetic cloud from ACE to Ulysses Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012482, 2007 Propagation and evolution of a magnetic cloud from ACE to Ulysses D. Du, 1,2 C. Wang, 1 and Q. Hu

More information

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004 Annales Geophysicae () : 19 1 SRef-ID: 1-7/ag/--19 European Geosciences Union Annales Geophysicae Open solar flux estimates from near-earth measurements of the interplanetary magnetic field: comparison

More information

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Lan K. Jian 1, C.T. Russell 1, J.G. Luhmann 2, A.B. Gavin 3, D. Odstrcil 4, P.J. MacNeice 5 1 Inst. of Geophysics & Planetary

More information

Low-latitude solar wind during the Fall 1998 SOHO-Ulysses quadrature

Low-latitude solar wind during the Fall 1998 SOHO-Ulysses quadrature JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1300, doi:10.1029/2001ja000275, 2002 Low-latitude solar wind during the Fall 1998 SOHO-Ulysses quadrature G. Poletto, 1 S. T. Suess, 2 D. A. Biesecker,

More information

A universal characteristic of type II radio bursts

A universal characteristic of type II radio bursts JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011171, 2005 A universal characteristic of type II radio bursts E. Aguilar-Rodriguez, 1,2,3 N. Gopalswamy, 4 R. MacDowall, 4 S. Yashiro, 1

More information

Protons and alpha particles in the expanding solar wind: Hybrid simulations

Protons and alpha particles in the expanding solar wind: Hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 5421 5430, doi:10.1002/jgra.50540, 2013 Protons and alpha particles in the expanding solar wind: Hybrid simulations Petr Hellinger 1,2 and Pavel

More information

Large-scale magnetic field inversions at sector boundaries

Large-scale magnetic field inversions at sector boundaries JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010278, 2004 Large-scale magnetic field inversions at sector boundaries N. U. Crooker Center for Space Physics, Boston University, Boston,

More information

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation by Liang Zhao A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

Sources of geomagnetic activity during nearly three solar cycles ( )

Sources of geomagnetic activity during nearly three solar cycles ( ) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1187, 10.1029/2001JA000504, 2002 Sources of geomagnetic activity during nearly three solar cycles (1972 2000) I. G. Richardson 1 and H. V. Cane 2 NASA

More information

arxiv: v1 [physics.space-ph] 13 Dec 2018

arxiv: v1 [physics.space-ph] 13 Dec 2018 Draft version December 17, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 ON THE 1/F SPECTRUM IN THE SOLAR WIND AND ITS CONNECTION WITH MAGNETIC COMPRESSIBILITY L. Matteini 1,2, D. Stansby

More information

W. Drzge H. Kunow. A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando C. Rastoin C. Paizis J.

W. Drzge H. Kunow. A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando C. Rastoin C. Paizis J. Title: Aufhor(s): Submitted to: EFFECTS OF COROTATING INTERACTION REGIONS ON ULYSSES HIGH ENERGY PARTICLES W. Drzge H. Kunow A. Raviart B. Heber R. Mcller-Mellin H. Sierks G. Wibberenz R. Ducros P. Ferrando

More information

Gordon Petrie NSO, Boulder, Colorado, USA

Gordon Petrie NSO, Boulder, Colorado, USA On the enhanced coronal mass ejection detection rate since the solar cycle 3 polar field reversal ApJ 81, 74 Gordon Petrie NSO, Boulder, Colorado, USA .5 >..5 I- I I I I I I i 4 6 8 I 1 14 16 AVERAGE MONTHLY

More information

arxiv: v2 [astro-ph.sr] 3 Aug 2010

arxiv: v2 [astro-ph.sr] 3 Aug 2010 Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind Sofiane Bourouaine 1, Eckart Marsch 1 and Fritz M. Neubauer 2 arxiv:1003.2299v2 [astro-ph.sr]

More information

Solar Cycle Variation of Interplanetary Coronal Mass Ejection Latitudes

Solar Cycle Variation of Interplanetary Coronal Mass Ejection Latitudes J. Astrophys. Astr. (2010) 31, 165 175 Solar Cycle Variation of Interplanetary Coronal Mass Ejection Latitudes P. X. Gao 1,2, &K.J.Li 1,3 1 National Astronomical Observatories/Yunnan Observatory, Chinese

More information

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind!

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind! Remember: how to measure the solar wind The principle of electrostatic analyzers Spherical deflection plates with an applied voltage let charged particles pass if their energy/charge fits. E/q = m/2 *

More information

Cluster observations of hot flow anomalies

Cluster observations of hot flow anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010016, 2004 Cluster observations of hot flow anomalies E. A. Lucek, T. S. Horbury, and A. Balogh Blackett Laboratory, Imperial College, London,

More information

O 5+ at a heliocentric distance of about 2.5 R.

O 5+ at a heliocentric distance of about 2.5 R. EFFECT OF THE LINE-OF-SIGHT INTEGRATION ON THE PROFILES OF CORONAL LINES N.-E. Raouafi and S. K. Solanki Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany E-mail: Raouafi@linmpi.mpg.de;

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

Connecting Magnetic Clouds to Solar Surface Features

Connecting Magnetic Clouds to Solar Surface Features Connecting Magnetic Clouds to Solar Surface Features Vasyl Yurchyshyn Coronal mass ejecta (CMEs) are known to cause strongest geomagnetic storms Most of the strongest storms are associated with arrival

More information

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms J. Astrophys. Astr. (2008) 29, 263 267 Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms Santosh Kumar, M. P. Yadav & Amita Raizada Department of P.G. Studies and Research in Physics

More information

Title: AMPLITUDE OF SOLAR CYCLE 24 BASED ON POLAR MAGNETIC FIELD OF THE SUN

Title: AMPLITUDE OF SOLAR CYCLE 24 BASED ON POLAR MAGNETIC FIELD OF THE SUN Solar Physics Manuscript Draft Manuscript Number: SOLA Title: AMPLITUDE OF SOLAR CYCLE BASED ON POLAR MAGNETIC FIELD OF THE SUN Article Type: Original Research Keywords: "Solar activity"; "solar cycle"

More information

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21112, doi:10.1029/2006gl027578, 2006 Correlation between energetic ion enhancements and heliospheric current sheet crossings in the

More information

Chapter 1. The Near-Earth Solar Wind. M. L. Goldstein 1, J. P. Eastwood 1, R. A. Treumann 2, E. A. Lucek 3, J. Pickett 4, and P.

Chapter 1. The Near-Earth Solar Wind. M. L. Goldstein 1, J. P. Eastwood 1, R. A. Treumann 2, E. A. Lucek 3, J. Pickett 4, and P. Chapter 1 The Near-Earth Solar Wind M. L. Goldstein 1, J. P. Eastwood 1, R. A. Treumann 2, E. A. Lucek 3, J. Pickett 4, and P. Décréau 5 1.1 The Solar Wind at 1 AU Observational evidence for a continuous

More information

Coronal diffusion and high solar latitude recurrent energetic particle increases

Coronal diffusion and high solar latitude recurrent energetic particle increases Astron Astrophys 316, 56 51 (1996) ASTRONOMY AND ASTROPHYSICS Coronal diffusion and high solar latitude recurrent energetic particle increases JJ Quenby 1, A Witcombe 1, B Drolias 4,1,MFränz 2,3, and E

More information