Announcement. Student Opinion of Courses and Teaching (SOCT) forms will be available for you during the dates indicated:

Size: px
Start display at page:

Download "Announcement. Student Opinion of Courses and Teaching (SOCT) forms will be available for you during the dates indicated:"

Transcription

1

2 Announcement Student Opinion of Courses and Teaching (SOCT) forms will be available for you during the dates indicated: STT : 4/14/2014-5/2/2014(SOCT only) STT : 4/14/2014-5/2/2014 (SOCT only) STT : 4/14/2014-5/2/2014(SOCT only)

3 Chapter7 Scatterplots, Association, and Correlation

4 Looking at Scatterplots Scatterplotsmay be the most common and most effective display for data. In a scatterplot, you can see patterns, trends, relationships, and even the occasional extraordinary value sitting apart from the others. Scatterplots are the best way to start observing the relationship and the ideal way to picture associationsbetween two quantitative variables.

5 Looking at Scatterplots (cont.) When looking at scatterplots, we will look for direction,form, strength, and unusual features. Direction: A pattern that runs from the upper left to the lower right is said to have a negativedirection. A trend running the other way has a positive direction.

6 Looking at Scatterplots (cont.) The figure shows a negative direction between the year since 1970 and the and the prediction errors made by NOAA. As the years have passed, the predictions have improved (errors have decreased).

7 Looking at Scatterplots (cont.) As the central pressure increases, the maximum wind speed decreases.

8 Looking at Scatterplots (cont.) Form: If there is a straight line (linear) relationship, it will appear as a cloud or swarm of points stretched out in a generally consistent, straight form.

9 Looking at Scatterplots (cont.) Form: Ifthe relationship isn t straight, but curves gently, while still increasing or decreasing steadily,

10 Looking at Scatterplots (cont.) Form: If the relationship curves sharply,

11 Looking at Scatterplots (cont.) Strength: At one extreme, the points appear to follow a single stream (whether straight, curved, or bending all over the place).

12 Looking at Scatterplots (cont.) Strength: At the other extreme, the points appear as a vague cloud with no discernible trend or pattern:

13 Looking at Scatterplots (cont.) Unusual features: Look for the unexpected. One example of such a surprise is an outlier standing away from the overall pattern of the scatter plot. Clusters or subgroups should also raise questions.

14 Roles for Variables It is important to determine which of the two quantitative variables goes on the x-axis and which on the y-axis. This determination is made based on the roles played by the variables. When the roles are clear, the explanatoryor predictor variablegoes on the x-axis, and the response variable goes on the y-axis.

15 Roles for Variables (cont.) Do baseballteamsthatscoremorerunssell more tickets to their games? Do studentswhoscorehigheron theirsat testshavehidhergradepointaveragesin college? Do olderhousessellforlessthannewerones of comparable size and quality?

16 Intheseexamplesthetwovariablesplay different roles. Wecallthevariableof interesttheresponse variable And the other the explanatory variable or predictor variable.

17 Correlation Data collected from students in Statistics classes included their heights (in inches) and weights (in pounds): Here we see a positive association and a fairly straight form, although there seems to be a high outlier.

18 Correlation (cont.) How strong is the association between weight and height of Statistics students? If we had to put a number on the strength, we would not want it to depend on the units we used. A scatterplot of heights (in centimeters) and weights (in kilograms) doesn t change the shape of the pattern:

19 Correlation (cont.) The correlation coefficient (r)gives us a numerical measurement of the strength of the linear relationship between the explanatory and response variables.

20 Correlation Conditions Correlationmeasures the strength of the linearassociation between two quantitative variables. Before you use correlation, you must check several conditions: Quantitative Variables Condition Straight Enough Condition Outlier Condition

21 Correlation Conditions (cont.) Outlier Condition: Outliers can distort the correlation dramatically. An outlier can make an otherwise small correlation look big, or hide a large correlation. It can even give an otherwise positive association a negative correlation coefficient (and vice versa). When you see an outlier, it s often a good idea to report the correlations with and without that point.

22 Correlation Properties The sign of a correlation coefficient gives the direction of the association. Correlation is always between -1 and +1. Correlation canbe exactly equal to -1 or +1, but these values are unusual in real data because they mean that all the data points fall exactlyon a single straight line. A correlation near zero corresponds to a weak linear association.

23 Correlation Properties (cont.) Correlation treats xand ysymmetrically: The correlation of xwith yis the same as the correlation of ywith x. Correlation has no units. Correlation is not affected by changes in the center or scale of either variable.

24 Correlation Properties (cont.) Correlation measures the strength of the linearassociation between the two variables. Variables can have a strong association but still have a small correlation if the association isn t linear. Correlation is sensitive to outliers. A single outlying value can make a small correlation large or make a large one small.

25 Correlation Causa on Whenever we have a strong correlation, it is tempting to explain it by imagining that the predictor variable has caused the response to help. Scatterplotsand correlation coefficients neverprove causation.

26 Correlation Tables It is common in some fields to compute the correlations between every pair of variables in a collection of variables and arrange these correlations in a table.

27 Becareful!!! Don t correlate categorical variables. Be sure to check the Quantitative Variables Condition. Be sure the association is linear. There may be a strong association between two variables that have a nonlinear association. Slide 1-27

28 Becareful!!! Don t assume the relationship is linear just because the correlation coefficient is high. Here the correlation is 0.979, but the relationship is actually bent.

29 Becareful!!! Beware of outliers. Even a single outlier can dominate the correlation value. Make sure to check the Outlier Condition.

30 Chapter8 LinearRegression

31 Fat Versus Protein: An Example The following is a scatterplot of total fat versus proteinfor 30 items on the Burger King menu:

32 Ifwewant25 gramsof protein ourlunch, how muchfatshouldweexpecttoconsumeat Burger King? The correlation between Fat and protein is 0.83 The strength of the linear relationship between fat and protein is fairly strong. But correlation does not tell us anything about howmuchfatweshouldconsumetohave25 grams of protein. Wewillusea linearmodel toanswerthis question.

33 The Linear Model Remember from Algebra that a straight line can be written as: y= mx+ b In Statistics we use a slightly different notation: ŷ= b0 + b1 x We write ŷ to emphasize that the points that satisfy this equation are just our predicted values, not the actual data values.

34 The Linear Model (cont.) We write b 1 and b 0 for the slope and intercept of the line. The b sare called the coefficients of the linear model. The coefficient b 1is the slope, which tells us how rapidly ŷ changes with respect to x. It showshowmuchchangeoccursat y in average withoneunitincreasein x. The coefficient b 0 is the intercept, which tells where the line hits (intercepts) the y-axis.

35 Residuals The model won t be perfect, regardless of the line we draw. Some points will be above the line and some will be below. The estimate made from a model is the predicted value(denoted as ). ŷ

36 Residuals (cont.) The difference between the observed value and its associated predicted value is called the residual. To find the residuals, we always subtract the predicted value from the observed one: residual= observed predicted = y yˆ

37 Residuals (cont.) A negative residual means the predicted value s too big (an overestimate). A positive residual means the predicted value s too small (an underestimate).

38 Best Fit Means Least Squares Howdo wefindtheactualvaluesof slopeand intercept? Weneedtobuildthemodel thatfitsthedata best. Andthelineshouldgothroughthemeanof y-mean of x point. Sowemayjusttrytobuilda model byminimizing thedistancebetweenthelineandobserveddata values. The distance between the line and observed values are residuals. Instead of minimizing each residual value, we can try to minize their total.

39 Best Fit Means Least Squares(cont.) Some residuals are positive, others are negative, and, on average, they cancel each other out. So, we can t assess how well the line fits by adding up all the residuals. Similar to what we did with Standard deviations, we square the residuals and add the squares. The smaller the sum, the better the fit. The line of best fit is the line for which the sum of the squared residuals is smallest, the least squares line.

40 The Least Squares Line In our model, we have a slope (b 1 ): The slope is built from the correlation and the standard deviations: b 1 = s r s y x

41 The Least Squares Line (cont.) In our model, we also have an intercept (b 0 ). The intercept is built from the means and the slope: b = y b x 0 1

42 Fat Versus Protein: An Example The regression line for the Burger King data fits the data well: The equation is Onegram increasein protein will cause 0.97 grams increase in Fat in average. Lessformally, wemightsay that Burger King foods pack about0.97 gramsof fatper gram of protein. The predicted fatcontent for a BK Broiler chicken sandwich is (30) = 35.9 grams of fat.

43 The Least Squares Line (cont.) Since regression and correlation are closely related, we need to check the same conditions for regressions as we did for correlations: Quantitative Variables Condition Straight Enough Condition Outlier Condition

44 Exercise7.33 Doeshowlongchildrenremainat thelunchtable help predict how much they eat? Thedata is for20 toddlersobservedoverseveral months at a nursery school. Time is theaveragenumberof minutesa child spentat thetablewhenlunchwasserved. Calories is the average number of calories the child consumed during lunch, calculated from careful observation of what the child ate each day.

45 Exercise7.33 Time Calories

46 Exercise7.33 The relation ship between time and calories seems linear. (Read the exercise for scatter plot) Correlationbetweentime andcaloriesis r = It seems we have negative relationship. Ifwehad recordedtime in hoursinsteadof minutes how would r have changed? Itwouldnot havechanged. Which one of these variables is response variable? Calories

47 Exercise7.33 The standard deviation for calories=29.94 The standard deviation for time=6.32 Average for calories=456 Average for time=34.01 Build the linear regression model.

48 Exercise7.33 Lettingchildstayat thetableonemoreminute will cause 3.07 unit decrease for the calories that child consumes in average.

49 Exercise8.12 x_bar S x y_bar s y r Regressionmodel ? ?? ? y_hat=-10+15x

50 Residuals Revisited The linear model assumes that the relationship between the two variables is a perfect straight line. The residuals are the part of the data that hasn t been modeled. or (equivalently) Or, in symbols, Data = Model + Residual Residual = Data Model e= y yˆ

51 Residuals Revisited (cont.) Residuals help us to see whether the model makes sense. When a regression model is appropriate, nothing interesting should be left behind. After we fit a regression model, we usually plot the residuals in the hope of finding nothing. A scatterplotof theresidualsversusthex-valuesshouldbe the most boring scatter plot you ve ever seen. It shouldn t have any interesting features like a direction or shape. It should stretch horizantally, with about the same amount of scatter throughout. Itshouldhaveno bends, andit shouldhaveno outliers.

52 Residuals Revisited (cont.) The residuals for the BurgerKingmenu regression look appropriately boring:

53 R 2 The Variation Accounted For The variation in the residuals is the key to assessing how well the model fits. In the BK menu items example, total fathas a standard deviation of 16.4 grams. The standard deviation of the residuals is 9.2 grams.

54 R 2 The Variation Accounted For (cont.) If the correlation were 1.0 and the model predicted the fatvalues perfectly, the residuals would all be zero and have no variation. As it is, the correlation is 0.83 not perfection. However, we did see that the model residuals had less variation than total fat alone. We can determine how much of the variation is accounted for by the model and how much is left in the residuals.

55 R 2 The Variation Accounted For (cont.) The squared correlation, r 2, gives the fraction of the data s variance accounted for by the model. Thus, 1 r 2 is the fraction of the original variance left in the residuals. For the BK model, r 2 = = 0.69, so 31% of the variability in total fathas been left in the residuals.

56 R 2 The Variation Accounted For (cont.) All regression analyses include this statistic, although by tradition, it is written R 2 (pronounced R-squared ). An R 2 of 0 means that none of the variance in the data is in the model; all of it is still in the residuals. When interpreting a regression model you need to Tellwhat R 2 means. In the BK example, according to our linear model, 69% of the variation in total fatis accounted for by variation in the protein content.

57 How Big Should R 2 Be? R 2 is always between 0% and 100%. What makes a good R 2 value depends on the kind of data you are analyzing and on what you want to do with it.

58 How Big Should R 2 Be (cont)? Along with the slope and intercept for a regression, you should always report R 2 so that readers can judge for themselves how successful the regression is at fitting the data. Statistics is about variation, and R 2 measures the success of the regression model in terms of the fraction of the variation of yaccounted for by the regression.

59 What Can Go Wrong? Don t fit a straight line to a nonlinear relationship. Beware of extraordinary points (y-values that stand off from the linear pattern or extreme x-values). Don t invert the regression. To swap the predictor-response roles of the variables, we must fit a new regression equation. Don t extrapolate beyond the data the linear model may no longer hold outside of the range of the data. Don t infer that xcauses yjust because there is a good linear model for their relationship association is not causation. Don t choose a model based on R 2 alone.

60 Exercises8.30 A) Yes, therelationshipis not verystrong, but it is reasonably straight. B) Thelinearmodel on numberof winsaccountsfor 48.5% of the variaiton in Attendance. C) The residuals spread out. There is more variaiton in Attendanceas thenumberof winsincreases. Thisplotshowsthatthereis someproblem with the model. So it needs further examination. D) The Yankees attandence was about 13,000 fans morethanwemightexpectgiventhenumberof wins.

61 Exercise8.34 A) B) 12,581 people C) Everywinaddsan average peoplein attendance. D) Itmeansthattheteam saverageattendanceis lowerthantheaveragefora teamwithas many wins. E) 12, attendees. This means that the Cardinals averaged over 12,000 more attendees thanonewouldpredictfora teamwith83 wins.

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc.

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc. Chapter 8 Linear Regression Copyright 2010 Pearson Education, Inc. Fat Versus Protein: An Example The following is a scatterplot of total fat versus protein for 30 items on the Burger King menu: Copyright

More information

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals Chapter 8 Linear Regression Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8-1 Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Fat Versus

More information

STA Module 5 Regression and Correlation. Learning Objectives. Learning Objectives (Cont.) Upon completing this module, you should be able to:

STA Module 5 Regression and Correlation. Learning Objectives. Learning Objectives (Cont.) Upon completing this module, you should be able to: STA 2023 Module 5 Regression and Correlation Learning Objectives Upon completing this module, you should be able to: 1. Define and apply the concepts related to linear equations with one independent variable.

More information

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation? Did You Mean Association Or Correlation? AP Statistics Chapter 8 Be careful not to use the word correlation when you really mean association. Often times people will incorrectly use the word correlation

More information

Chapter 7. Scatterplots, Association, and Correlation. Copyright 2010 Pearson Education, Inc.

Chapter 7. Scatterplots, Association, and Correlation. Copyright 2010 Pearson Education, Inc. Chapter 7 Scatterplots, Association, and Correlation Copyright 2010 Pearson Education, Inc. Looking at Scatterplots Scatterplots may be the most common and most effective display for data. In a scatterplot,

More information

Chapter 6. September 17, Please pick up a calculator and take out paper and something to write with. Association and Correlation.

Chapter 6. September 17, Please pick up a calculator and take out paper and something to write with. Association and Correlation. Please pick up a calculator and take out paper and something to write with. Sep 17 8:08 AM Chapter 6 Scatterplots, Association and Correlation Copyright 2015, 2010, 2007 Pearson Education, Inc. Chapter

More information

appstats8.notebook October 11, 2016

appstats8.notebook October 11, 2016 Chapter 8 Linear Regression Objective: Students will construct and analyze a linear model for a given set of data. Fat Versus Protein: An Example pg 168 The following is a scatterplot of total fat versus

More information

Chapter 7 Summary Scatterplots, Association, and Correlation

Chapter 7 Summary Scatterplots, Association, and Correlation Chapter 7 Summary Scatterplots, Association, and Correlation What have we learned? We examine scatterplots for direction, form, strength, and unusual features. Although not every relationship is linear,

More information

AP Statistics. Chapter 6 Scatterplots, Association, and Correlation

AP Statistics. Chapter 6 Scatterplots, Association, and Correlation AP Statistics Chapter 6 Scatterplots, Association, and Correlation Objectives: Scatterplots Association Outliers Response Variable Explanatory Variable Correlation Correlation Coefficient Lurking Variables

More information

1. Create a scatterplot of this data. 2. Find the correlation coefficient.

1. Create a scatterplot of this data. 2. Find the correlation coefficient. How Fast Foods Compare Company Entree Total Calories Fat (grams) McDonald s Big Mac 540 29 Filet o Fish 380 18 Burger King Whopper 670 40 Big Fish Sandwich 640 32 Wendy s Single Burger 470 21 1. Create

More information

Chapter 7 Linear Regression

Chapter 7 Linear Regression Chapter 7 Linear Regression 1 7.1 Least Squares: The Line of Best Fit 2 The Linear Model Fat and Protein at Burger King The correlation is 0.76. This indicates a strong linear fit, but what line? The line

More information

Chapter 8. Linear Regression /71

Chapter 8. Linear Regression /71 Chapter 8 Linear Regression 1 /71 Homework p192 1, 2, 3, 5, 7, 13, 15, 21, 27, 28, 29, 32, 35, 37 2 /71 3 /71 Objectives Determine Least Squares Regression Line (LSRL) describing the association of two

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

The Whopper has been Burger King s signature sandwich since 1957.

The Whopper has been Burger King s signature sandwich since 1957. CHAPTER 8 Linear Regression WHO WHAT UNITS HOW Items on the Burger King menu Protein content and total fat content Grams of protein Grams of fat Supplied by BK on request or at their Web site The Whopper

More information

Chapter 7. Scatterplots, Association, and Correlation

Chapter 7. Scatterplots, Association, and Correlation Chapter 7 Scatterplots, Association, and Correlation Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 29 Objective In this chapter, we study relationships! Instead, we investigate

More information

7.0 Lesson Plan. Regression. Residuals

7.0 Lesson Plan. Regression. Residuals 7.0 Lesson Plan Regression Residuals 1 7.1 More About Regression Recall the regression assumptions: 1. Each point (X i, Y i ) in the scatterplot satisfies: Y i = ax i + b + ɛ i where the ɛ i have a normal

More information

AP STATISTICS Name: Period: Review Unit IV Scatterplots & Regressions

AP STATISTICS Name: Period: Review Unit IV Scatterplots & Regressions AP STATISTICS Name: Period: Review Unit IV Scatterplots & Regressions Know the definitions of the following words: bivariate data, regression analysis, scatter diagram, correlation coefficient, independent

More information

Unit 6 - Introduction to linear regression

Unit 6 - Introduction to linear regression Unit 6 - Introduction to linear regression Suggested reading: OpenIntro Statistics, Chapter 7 Suggested exercises: Part 1 - Relationship between two numerical variables: 7.7, 7.9, 7.11, 7.13, 7.15, 7.25,

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Objectives. 2.3 Least-squares regression. Regression lines. Prediction and Extrapolation. Correlation and r 2. Transforming relationships

Objectives. 2.3 Least-squares regression. Regression lines. Prediction and Extrapolation. Correlation and r 2. Transforming relationships Objectives 2.3 Least-squares regression Regression lines Prediction and Extrapolation Correlation and r 2 Transforming relationships Adapted from authors slides 2012 W.H. Freeman and Company Straight Line

More information

AP Statistics. Chapter 9 Re-Expressing data: Get it Straight

AP Statistics. Chapter 9 Re-Expressing data: Get it Straight AP Statistics Chapter 9 Re-Expressing data: Get it Straight Objectives: Re-expression of data Ladder of powers Straight to the Point We cannot use a linear model unless the relationship between the two

More information

AP Statistics Unit 6 Note Packet Linear Regression. Scatterplots and Correlation

AP Statistics Unit 6 Note Packet Linear Regression. Scatterplots and Correlation Scatterplots and Correlation Name Hr A scatterplot shows the relationship between two quantitative variables measured on the same individuals. variable (y) measures an outcome of a study variable (x) may

More information

Linear Regression and Correlation. February 11, 2009

Linear Regression and Correlation. February 11, 2009 Linear Regression and Correlation February 11, 2009 The Big Ideas To understand a set of data, start with a graph or graphs. The Big Ideas To understand a set of data, start with a graph or graphs. If

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression OI CHAPTER 7 Important Concepts Correlation (r or R) and Coefficient of determination (R 2 ) Interpreting y-intercept and slope coefficients Inference (hypothesis testing and confidence

More information

Relationships Regression

Relationships Regression Relationships Regression BPS chapter 5 2006 W.H. Freeman and Company Objectives (BPS chapter 5) Regression Regression lines The least-squares regression line Using technology Facts about least-squares

More information

Chapter 3: Describing Relationships

Chapter 3: Describing Relationships Chapter 3: Describing Relationships Section 3.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 3 Describing Relationships 3.1 Scatterplots and Correlation 3.2 Section 3.2

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Chapter 3: Examining Relationships Most statistical studies involve more than one variable. Often in the AP Statistics exam, you will be asked to compare two data sets by using side by side boxplots or

More information

THE PEARSON CORRELATION COEFFICIENT

THE PEARSON CORRELATION COEFFICIENT CORRELATION Two variables are said to have a relation if knowing the value of one variable gives you information about the likely value of the second variable this is known as a bivariate relation There

More information

HOLLOMAN S AP STATISTICS BVD CHAPTER 08, PAGE 1 OF 11. Figure 1 - Variation in the Response Variable

HOLLOMAN S AP STATISTICS BVD CHAPTER 08, PAGE 1 OF 11. Figure 1 - Variation in the Response Variable Chapter 08: Linear Regression There are lots of ways to model the relationships between variables. It is important that you not think that what we do is the way. There are many paths to the summit We are

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI Introduction of Data Analytics Prof. Nandan Sudarsanam and Prof. B Ravindran Department of Management Studies and Department of Computer Science and Engineering Indian Institute of Technology, Madras Module

More information

Recall, Positive/Negative Association:

Recall, Positive/Negative Association: ANNOUNCEMENTS: Remember that discussion today is not for credit. Go over R Commander. Go to 192 ICS, except at 4pm, go to 192 or 174 ICS. TODAY: Sections 5.3 to 5.5. Note this is a change made in the daily

More information

Unit 6 - Simple linear regression

Unit 6 - Simple linear regression Sta 101: Data Analysis and Statistical Inference Dr. Çetinkaya-Rundel Unit 6 - Simple linear regression LO 1. Define the explanatory variable as the independent variable (predictor), and the response variable

More information

Chapter 5 Friday, May 21st

Chapter 5 Friday, May 21st Chapter 5 Friday, May 21 st Overview In this Chapter we will see three different methods we can use to describe a relationship between two quantitative variables. These methods are: Scatterplot Correlation

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Chapter 2: Looking at Data Relationships (Part 3)

Chapter 2: Looking at Data Relationships (Part 3) Chapter 2: Looking at Data Relationships (Part 3) Dr. Nahid Sultana Chapter 2: Looking at Data Relationships 2.1: Scatterplots 2.2: Correlation 2.3: Least-Squares Regression 2.5: Data Analysis for Two-Way

More information

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y Regression and correlation Correlation & Regression, I 9.07 4/1/004 Involve bivariate, paired data, X & Y Height & weight measured for the same individual IQ & exam scores for each individual Height of

More information

The following formulas related to this topic are provided on the formula sheet:

The following formulas related to this topic are provided on the formula sheet: Student Notes Prep Session Topic: Exploring Content The AP Statistics topic outline contains a long list of items in the category titled Exploring Data. Section D topics will be reviewed in this session.

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Chapter 3: Examining Relationships 3.1 Scatterplots 3.2 Correlation 3.3 Least-Squares Regression Fabric Tenacity, lb/oz/yd^2 26 25 24 23 22 21 20 19 18 y = 3.9951x + 4.5711 R 2 = 0.9454 3.5 4.0 4.5 5.0

More information

Lecture 4 Scatterplots, Association, and Correlation

Lecture 4 Scatterplots, Association, and Correlation Lecture 4 Scatterplots, Association, and Correlation Previously, we looked at Single variables on their own One or more categorical variable In this lecture: We shall look at two quantitative variables.

More information

BIVARIATE DATA data for two variables

BIVARIATE DATA data for two variables (Chapter 3) BIVARIATE DATA data for two variables INVESTIGATING RELATIONSHIPS We have compared the distributions of the same variable for several groups, using double boxplots and back-to-back stemplots.

More information

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section 2.1.1 and 8.1-8.2.6 Overview Scatterplots Explanatory and Response Variables Describing Association The Regression Equation

More information

Chapter 10 Correlation and Regression

Chapter 10 Correlation and Regression Chapter 10 Correlation and Regression 10-1 Review and Preview 10-2 Correlation 10-3 Regression 10-4 Variation and Prediction Intervals 10-5 Multiple Regression 10-6 Modeling Copyright 2010, 2007, 2004

More information

3.2: Least Squares Regressions

3.2: Least Squares Regressions 3.2: Least Squares Regressions Section 3.2 Least-Squares Regression After this section, you should be able to INTERPRET a regression line CALCULATE the equation of the least-squares regression line CALCULATE

More information

Chapter 3: Describing Relationships

Chapter 3: Describing Relationships Chapter 3: Describing Relationships Section 3.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 3 Describing Relationships 3.1 Scatterplots and Correlation 3.2 Section 3.2

More information

AP Statistics. The only statistics you can trust are those you falsified yourself. RE- E X P R E S S I N G D A T A ( P A R T 2 ) C H A P 9

AP Statistics. The only statistics you can trust are those you falsified yourself. RE- E X P R E S S I N G D A T A ( P A R T 2 ) C H A P 9 AP Statistics 1 RE- E X P R E S S I N G D A T A ( P A R T 2 ) C H A P 9 The only statistics you can trust are those you falsified yourself. Sir Winston Churchill (1874-1965) (Attribution to Churchill is

More information

Correlation and regression

Correlation and regression NST 1B Experimental Psychology Statistics practical 1 Correlation and regression Rudolf Cardinal & Mike Aitken 11 / 12 November 2003 Department of Experimental Psychology University of Cambridge Handouts:

More information

IT 403 Practice Problems (2-2) Answers

IT 403 Practice Problems (2-2) Answers IT 403 Practice Problems (2-2) Answers #1. Which of the following is correct with respect to the correlation coefficient (r) and the slope of the leastsquares regression line (Choose one)? a. They will

More information

Lecture 4 Scatterplots, Association, and Correlation

Lecture 4 Scatterplots, Association, and Correlation Lecture 4 Scatterplots, Association, and Correlation Previously, we looked at Single variables on their own One or more categorical variables In this lecture: We shall look at two quantitative variables.

More information

MODELING. Simple Linear Regression. Want More Stats??? Crickets and Temperature. Crickets and Temperature 4/16/2015. Linear Model

MODELING. Simple Linear Regression. Want More Stats??? Crickets and Temperature. Crickets and Temperature 4/16/2015. Linear Model STAT 250 Dr. Kari Lock Morgan Simple Linear Regression SECTION 2.6 Least squares line Interpreting coefficients Cautions Want More Stats??? If you have enjoyed learning how to analyze data, and want to

More information

Stat 101: Lecture 6. Summer 2006

Stat 101: Lecture 6. Summer 2006 Stat 101: Lecture 6 Summer 2006 Outline Review and Questions Example for regression Transformations, Extrapolations, and Residual Review Mathematical model for regression Each point (X i, Y i ) in the

More information

Chapter 7. Linear Regression (Pt. 1) 7.1 Introduction. 7.2 The Least-Squares Regression Line

Chapter 7. Linear Regression (Pt. 1) 7.1 Introduction. 7.2 The Least-Squares Regression Line Chapter 7 Linear Regression (Pt. 1) 7.1 Introduction Recall that r, the correlation coefficient, measures the linear association between two quantitative variables. Linear regression is the method of fitting

More information

Correlation: basic properties.

Correlation: basic properties. Correlation: basic properties. 1 r xy 1 for all sets of paired data. The closer r xy is to ±1, the stronger the linear relationship between the x-data and y-data. If r xy = ±1 then there is a perfect linear

More information

Statistical View of Least Squares

Statistical View of Least Squares May 23, 2006 Purpose of Regression Some Examples Least Squares Purpose of Regression Purpose of Regression Some Examples Least Squares Suppose we have two variables x and y Purpose of Regression Some Examples

More information

3.1 Scatterplots and Correlation

3.1 Scatterplots and Correlation 3.1 Scatterplots and Correlation Most statistical studies examine data on more than one variable. In many of these settings, the two variables play different roles. Explanatory variable (independent) predicts

More information

Chapter 6: Exploring Data: Relationships Lesson Plan

Chapter 6: Exploring Data: Relationships Lesson Plan Chapter 6: Exploring Data: Relationships Lesson Plan For All Practical Purposes Displaying Relationships: Scatterplots Mathematical Literacy in Today s World, 9th ed. Making Predictions: Regression Line

More information

Linear Regression Communication, skills, and understanding Calculator Use

Linear Regression Communication, skills, and understanding Calculator Use Linear Regression Communication, skills, and understanding Title, scale and label the horizontal and vertical axes Comment on the direction, shape (form), and strength of the relationship and unusual features

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation y = a + bx y = dependent variable a = intercept b = slope x = independent variable Section 12.1 Inference for Linear

More information

MAC Module 2 Modeling Linear Functions. Rev.S08

MAC Module 2 Modeling Linear Functions. Rev.S08 MAC 1105 Module 2 Modeling Linear Functions Learning Objectives Upon completing this module, you should be able to: 1. Recognize linear equations. 2. Solve linear equations symbolically and graphically.

More information

HOMEWORK (due Wed, Jan 23): Chapter 3: #42, 48, 74

HOMEWORK (due Wed, Jan 23): Chapter 3: #42, 48, 74 ANNOUNCEMENTS: Grades available on eee for Week 1 clickers, Quiz and Discussion. If your clicker grade is missing, check next week before contacting me. If any other grades are missing let me know now.

More information

Chapter 6 The Standard Deviation as a Ruler and the Normal Model

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Chapter 6 The Standard Deviation as a Ruler and the Normal Model Overview Key Concepts Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes the center and/or spread

More information

Looking at data: relationships

Looking at data: relationships Looking at data: relationships Least-squares regression IPS chapter 2.3 2006 W. H. Freeman and Company Objectives (IPS chapter 2.3) Least-squares regression p p The regression line Making predictions:

More information

Looking at Data Relationships. 2.1 Scatterplots W. H. Freeman and Company

Looking at Data Relationships. 2.1 Scatterplots W. H. Freeman and Company Looking at Data Relationships 2.1 Scatterplots 2012 W. H. Freeman and Company Here, we have two quantitative variables for each of 16 students. 1) How many beers they drank, and 2) Their blood alcohol

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

Related Example on Page(s) R , 148 R , 148 R , 156, 157 R3.1, R3.2. Activity on 152, , 190.

Related Example on Page(s) R , 148 R , 148 R , 156, 157 R3.1, R3.2. Activity on 152, , 190. Name Chapter 3 Learning Objectives Identify explanatory and response variables in situations where one variable helps to explain or influences the other. Make a scatterplot to display the relationship

More information

Chapter 3. Measuring data

Chapter 3. Measuring data Chapter 3 Measuring data 1 Measuring data versus presenting data We present data to help us draw meaning from it But pictures of data are subjective They re also not susceptible to rigorous inference Measuring

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information

Algebra 1 Practice Test Modeling with Linear Functions Unit 6. Name Period Date

Algebra 1 Practice Test Modeling with Linear Functions Unit 6. Name Period Date Name Period Date Vocabular: Define each word and give an example.. Correlation 2. Residual plot. Translation Short Answer: 4. Statement: If a strong correlation is present between two variables, causation

More information

Chapter 19 Sir Migo Mendoza

Chapter 19 Sir Migo Mendoza The Linear Regression Chapter 19 Sir Migo Mendoza Linear Regression and the Line of Best Fit Lesson 19.1 Sir Migo Mendoza Question: Once we have a Linear Relationship, what can we do with it? Something

More information

MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression

MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression Objectives: 1. Learn the concepts of independent and dependent variables 2. Learn the concept of a scatterplot

More information

Ch. 3 Review - LSRL AP Stats

Ch. 3 Review - LSRL AP Stats Ch. 3 Review - LSRL AP Stats Multiple Choice Identify the choice that best completes the statement or answers the question. Scenario 3-1 The height (in feet) and volume (in cubic feet) of usable lumber

More information

Describing Bivariate Relationships

Describing Bivariate Relationships Describing Bivariate Relationships Bivariate Relationships What is Bivariate data? When exploring/describing a bivariate (x,y) relationship: Determine the Explanatory and Response variables Plot the data

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS 1a) The model is cw i = β 0 + β 1 el i + ɛ i, where cw i is the weight of the ith chick, el i the length of the egg from which it hatched, and ɛ i

More information

SIMPLE LINEAR REGRESSION STAT 251

SIMPLE LINEAR REGRESSION STAT 251 1 SIMPLE LINEAR REGRESSION STAT 251 OUTLINE Relationships in Data The Beginning Scatterplots Correlation The Least Squares Line Cautions Association vs. Causation Extrapolation Outliers Inference: Simple

More information

Start with review, some new definitions, and pictures on the white board. Assumptions in the Normal Linear Regression Model

Start with review, some new definitions, and pictures on the white board. Assumptions in the Normal Linear Regression Model Start with review, some new definitions, and pictures on the white board. Assumptions in the Normal Linear Regression Model A1: There is a linear relationship between X and Y. A2: The error terms (and

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

Regression Equation. November 28, S10.3_3 Regression. Key Concept. Chapter 10 Correlation and Regression. Definitions

Regression Equation. November 28, S10.3_3 Regression. Key Concept. Chapter 10 Correlation and Regression. Definitions MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 10 Correlation and Regression 10 1 Review and Preview 10 2 Correlation 10 3 Regression 10 4 Variation and Prediction Intervals

More information

Regression Equation. April 25, S10.3_3 Regression. Key Concept. Chapter 10 Correlation and Regression. Definitions

Regression Equation. April 25, S10.3_3 Regression. Key Concept. Chapter 10 Correlation and Regression. Definitions MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 10 Correlation and Regression 10 1 Review and Preview 10 2 Correlation 10 3 Regression 10 4 Variation and Prediction Intervals

More information

Pre-Calculus Multiple Choice Questions - Chapter S8

Pre-Calculus Multiple Choice Questions - Chapter S8 1 If every man married a women who was exactly 3 years younger than he, what would be the correlation between the ages of married men and women? a Somewhat negative b 0 c Somewhat positive d Nearly 1 e

More information

1 A Review of Correlation and Regression

1 A Review of Correlation and Regression 1 A Review of Correlation and Regression SW, Chapter 12 Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then

More information

UNIT 12 ~ More About Regression

UNIT 12 ~ More About Regression ***SECTION 15.1*** The Regression Model When a scatterplot shows a relationship between a variable x and a y, we can use the fitted to the data to predict y for a given value of x. Now we want to do tests

More information

Chapter 14. Statistical versus Deterministic Relationships. Distance versus Speed. Describing Relationships: Scatterplots and Correlation

Chapter 14. Statistical versus Deterministic Relationships. Distance versus Speed. Describing Relationships: Scatterplots and Correlation Chapter 14 Describing Relationships: Scatterplots and Correlation Chapter 14 1 Statistical versus Deterministic Relationships Distance versus Speed (when travel time is constant). Income (in millions of

More information

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation 3.1: Scatterplots & Correlation Scatterplots A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall)

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) We will cover Chs. 5 and 6 first, then 3 and 4. Mon,

More information

SECTION I Number of Questions 42 Percent of Total Grade 50

SECTION I Number of Questions 42 Percent of Total Grade 50 AP Stats Chap 7-9 Practice Test Name Pd SECTION I Number of Questions 42 Percent of Total Grade 50 Directions: Solve each of the following problems, using the available space (or extra paper) for scratchwork.

More information

Lecture 3. The Population Variance. The population variance, denoted σ 2, is the sum. of the squared deviations about the population

Lecture 3. The Population Variance. The population variance, denoted σ 2, is the sum. of the squared deviations about the population Lecture 5 1 Lecture 3 The Population Variance The population variance, denoted σ 2, is the sum of the squared deviations about the population mean divided by the number of observations in the population,

More information

5.1 Bivariate Relationships

5.1 Bivariate Relationships Chapter 5 Summarizing Bivariate Data Source: TPS 5.1 Bivariate Relationships What is Bivariate data? When exploring/describing a bivariate (x,y) relationship: Determine the Explanatory and Response variables

More information

Sociology 6Z03 Review I

Sociology 6Z03 Review I Sociology 6Z03 Review I John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review I Fall 2016 1 / 19 Outline: Review I Introduction Displaying Distributions Describing

More information

The response variable depends on the explanatory variable.

The response variable depends on the explanatory variable. A response variable measures an outcome of study. > dependent variables An explanatory variable attempts to explain the observed outcomes. > independent variables The response variable depends on the explanatory

More information

Information Sources. Class webpage (also linked to my.ucdavis page for the class):

Information Sources. Class webpage (also linked to my.ucdavis page for the class): STATISTICS 108 Outline for today: Go over syllabus Provide requested information I will hand out blank paper and ask questions Brief introduction and hands-on activity Information Sources Class webpage

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Chapter 3 Review Chapter 3: Examining Relationships 1. A study is conducted to determine if one can predict the yield of a crop based on the amount of yearly rainfall. The response variable in this study

More information

AP Statistics L I N E A R R E G R E S S I O N C H A P 7

AP Statistics L I N E A R R E G R E S S I O N C H A P 7 AP Statistics 1 L I N E A R R E G R E S S I O N C H A P 7 The object [of statistics] is to discover methods of condensing information concerning large groups of allied facts into brief and compendious

More information

download instant at

download instant at Answers to Odd-Numbered Exercises Chapter One: An Overview of Regression Analysis 1-3. (a) Positive, (b) negative, (c) positive, (d) negative, (e) ambiguous, (f) negative. 1-5. (a) The coefficients in

More information

Inference with Simple Regression

Inference with Simple Regression 1 Introduction Inference with Simple Regression Alan B. Gelder 06E:071, The University of Iowa 1 Moving to infinite means: In this course we have seen one-mean problems, twomean problems, and problems

More information