Toward Waste Heat Recovery Using Nanostructured Thermoelectrics

Size: px
Start display at page:

Download "Toward Waste Heat Recovery Using Nanostructured Thermoelectrics"

Transcription

1 Toward Waste Heat Recovery Using Nanostructured Thermoelectrics Sanjiv Sinha Mechanical Science & Engineering University of Illinois at Urbana-Champaign

2 Potential for Waste Heat Harvesting University of Illinois November [1] Solar 0.11 Nuclear 8.35 Hydro 2.68 Wind 0.70 Geothermal 0.37 Exergy Cost > 11 Quads Rejected Energy Natural Gas Coal Energy Services Biomass 3.88 Petroleum ~ 57% of energy consumed in the US rejected as heat

3 Sources of Low Quality Waste Heat T exhaust ~ C T IN ~ 27 C (ASHRAE) dt ~ C (HD, State of art at Intel) T~ C Source: BMW T water ~ 33 C T flue 100 C (h furnace ~ 90%) Source: SMU h CARNOT (T H =100C) ~ 20% Difficult to extract work Fluid machines infeasible Transcritical CO 2, organic Rankine, Kalina are expensive Thermoelectrics? [2]

4 [3] Thermoelectrics Thermoelectric Generators Thomas Johann Seebeck ( ) e Seebeck, T.J., Magnetische polarisation der metalle und erze durch temperaturdifferenz, Verlag von Willhelm Engelmann, Leipzig, Germany (1895) S ~ k V /K N P h+ - + p-leg p-n Thermoelectric Junction Z 2 S k ~ ~ Thermopile (Nobili & Melloni) ~ 200 W maximum power Patent (Yamamoto) 5% efficiency, ZT (Abraham Ioffe) kw (Russia) Bi-Sb-Te-Se alloys Radioscope TEG (Pioneer, Voyager, Galileo, Cassini )

5 [4] BSST Thermoelectrics Applications Refrigeration Amerigon Power Generation Waste Heat Recovery Cassini BSST

6 The Thermoelectric Heat Engine Fraction of Carnot HOT Q in I T Hot T k -1 V=S T R Engine Work COLD T Cold h = 1- T cold T hot æ ç h = h CARNOT S ç è ZT = ç k S Q out ö 1+ ZT ZT + T C T H ø st k 2 Bi 2 Te [5] ZT

7 [6] The Z Conundrum Z = S2 s k Microscopic linkage between S, and k k ( k Electron + k Lattice ) Degenerate semiconductors S S 2 Carrier concentration Metals k L Carrier concentration k s = LT Wiedemann Franz Law k E k S

8 Conversion Efficiency [7] æ ç h = h CARNOT ç ç è 1+ ZT ZT + T C T H ö ø Bi 2 Te 3 alloys have ZT ~ 1 at 300 K n-type p-type Scalability Issues: Low abundance ~15x expensive as Si What about silicon? k ~ 150 W/mK (300 K) Bulk ZT ~ 0.01

9 Thermal Conductivity Lattice vibrations conduct heat in Si T h T c T h T c Phonons (Quantum) From Kinetic theory, k ~ C v L L limited by different scattering processes Boundary Scattering Impurity Scattering Phonon-Phonon Scattering (Umklapp) [8]

10 Silicon Thermal Conductivity [9] L PHONON ~ nm Boundary scattering dominates in 100 nm Si Impurity Umklapp Phonon boundary scattering is frequency dependent and tunable through roughness Boundary k B (300)

11 UIUC Silicon TE Device Concept [10] Hot Gas Cooling Water Sq. mm array > 25 % areal coverage Resistivity ~ mw-cm L > 10 mm Rms roughness > 2nm Corr. Length < 100 nm Dia < 100 nm

12 Wire Array Fabrication [11] MAC-Etch Image Reversal via Lift-Off

13 Device Formation [12] Controlled Roughness Enhancement Atomic 5nm 10nm 20nm SOG/Poly Fill & Contact Formation Transfer Printing (n- and p-type)

14 HRTEM Roughness Characterization [13] Roughened wire still crystalline Image Stitching Process

15 Electrical Conductivity Measurements [14] r can be reduced to ~1 mwcm via controlled doping

16 Single Wire Thermal Measurements [15]

17 Thermal Conductivity of Wire Arrays [16]

18 T/P (K/W) Array Seebeck and Thermal Measurements V/P (uv/w) Voltage pad Heater Substrate NW array q R ox R NW Sub f(w) V n V s q T h2 R ox Sub f(w) V s T = 0.34 K Frequency (Hz) Ref NW NW sample Frequency (Hz) Reference Ref. NW array V = 60 μv [17]

19 Summary and Outlook Silicon thermoelectrics potentially enables unprecedented cost-effective waste heat recovery Ongoing work at UIUC seeks to fabricate the first truly nanostructured silicon thermoelectric device Preliminary characterization work shows promising trend and focus is now on device engineering Cahill Fang Ferreira Li Rogers Sinha Keng Bruno Marc Jun Seok Numair Dongwook Myunghoon Krishna Jyothi Joe Feser Jae Cheol Jae Ha Chen Jun-Hwan University of Illinois November [18]

Thermoelectric Energy Harvesting with Carbon Nanotube Systems

Thermoelectric Energy Harvesting with Carbon Nanotube Systems Thermoelectric Energy Harvesting with Carbon Nanotube Systems Presented by Thomas C. Van Vechten, Ph.D. At the New England Nanomanufacturing Summit at UMass Lowell, June 2010 1 Outline Carbon Nanotubes

More information

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang Introduction of Nano Science and Tech Thermal and Electric Conduction in Nanostructures Nick Fang Course Website: nanohub.org Compass.illinois.edu ME 498 2006-09 Nick Fang, University of Illinois. All

More information

Clean Energy: Thermoelectrics and Photovoltaics. Akram Boukai Ph.D.

Clean Energy: Thermoelectrics and Photovoltaics. Akram Boukai Ph.D. Clean Energy: Thermoelectrics and Photovoltaics Akram Boukai Ph.D. Solar Energy Use Hydrocarbons vs. Photons Arabian Oil: 600 years Sun: 1.5 billion years The Sun can Power both Solar Cells and Thermoelectrics

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Solar Thermoelectric Energy Conversion

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Gang Chen Massachusetts Institute of Technology Cambridge, MA 02139 Email: gchen2@mit.edu http://web.mit.edu/nanoengineering NSF Nanoscale Science and Engineering

More information

Research to Improve Photovoltaic (PV) Cell Efficiency by Hybrid Combination of PV and Thermoelectric Cell Elements.

Research to Improve Photovoltaic (PV) Cell Efficiency by Hybrid Combination of PV and Thermoelectric Cell Elements. UNIVERSITY OF CENTRAL FLORIDA Research to Improve Photovoltaic (PV) Cell Efficiency by Hybrid Combination of PV and Thermoelectric Cell Elements. Page 129 PI: Nicoleta Sorloaica-Hickman, Robert Reedy Students:

More information

THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES. Edwin Bosco Ramayya

THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES. Edwin Bosco Ramayya THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES by Edwin Bosco Ramayya A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical

More information

Nanoelectronic Thermoelectric Energy Generation

Nanoelectronic Thermoelectric Energy Generation Nanoelectronic Thermoelectric Energy Generation Lourdes Ferre Llin l.ferre-llin.1@research.gla.ac.uk 1 Overview: Brief introduction on Thermoelectric generators. Goal of the project. Fabrication and Measurements

More information

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of

More information

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD Approximately 90% of world s electricity is generated in turbines moved by hot steam, which, unfortunately, operate only at 30 to 40 percent efficiency.

More information

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen Thermoelectric materials Presentation in MENA5010 by Simen Nut Hansen Eliassen Outline Motivation Background Efficiency Thermoelectrics goes nano Summary https://flowcharts.llnl.gov/archive.html Waste

More information

Potential use of Thermoelectric Generator Device for Air Conditioning System

Potential use of Thermoelectric Generator Device for Air Conditioning System Potential use of Thermoelectric Generator Device for Air Conditioning System Pedro M. Peralta Trinidad 1, Gerardo Carbajal 1 1 Universidad del Turabo, Puerto Rico, pperalta.engi@gmail.com, gcarbajal1@suagm.edu

More information

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Table S1 Comparison of cooling performance of various thermoelectric (TE) materials and device architectures

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, ctuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC EFFECT (Chapter 5.11) 3 Thermocouple cylinder head temperature (thermocouple)

More information

Thermoelectric Oxide Materials For Electric Power Generation

Thermoelectric Oxide Materials For Electric Power Generation Thermoelectric Oxide Materials For Electric Power Generation Kunihito Koumoto Nagoya University, Graduate School of Engineering CREST, Japan Science and Technology Agency 1. Thermoelectric Energy Conversion

More information

CENTER FOR NONLINEAR AND COMPLEX SYSTEMS. Como - Italy

CENTER FOR NONLINEAR AND COMPLEX SYSTEMS. Como - Italy CENTER FOR NONLINEAR AND COMPLEX SYSTEMS Como - Italy Providing a sustainable supply of energy to the world s population will become a major societal problem for the 21 st century as fossil fuel supplies

More information

Solar Energy Conversion using Micro Thermoelectric Generator Pheba Cherian, L. Balakumar, S. Joyal Isac

Solar Energy Conversion using Micro Thermoelectric Generator Pheba Cherian, L. Balakumar, S. Joyal Isac Solar Energy Conversion using Micro Thermoelectric Generator Pheba Cherian, L. Balakumar, S. Joyal Isac Abstract This work presents the design, simulation of Micro Thermoelectric Generator (micro TEG)

More information

THERMOELECTRIC PROPERTIES OF V-VI SEMICONDUCTOR ALLOYS AND NANOCOMPOSITES

THERMOELECTRIC PROPERTIES OF V-VI SEMICONDUCTOR ALLOYS AND NANOCOMPOSITES THERMOELECTRIC PROPERTIES OF V-VI SEMICONDUCTOR ALLOYS AND NANOCOMPOSITES Submitted by OVGU CEYDA YELGEL to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics. August

More information

Top-down and bottom-up approaches for SiNWs based micro-tegs

Top-down and bottom-up approaches for SiNWs based micro-tegs dario.narducci@unimib.it Dario Narducci, University of Milano Bicocca, Italy Top-down and bottom-up approaches for SiNWs based micro-tegs Outline Why «all silicon» TEGs Demo applications Redundancy Thermoelectric

More information

Device Testing and Characterization of Thermoelectric Nanocomposites

Device Testing and Characterization of Thermoelectric Nanocomposites Device Testing and Characterization of Thermoelectric Nanocomposites By Andrew Muto B.S., Mechanical Engineering (2005) Northeastern University Submitted to the Department of Mechanical Engineering in

More information

Semester Length Glass Courses and Glass Schools

Semester Length Glass Courses and Glass Schools Lehigh University Lehigh Preserve US-Japan Winter School Semester Length Glass Courses and Glass Schools Winter 1-1-2008 Special lecture, Part 1: Nature-guided nanotechnology for chemical tectonics of

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

Design Of Thermoelectric Generator from Aluminum and Copper Elements

Design Of Thermoelectric Generator from Aluminum and Copper Elements IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 13, Issue 5 Ver. VII (Sep. - Oct. 016), PP 60-65 www.iosrjournals.org Design Of Thermoelectric Generator

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

eterostrueture Integrated Thermionic Refrigeration

eterostrueture Integrated Thermionic Refrigeration eterostrueture Integrated Thermionic Refrigeration Ali Shakouri, and John E. Bowers Department of Electrical and Computer Engineering University of California, Santa Barbara, CA USA 936 ABSTRACT Thermionic

More information

Functional Inorganic Materials Lecture 6: Thermoelectricity

Functional Inorganic Materials Lecture 6: Thermoelectricity Functional Inorganic Materials Lecture 6: Thermoelectricity 2016-11-17 Antti Karttunen (antti.karttunen@aalto.fi) Department of Chemistry Lecture Assignment 6 It s another MyCourses quiz! Opens later today

More information

Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles

Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles Mater. Res. Soc. Symp. Proc. Vol. 1044 2008 Materials Research Society 1044-U10-06 Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles Gehong Zeng 1, Je-Hyeong

More information

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2016 Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary

More information

Thermoelectric effect

Thermoelectric effect Hiroyuki KOIZUMI 1. Principle Thermoelectric effect Seebeck effect Temperature difference ΔT Voltage difference ΔV Peltier effect I Q Thomson effect I Current Q Heat transfer Thermoelectric effect Seebeck

More information

Chapter 1. Introduction. 1.1 Summary of Introduction. 1.2 Motivation of Thermoelectric Research

Chapter 1. Introduction. 1.1 Summary of Introduction. 1.2 Motivation of Thermoelectric Research 1 Chapter 1 Introduction 1.1 Summary of Introduction In this chapter I will introduce the motivation and basic concepts that underpin this thesis. In section 1.2 I will discuss the motivations for thermoelectric

More information

Thermoelectric materials for energy harvesting new modelling tools with predictive power

Thermoelectric materials for energy harvesting new modelling tools with predictive power Thermoelectric materials for energy harvesting new modelling tools with predictive power Ole Martin Løvvik 1,2 1 SINTEF Materials Physics, Norway 2 University of Oslo, Norway Thermoelectric generators

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Electronic thermal transport in nanoscale metal layers

Electronic thermal transport in nanoscale metal layers Electronic thermal transport in nanoscale metal layers David Cahill, Richard Wilson, Wei Wang, Joseph Feser Department of Materials Science and Engineering Materials Research Laboratory University of Illinois

More information

Applications of solid state physics: Thermoelectric materials. Eric S. Toberer Physics Dept, Colorado School of Mines

Applications of solid state physics: Thermoelectric materials. Eric S. Toberer Physics Dept, Colorado School of Mines Applications of solid state physics: Thermoelectric materials Eric S. Toberer Physics Dept, Colorado School of Mines CSM Physics: Experimental energy materials (NREL) Condensed matter theory (NIST) Femtosecond

More information

에너지하베스팅의핵심이되는열전소자측정기술 텍트로닉스김수길부장

에너지하베스팅의핵심이되는열전소자측정기술 텍트로닉스김수길부장 에너지하베스팅의핵심이되는열전소자측정기술 텍트로닉스김수길부장 Contents Background of Thermoelectric Device Seebeck Effect/Peltier Effect TE Device Applications TE Device Measurement Instruments 2 Thermoelectric Device Thermoelectric

More information

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012 2371-2 Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries 15-24 October 2012 Atomistic Simulations of Thermal Transport in Nanostructured Semiconductors (Thermal

More information

A MODEL BASED APPROACH TO EXHAUST THERMOELECTRICS. Quazi Hussain, David Brigham, and Clay Maranville Research & Advanced Engineering

A MODEL BASED APPROACH TO EXHAUST THERMOELECTRICS. Quazi Hussain, David Brigham, and Clay Maranville Research & Advanced Engineering A MODEL BASED APPROACH TO EXHAUST HEAT RECOVERY USING THERMOELECTRICS Quazi Hussain, David Brigham, and Clay Maranville Research & Advanced Engineering Ford Motor Company Objective Investigate potential

More information

MEMS Piezoelectric Vibration Harvesting

MEMS Piezoelectric Vibration Harvesting ENERGY HARVESTING: MEMS Piezoelectric Vibration Harvesting Thermoelectric Harvesting Lindsay Miller, Alic Chen, Dr. Yiping Zhu, Deepa Madan, Michael Nill, Dr. Rei Cheng Juang, Prof. Paul K. Wright & Prof.

More information

Exploring Si/SiGe quantum-well thin-film thermoelectric devices using TCAD simulation

Exploring Si/SiGe quantum-well thin-film thermoelectric devices using TCAD simulation Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-22-2012 Exploring Si/SiGe quantum-well thin-film thermoelectric devices using TCAD simulation Shaoting Hu Follow

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

Thermoelectric materials. Hyo-Jeong Moon

Thermoelectric materials. Hyo-Jeong Moon Thermoelectric materials Hyo-Jeong Moon Electrical conductivity Thermoelectric materials Ratio of current density to electric field, when no temperature gradient is present. Thermal conductivity Ratio

More information

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS Proceedings of HT 2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8 12, 2007, Vancouver, British Columbia, Canada HT2007-1520 MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY

More information

Lecture 11: Coupled Current Equations: and thermoelectric devices

Lecture 11: Coupled Current Equations: and thermoelectric devices ECE-656: Fall 011 Lecture 11: Coupled Current Euations: and thermoelectric devices Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 9/15/11 1 basic

More information

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices C-305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel lectrical and Computer ngineering Purdue

More information

Thermal conductivity of symmetrically strained Si/Ge superlattices

Thermal conductivity of symmetrically strained Si/Ge superlattices Superlattices and Microstructures, Vol. 28, No. 3, 2000 doi:10.1006/spmi.2000.0900 Available online at http://www.idealibrary.com on Thermal conductivity of symmetrically strained Si/Ge superlattices THEODORIAN

More information

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Reduction in Majority-Carrier Concentration in -Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Hideharu Matsuura, Hideki Yanagisawa, Kozo ishino, Takunori ojiri Shinobu Onoda, Takeshi Ohshima

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and ctuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC SENSORS (Chapter 3.9, 16.4) 3 Thermoelectric effect thermoelectric

More information

Introduction to phonon transport

Introduction to phonon transport Introduction to phonon transport Ivana Savić Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12,

More information

Thermoelectric Properties of Bismuth and Silicon Nanowires

Thermoelectric Properties of Bismuth and Silicon Nanowires Thermoelectric Properties of Bismuth and Silicon Nanowires Thesis by Akram Issam Boukai In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

A SEMICONDUCTOR DIODE. P-N Junction

A SEMICONDUCTOR DIODE. P-N Junction A SEMICONDUCTOR DIODE P-N Junction Analog Electronics Pujianto Department of Physics Edu. State University of Yogyakarta A Semiconductor Devices A Semiconductor devices can be defined as a unit which consists,

More information

Nanoscale Thermal Transport and Microrefrigerators on a Chip

Nanoscale Thermal Transport and Microrefrigerators on a Chip INVITED PAPER Nanoscale Thermal Transport and Microrefrigerators on a Chip Devices for cooling high power density and dynamic hot spots can be formed by solid-state thin films on the chip, or they could

More information

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Inset shows as-grown bulk BP specimen (scale bar: 5 mm). (b) Unit cell

More information

Validation, Optimization and Simulation of Solar Thermoelectric Generator Model

Validation, Optimization and Simulation of Solar Thermoelectric Generator Model 1 Validation, Optimization and Simulation of Solar Thermoelectric Generator Model By Ali Hamil Rakesh Krishnappa Harish Hadi Madkhali The Final Project of Thermoelectric I (ME 6590) College of Engineering

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

Thermal conductance of weak and strong interfaces

Thermal conductance of weak and strong interfaces Thermal conductance of weak and strong interfaces David G. Cahill, Wen-Pin Hsieh, Mark Losego, Paul Braun, Dong-Wook Oh, Seok Kim, Eric Pop, Sanjiv Sinha, Paul Braun, and John Rogers Department of Materials

More information

Modeling and Analysis of Nanostructured Thermoelectric Power Generation and Cooling Systems

Modeling and Analysis of Nanostructured Thermoelectric Power Generation and Cooling Systems Modeling and Analysis of Nanostructured Thermoelectric Power Generation and Cooling Systems by Ronil Rabari A Thesis presented to The University of Guelph In partial fulfilment of requirements for the

More information

ENERGY NANOTECHNOLOGY --- A Few Examples

ENERGY NANOTECHNOLOGY --- A Few Examples ENERGY NANOTECHNOLOGY --- A Few Examples Gang Chen Nanoengineering Group Rohsenow Heat and Mass Transfer Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 Email: gchen2@mit.edu http://web.mit.edu/nanoengineering

More information

A REVIEW ON THERMOELECTRIC MATERIALS PHENOMENA, TYPES AND APPLICATION

A REVIEW ON THERMOELECTRIC MATERIALS PHENOMENA, TYPES AND APPLICATION A REVIEW ON THERMOELECTRIC MATERIALS PHENOMENA, TYPES AND APPLICATION PrathvirajUpadhyaya Mechanical Department, SMVITM,Bantakal Abstract -Thermoelectric materials have drawn vast attentions for centuries,

More information

Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration

Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 3 1 AUGUST 2001 Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration Marc D. Ulrich a) and Peter A. Barnes 206 Allison Laboratory,

More information

Energy Conversion in the Peltier Device

Energy Conversion in the Peltier Device Laboratory exercise 4 Energy Conversion in the Peltier Device Preface The purpose of this exercise is to become familiar with the Peltier effect. Students will observe Peltier device working as a heat

More information

Control of Nano Structure by Multi Films for Nano-structured Thermoelectric Materials

Control of Nano Structure by Multi Films for Nano-structured Thermoelectric Materials ELECTRONICS Control of Nano Structure by Multi Films for Nano-structured Thermoelectric Materials Masahiro ADACHI*, Syunsuke FUJII, Makoto KIYAMA, Yoshiyuki YAMAMOTO and Tsunehiro TAKEUCHI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Rajeev Singh, Zhixi Bian, Gehong Zeng, Joshua Zide, James Christofferson, Hsu-Feng Chou,

More information

Quantum Dot Solar Cells

Quantum Dot Solar Cells Quantum Dot Solar Cells 2 INTRODUCTION: As industrialization speeds up in developing and under-developed countries with an alarming rise in population, global power consumption has become a big question

More information

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design Lecture 11 Temperature Sensing 1 Temperature Sensing Q: What are we measuring? A: Temperature 2 SI Units: Celcius ( C), Kelvin (K) British Units: Fahrenheit ( F)

More information

Increasing thermoelectric efficiency towards the Carnot limit

Increasing thermoelectric efficiency towards the Carnot limit GoBack Increasing thermoelectric efficiency towards the Carnot limit Carlos Mejía-Monasterio Département de Physique Théorique, Université de Genève http://calvino.polito.it/ mejia/ ODYN-III, Lille, March

More information

Applications: Thermoelectrics

Applications: Thermoelectrics Page 1 of 5 Applications: Thermoelectrics Quantum dots breathes life back into Thermoelectrics Shortcomings of Traditional Thermoelectric devices Thermoelectrics is the science and technology associated

More information

Study Of High Efficiency Micro Thermoelectric Energy Harvesters

Study Of High Efficiency Micro Thermoelectric Energy Harvesters University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Study Of High Efficiency Micro Thermoelectric Energy Harvesters 2011 Steven Michael Pedrosa University of

More information

Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia

Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia Jurnal Teknologi Full paper Comparison of Thermoelectric Generator (TEG) Performance Parameter Between Modelling and Simulation Results and Manufacturer Datasheet For HZ-20 & HZ-14 Zamir Noor Abd Hamid,

More information

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups.

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. ICQNM 2014 Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. Cubic: Diamond structures: group IV semiconductors (Si, Ge, C), Cubic zinc-blende structures:

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, Actuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems HEMOESISIVE SENSOS AND LINEAIZAION (Chapter.9, 5.11) 3 Applications discharge air temperature

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Thermionic power generation at high temperatures using SiGe/ Si superlattices

Thermionic power generation at high temperatures using SiGe/ Si superlattices JOURNAL OF APPLIED PHYSICS 101, 053719 2007 Thermionic power generation at high temperatures using SiGe/ Si superlattices Daryoosh Vashaee a and Ali Shakouri Jack Baskin School of Engineering, University

More information

THERMOELECTRICS DESIGN AND MATERIALS

THERMOELECTRICS DESIGN AND MATERIALS THERMOELECTRICS THERMOELECTRICS DESIGN AND MATERIALS HoSung Lee Western Michigan University, USA This edition first published 2017 2017 John Wiley & Sons Ltd Registered office John Wiley & Sons Ltd, The

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

THERMAL TRANSPORT MEASUREMENT OF SILICON-GERMANIUM NANOWIRES

THERMAL TRANSPORT MEASUREMENT OF SILICON-GERMANIUM NANOWIRES THERMAL TRANSPORT MEASUREMENT OF SILICON-GERMANIUM NANOWIRES A Thesis by YUNKI GWAK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

Figure (13-1) Single Thermoelectric Couple where Th > Tc

Figure (13-1) Single Thermoelectric Couple where Th > Tc Technical Brief Basics on TEG Power Generation 13.0 Power Generation 13.1 Bismuth Telluride-based thermoelectric power modules are designed primarily for cooling or combined cooling and heating applications

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Hall Effect Measurements on New Thermoelectric Materials

Hall Effect Measurements on New Thermoelectric Materials Mat. Res. Soc. Symp. Proc. Vol. 793 004 Materials Research Society S8.35.1 Hall Effect Measurements on New Thermoelectric Materials Jarrod Short, Sim Loo, Sangeeta Lal, Kuei Fang Hsu, Eric Quarez, Mercouri

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and Actuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems HEMOESISIVE SENSOS (Chapter 16.3) 3 emperature sensors placement excitation

More information

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems N.A. Roberts and D.G. Walker Department of Mechanical Engineering Vanderbilt University May 30,

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

A Primer On Phonon Glass Electrical Crystal Material

A Primer On Phonon Glass Electrical Crystal Material A Primer On Phonon Glass Electrical Crystal Material Stefan Bringuier Materials Science and Engineering, University of Arizona stefanb@email.arizona.edu http://u.arizona.edu/~stefanb May 7, 2012 Abstract

More information

Temperature Measurement

Temperature Measurement Temperature Measurement Temperature is one of the most common measurements What is Temperature? Intuitively understood as sensation of hot/cold Early Researchers: Galileo (1564-1642) Newton (1642-1727)

More information

TRANSIENT THERMAL CHARACTERIZATION OF ERAS/IN 0.53 GA 0.47 AS THERMOELECTRIC MODULE

TRANSIENT THERMAL CHARACTERIZATION OF ERAS/IN 0.53 GA 0.47 AS THERMOELECTRIC MODULE Proceedings of IPACK2007 ASME InterPACK '07 July 8-12, 2007, Vancouver, British Columbia, CANADA IPACK2007-33880 TRANSIENT THERMAL CHARACTERIZATION OF ERAS/IN 0.53 GA 0.47 AS THERMOELECTRIC MODULE Y. Ezzahri,

More information

University of California Postprints

University of California Postprints University of California Postprints Year 2007 Paper 2192 Cross-plane Seebeck coefficient of ErAs : InGaAs/InGaAlAs superlattices G H. Zeng, JMO Zide, W Kim, J E. Bowers, A C. Gossard, Z X. Bian, Y Zhang,

More information

Quenched Phonon Drag in Silicon Nanowires Reveals Significant Effect in the Bulk at Room Temperature

Quenched Phonon Drag in Silicon Nanowires Reveals Significant Effect in the Bulk at Room Temperature pubs.acs.org/nanolett Quenched Phonon Drag in Silicon Nanowires Reveals Significant Effect in the Bulk at Room Temperature Jyothi Sadhu, Hongxiang Tian, Jun Ma, Bruno Azeredo, Junhwan Kim, Karthik Balasundaram,

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.215.33 Epitaxial graphene quantum dots for high-performance terahertz bolometers Abdel El Fatimy *, Rachael L. Myers-Ward, Anthony K. Boyd, Kevin M. Daniels, D. Kurt Gaskill, and Paola

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Thermoelectric Energy Harvesting

Thermoelectric Energy Harvesting Thermoelectric Energy Harvesting Prof Douglas Paul Director: James Watt Nanofabrication Centre University of Glasgow U.K. The University of Glasgow Established in 1451 7 Nobel Laureates, 2 SI units, ultrasound,

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

FABRICATION AND CHARACTERIZATION OF VERTICAL SILICON NANOWIRE ARRAYS: A PROMISING BUILDING BLOCK FOR THERMOELECTRIC DEVICES A DISSERTATION

FABRICATION AND CHARACTERIZATION OF VERTICAL SILICON NANOWIRE ARRAYS: A PROMISING BUILDING BLOCK FOR THERMOELECTRIC DEVICES A DISSERTATION FABRICATION AND CHARACTERIZATION OF VERTICAL SILICON NANOWIRE ARRAYS: A PROMISING BUILDING BLOCK FOR THERMOELECTRIC DEVICES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING AND THE

More information

Index. a Anisotropic thermoelectric elements 147, 148 Archimedes principle b Benedicks effect 12 Bridgman effect 13

Index. a Anisotropic thermoelectric elements 147, 148 Archimedes principle b Benedicks effect 12 Bridgman effect 13 335 Index a Anisotropic thermoelectric elements 147, 148 Archimedes principle. 191 b Benedicks effect 12 Bridgman effect 13 c Cascaded thermoelectric generators 230 CHI See Constant heat input (CHI) model

More information

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang 1 and Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, Massachusetts,

More information