Energy Conversion in the Peltier Device

Size: px
Start display at page:

Download "Energy Conversion in the Peltier Device"

Transcription

1 Laboratory exercise 4 Energy Conversion in the Peltier Device Preface The purpose of this exercise is to become familiar with the Peltier effect. Students will observe Peltier device working as a heat pump that cools down temperature sensor and cools down electric device. Peltier device could also be used as a thermoelectric generator and this phenomenon would be also measured. Physical principles of Peltier device are: Peltier effect Joule effect Heat conduction in solid material Thomson effect Seeback effect In this lab manuals all of these phenomenon will be discussed. Figure 1: The drawing of Peltier device. (from 1

2 1 Peltier effect In 1834 Peltier has joined together two wires made from different material - copper and bismuth. Then he connected them to a battery. When he closed the circuit, the current pass through the junction and one of the two wires became hot, while the second was cooled down. The amount of heat that was transferred by the device depends of current value and materials type that were used in the device. A typical module consists of p and n semiconductor elements and ceramic substrates. Bismuth telluride is an example of semiconductor commonly used in module. In appearance, it is a device in which pairs of semiconductor elements are sandwiched between ceramic surfaces and the elements are electrically series-connected, P-N, P- N. Its size is generally mm square and 3-6 mm thick. The Peltier effect is created in p-n junctions. The structure is pictured in Fig. 1. The most important fact should be, that p and n materials are parallel to each other and the junctions create both surfaces of a Peltier device. Figure 2: The structure of typical thermoelectric device [from The electric current that occurs in semiconductors is created by electrons movement. In p-type semiconductor electric current is created by hole movement. The hole is created by a process of doping the semiconductor material. One of electron is missing from one of the four covalent bonds normal for the silicon lattice. In semiconductors n-type there is an excess of electrons. Previously mentioned energy band is completely filled and the electrons have high energy. That means that the electron has the possibility to separate easier than in not doped material. When electron jumps to higher orbit from the lower one, it needs some energy. In the Peltier device the electrons require higher energy, to pass from the semiconductor p-type into the n-type. This energy has to be taken from anywhere. It is taken from environment in form of heat energy. That phenomenon generates lower temperature on Peltier device surface. Then electrons flow from n-type to p-type. In that junctions, electrons reject energy because they flow from higher energy to lower. That energy heats the second surface - it is the "hot" surface. The junctions of 2

3 p-n type absorbs heat and of n-p type rejects heat. When direction of current is changed, the hot and cold surfaces exchange places. 2 Joule heat This effect occurs when electric current passes through a material of resistance value greater than zero. The current generates heat which is proportional to value of material and a product of the square of the current: P=R I 2 The problem with Joule heat in case of the Peltier device is that it has influence on the Peltier phenomenon. Joule effect creates the limitation for Peltier device, by generating a heat inside the device. This heat creates a additional energy which has to be transported by electrons. This is the reason that on hot surface there is more energy than was absorbed by electrons on colder surface. Peltier effect transports heat which is proportional to value of current. However the opposite phenomenon generates heat of value proportional to square current. When value of electric current increases, it causes faster growth of Joule heat, than the heat transported by the Peltier effect. The state when both kind of energy are equal means, that the energy that is transported by electrons, is the heat that is generated by Joule effect. More heat could not be transported from cold surface. Figure 3: Joule heat (red) and heat transported with Peltier effect (green) for electric current values This state was pictured on Fig. 3. The most important parameter for any Peltier device is the value of maximum current and the highest possible heat power to be transported with current. The highest possible transport power value for given Peltier device was marked on Fig. 3 with a square. 3

4 3 Heat conduction phenomenon in the Peltier device Another important phenomenon, besides the previously described phenomena, that occurs in a thermoelectric device is a heat conduction phenomenon. According to the second law of thermodynamics, temperatures difference causes a flow of a heat energy from a hotter object to a colder. In Peltier device, heat is transported from the cold surface to the hot one. Heat conduction phenomenon causes heat flow in the opposite direction. That means that it is the second phenomenon which counteracts the Peltier principle. The value of heat power that is transported from the hot to cold surface is given by the equation: P= t hot t cold W peltier which means that it depends of temperature difference on both surface and a value of heat resistance of Peltier device. The heat resistance is almost constant during a temperature changes. The value of heat power is almost entirely dependent only on temperature difference. If this difference is high enough which is also a result of high value of electric current passing through semiconductors junctions, the heat conducted and Joule heat become both significant. That counteracts Peltier phenomenon. To prevent of returning heat to cold surface, sufficient cooling of hot side should be use, which takes heat energy from the device surface. The heat sink are typically used, but it do not has enough cooling power. Water cooling of hot side of Peltier device is much better. The advantage of use water are its significant specific heat which means that water absorbs a lot of energy. The water cooling system that is used during laboratory exercise allows water to pass through water block, that is placed under the Peltier device. The water absorbs heat and returns to hydraulic system of the building. This is circuit of open type, which delivers a cold water all time and does not need an additional pump. During the laboratory exercise, students will observe how much impact has sufficient cooling of hot surface for efficiency of Peltier device. 4 Thomson effect This effect was predicted by Lord Kelvin. He stated, that additional electromotive force will be generated in a conductor, in which a electric current passes, at the presence of a temperature gradient. It means, that a different temperatures were formed on the surfaces of conductor. If electric conductor is connected with a galvanometer, which measures very small electric current, and something hot is being moved along conductor (for example a cigarette lighter), a electric current passing by this conductor would be observed by galvanometer. This effect will also occurs if we hold in a place the heat source during electrons movement. It means that additional voltage (electromotive force) will be created. Some of electrons will flow in the normal direction of source voltage that was used. But some of them will flow in the opposite direction. That phenomenon is Thomson effect and it happens 4

5 with the occurrence of temperature gradient. These electrons will cool down a part of conductor, in which they are moving. That means that heat power is taken from environment the heat is transferred from hot to cold in the similar way as in the Peltier phenomenon. So additional electromotive force could absorbs or rejects heat. That depends of material type and current direction and which electric potential has higher temperature. In case of the lead, this effect is neglected. This effects is so small, that it could be neglected in a Peltier device. 5 Seeback effect The last of mentioned in the preface effect is the Seeback effect. The three phenomena: Peltier effect, Thomson and Seeback are treated as thermoelectric effects. The latter was discovered by Seeback who thought, that he actually did discover thermomagnetic phenomenon. On the junction of two different metals under the influence of temperature difference, a voltage is generated. That phenomenon is used in temperatures measurement. Special temperature sensor that is a junction of two metals is called thermocouple. If junction is placed in different temperature than both ends of thermocouple, between both metals a potential difference will be generated. This is also used to identify a components of alloy in industry. The phenomenon is sometimes also use in special circumstances to generate electric energy. It is used in some space probes or satellites in form of a radioisotope thermoelectric generator. In the device, decay of radioactive material generates heat, which generates electric energy by many thermocouples which are commonly connected in series. 6 The plan of exercises During the lab exercise students measure the temperatures: on top surface of Peltier device and on inlet and outlet of water. The voltage value which is fed to Peltier and a value of electric current also have to be measured. The latter is measured by a read of value of voltage drop on a special measurement resistance. The bottom surface of Peltier device is cooled by a water, which passes by a water block which is placed under the Peltier device. The water flow is measured with a rotameter. EXPERIMENTAL PROCEDURES: 1. Get several sheets of paper for writing down measured data and create a lab results report. Write down all names of students from your group. 2. Check laboratory circuit. Do you know what is the purpose of all of used devices? Draw a picture of the circuit in your group results report. 3. You are going to get an introduction from the teacher. During it, you 5

6 could be asked simple questions about this lab exercise. 4. The first part of your measurement should be made for different electrical power feeds to the Peltier device. Water flow should be selected and maintained at a constant level. This will make different temperature on both surfaces of the device. Get results for PWM of values: 5%, 10%, 20% 100%. 5. After reaching 100% of PWM value, students should set different water flow, and check it's influence on temperatures on Peltier device. Check this for lower and higher water flow. 6. In the next part of the exercise we will check how much Peltier influence the temperature of a object in which Joule effect generates some heat. 7. In the last part of this experiment, we observe how a temperature difference generates electrical power. 7 Report preparing The most important issues, that should be in report: describe the measurement system and elements of the test and measurement procedure, prepare some charts and tables showing the function of temperature of cold surface and a current value, discuss a influence of water cooling on the device efficiency, how much Peltier device change temperature of hot object? write down some conclusions. 8 Bibliography l 6

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Objectives In this lecture you will learn the following Seebeck effect and thermo-emf. Thermoelectric series of metals which can be used to form

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, ctuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC EFFECT (Chapter 5.11) 3 Thermocouple cylinder head temperature (thermocouple)

More information

Temperature Measurement

Temperature Measurement MECE 3320 Measurements & Instrumentation Temperature Measurement Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Introduction Temperature is one of the most

More information

Peltier Application Note

Peltier Application Note Peltier Application Note Early 19th century scientists, Thomas Seebeck and Jean Peltier, first discovered the phenomena that are the basis for today s thermoelectric industry. Seebeck found that if you

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. PELTIER CELL OBJECT Your task is to get acquainted with the Peltier cell behavior in the ThermoElectric Generator mode (TEG) and in the

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and ctuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC SENSORS (Chapter 3.9, 16.4) 3 Thermoelectric effect thermoelectric

More information

Temperature Measurements

Temperature Measurements Engineering 80 Spring 2015 Temperature Measurements SOURCE: http://www.eng.hmc.edu/newe80/pdfs/vishaythermdatasheet.pdf SOURCE: http://elcodis.com/photos/19/51/195143/to-92-3_standardbody to-226_straightlead.jpg

More information

LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Thermal Energy Domain Physics» Seebeck effect» Peltier effect» Thomson effect Thermal effects in semiconductors Thermoelectric sensors

More information

Introduction To Thermoelectrics

Introduction To Thermoelectrics 1462 International Drive Traverse City, MI 49686 231-947-0110 www.tellurex.com A Brief History Introduction To Thermoelectrics Early 19th century scientists, Thomas Seebeck and Jean Peltier, first discovered

More information

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives EXPERIMENT 7 VARIATION OF THERMO-EMF WITH TEMPERATURE Thermo-EMF Structure 7.1 Introduction Objectives 7.2 Working Principle of a Potentiometer 7.3 Measurement of Thermo-EMF and its Variation with Temperature

More information

Potential use of Thermoelectric Generator Device for Air Conditioning System

Potential use of Thermoelectric Generator Device for Air Conditioning System Potential use of Thermoelectric Generator Device for Air Conditioning System Pedro M. Peralta Trinidad 1, Gerardo Carbajal 1 1 Universidad del Turabo, Puerto Rico, pperalta.engi@gmail.com, gcarbajal1@suagm.edu

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

Design Of Thermoelectric Generator from Aluminum and Copper Elements

Design Of Thermoelectric Generator from Aluminum and Copper Elements IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 13, Issue 5 Ver. VII (Sep. - Oct. 016), PP 60-65 www.iosrjournals.org Design Of Thermoelectric Generator

More information

Thermoelectric effect

Thermoelectric effect Hiroyuki KOIZUMI 1. Principle Thermoelectric effect Seebeck effect Temperature difference ΔT Voltage difference ΔV Peltier effect I Q Thomson effect I Current Q Heat transfer Thermoelectric effect Seebeck

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and Actuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems HEMOESISIVE SENSOS (Chapter 16.3) 3 emperature sensors placement excitation

More information

Semiconductor thermogenerator

Semiconductor thermogenerator Semiconductor thermogenerator LEP 4.1.07 Related topics Seebeck effect (thermoelectric effect), thermoelectric e.m.f., efficiency, Peltier coefficient, Thomson coefficient, Seebeck coefficient, direct

More information

A thesis submitted to Cardiff University in the candidature for the degree of Doctor of Philosophy By. Nadhrah Md Yatim, BSc. (Hons), MSc.

A thesis submitted to Cardiff University in the candidature for the degree of Doctor of Philosophy By. Nadhrah Md Yatim, BSc. (Hons), MSc. Development of Open-Short Circuit Dimensionless Figure-of-Merit (ZT) Measurement Technique for Investigation of Thermoelements and Segmented Thermoelectric Structures A thesis submitted to Cardiff University

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts. 15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical

More information

1) Thermo couple sensor

1) Thermo couple sensor 1) Thermo couple sensor Fundamental operation. In 1821 Mr. Seebeck found that if you connected 2 wires of different metals, a small Voltage would be generated, when this connection (junction) is heated.

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Analysis of Thermoelectric Generator Performance by Use of Simulations and Experiments

Analysis of Thermoelectric Generator Performance by Use of Simulations and Experiments Journal of ELECTRONIC MATERIALS, Vol. 43, No. 6, 2014 DOI: 10.1007/s11664-014-3020-x Ó 2014 The Author(s). This article is published with open access at Springerlink.com Analysis of Thermoelectric Generator

More information

(b) The diagram given below has T2>T1. Explain. Ans.: We know that V IR, T indicates the temperature I 1. (Lower temperature) (Higher Temperature)

(b) The diagram given below has T2>T1. Explain. Ans.: We know that V IR, T indicates the temperature I 1. (Lower temperature) (Higher Temperature) BHSEC: 2009 (a) How can a galvanometer be converted into an ammeter of desired range? Explain with the help of diagram. By connecting a low resistance (shunt) in parallel to the galvanometer. As per ohm

More information

Thermoelectric Study of Peltier Effect Using Cu-Fe, Pb-Fe and Cu-Constantan Couples

Thermoelectric Study of Peltier Effect Using Cu-Fe, Pb-Fe and Cu-Constantan Couples International Journal of Innovative Scientific & Engineering Technologies Research 4(4):1-12, Oct-Dec. 2016 SEAHI PUBLICATIONS, 2016 www.seahipaj.org ISSN: 2360-896X Thermoelectric Study of Peltier Effect

More information

Analytical Performance Evaluation of Thermoelectric Modules Using Effective Material Properties

Analytical Performance Evaluation of Thermoelectric Modules Using Effective Material Properties Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2014 Analytical Performance Evaluation of Thermoelectric Modules Using Effective Material Properties Sean Lwe Leslie Weera

More information

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale Temperature Scales The Celsius, Fahrenheit, and Kelvin Temperature Scales: Temperature, and Temperature Dependent on Physical Properties Physics Enhancement Programme Dr. M.H. CHAN, HKBU 9 T F T 5 T T

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, Actuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems HEMOESISIVE SENSOS AND LINEAIZAION (Chapter.9, 5.11) 3 Applications discharge air temperature

More information

Impurity Content of a Semiconductor Crystal

Impurity Content of a Semiconductor Crystal Impurity Content of a Semiconductor Crystal Experiment F1/3 Contents Impurity Content of a Semiconductor Crystal... 2 1 Aims... 2 Background... 3 Doping... 3 Crystal Growth... 4 The 4-point probe... 6

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

Resistance Learning Outcomes

Resistance Learning Outcomes Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

Measurements & Instrumentation. Module 3: Temperature Sensors

Measurements & Instrumentation. Module 3: Temperature Sensors Measurements & Instrumentation PREPARED BY Academic Services Unit August 2013 Institute of Applied Technology, 2013 Module Objectives Upon successful completion of this module, students should be able

More information

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

Figure (13-1) Single Thermoelectric Couple where Th > Tc

Figure (13-1) Single Thermoelectric Couple where Th > Tc Technical Brief Basics on TEG Power Generation 13.0 Power Generation 13.1 Bismuth Telluride-based thermoelectric power modules are designed primarily for cooling or combined cooling and heating applications

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

Temperature Measurement

Temperature Measurement Temperature Measurement Temperature is one of the most common measurements What is Temperature? Intuitively understood as sensation of hot/cold Early Researchers: Galileo (1564-1642) Newton (1642-1727)

More information

Section 2: The Science of Solar Energy

Section 2: The Science of Solar Energy Section 2: The Science of Solar Energy SECTION 2: THE SCIENCE OF SOLAR ENERGY Solar Radiation 9 Solar radiation outside the earth s atmosphere is called extraterrestrial radiation. On average the extraterrestrial

More information

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design Lecture 11 Temperature Sensing 1 Temperature Sensing Q: What are we measuring? A: Temperature 2 SI Units: Celcius ( C), Kelvin (K) British Units: Fahrenheit ( F)

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

What are the two types of current? The two types of current are direct current and alternating current.

What are the two types of current? The two types of current are direct current and alternating current. Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

More information

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD Approximately 90% of world s electricity is generated in turbines moved by hot steam, which, unfortunately, operate only at 30 to 40 percent efficiency.

More information

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first

More information

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena. Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

- Copyright Dewesoft d.o.o., all rights reserved. Temperature measurement

- Copyright Dewesoft d.o.o., all rights reserved. Temperature measurement www.dewesoft.com - Copyright 2000-2019 Dewesoft d.o.o., all rights reserved. Temperature measurement Table of Contents Temperature and temperature scales 2 Types of temperature sensors 4 1. Thermocouples

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Lecture 36: Temperatue Measurements

Lecture 36: Temperatue Measurements Lecture 36: Temperatue Measurements Contents Principle of thermocouples Materials for themocouples Cold junction compensation Compensating wires Selection of thermocouples Illustration of gas temperature

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 Concept of Core Conductivity of conductor and semiconductor can also be explained by concept of Core. Core: Core is a part of an atom other than its valence electrons. Core consists of all inner shells

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur.

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur. Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Second Law and its Corollaries I Good afternoon, I welcome you all to this

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Maariy A. Tanatar September 28, 2009 Thermo- galvano-magnetic effects

More information

Semiconductor Physics

Semiconductor Physics Semiconductor Physics Motivation Is it possible that there might be current flowing in a conductor (or a semiconductor) even when there is no potential difference supplied across its ends? Look at the

More information

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I Lecture (02) Introduction to Electronics II, PN Junction and Diodes I By: Dr. Ahmed ElShafee ١ Agenda Current in semiconductors/conductors N type, P type semiconductors N Type Semiconductor P Type Semiconductor

More information

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge. Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

More information

Modeling, Optimizing and Testing Thermoelectric Generators for Liquid-to-Liquid Low Grade Waste Heat Recovery

Modeling, Optimizing and Testing Thermoelectric Generators for Liquid-to-Liquid Low Grade Waste Heat Recovery Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-2016 Modeling, Optimizing and Testing Thermoelectric Generators for Liquid-to-Liquid Low Grade Waste Heat Recovery Ali

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Maariy A. Tanatar November 14, 2008 Thermo- galvano-magnetic effects Seebec

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY. Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

More information

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013. Diodes EE223 Digital & Analogue Electronics Derek Molloy 2012/2013 Derek.Molloy@dcu.ie Diodes: A Semiconductor? Conductors Such as copper, aluminium have a cloud of free electrons weak bound valence electrons

More information

ME 105 Mechanical Engineering Laboratory Spring Quarter Experiment #2: Temperature Measurements and Transient Conduction and Convection

ME 105 Mechanical Engineering Laboratory Spring Quarter Experiment #2: Temperature Measurements and Transient Conduction and Convection ME 105 Mechanical Engineering Lab Page 1 ME 105 Mechanical Engineering Laboratory Spring Quarter 2010 Experiment #2: Temperature Measurements and Transient Conduction and Convection Objectives a) To calibrate

More information

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors

More information

Thermal energy 7 TH GRADE SCIENCE

Thermal energy 7 TH GRADE SCIENCE Thermal energy 7 TH GRADE SCIENCE Temperature There s more to temperature than the idea of hot and cold. Remember that all matter is made up of tiny particles that are constantly moving even in solid objects.

More information

Electricity. Semiconductor thermogenerator Stationary currents. What you need:

Electricity. Semiconductor thermogenerator Stationary currents. What you need: Stationary currents Electricity Semiconductor thermogenerator What you can learn about Seebeck effect (thermoelectric effect) Thermoelectric e.m.f. Efficiency Peltier coefficient Thomson coefficient Seebeck

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

Thermoelectric Cooling in Downhole Measuring Tools

Thermoelectric Cooling in Downhole Measuring Tools Thermoelectric Cooling in Downhole Measuring Tools Rohitha Weerasinghe University of the West of England, Bristol, UK ABSTRACT: Thermoelectric cooling is a highly effective and a novel technique used for

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 15 Excess Carriers This is the 15th lecture of this course

More information

ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

Measurement of Temperature in the Plastics Industry

Measurement of Temperature in the Plastics Industry Sawi Mess- und Regeltechnik AG CH 8405 Winterthur-Gotzenwil, Switzerland Telephone +41 52 320 50 50, Fax +41 52 320 50 55 www.sawi.ch Measurement of Temperature in the Plastics Industry Johannes Wild,

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Chapter 21 Electric Current and Circuits

Chapter 21 Electric Current and Circuits Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4

More information

Ideal wires, Ideal device models, Ideal circuits. Ideal models for circuit elements Wires

Ideal wires, Ideal device models, Ideal circuits. Ideal models for circuit elements Wires Ideal wires, Ideal device models, Ideal circuits Ideal models for circuit elements Wires Currents and Voltages Joints Resistors Voltage sources Current sources. EE 42 Lecture 1 1 Cast of Characters Fundamental

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Section 1 Electric Charge and Force

Section 1 Electric Charge and Force CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

More information

Science Practice Exam. Chapters 5 and 14

Science Practice Exam. Chapters 5 and 14 Science Practice Exam Chapters 5 and 14 FORMULAS Science and Technology FORMULAS C: concentration m: quantity of solute v: quantity of solution V: potential difference R: resistance I: electric current

More information

A SEMICONDUCTOR DIODE. P-N Junction

A SEMICONDUCTOR DIODE. P-N Junction A SEMICONDUCTOR DIODE P-N Junction Analog Electronics Pujianto Department of Physics Edu. State University of Yogyakarta A Semiconductor Devices A Semiconductor devices can be defined as a unit which consists,

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

Chapter 16: DC Circuits

Chapter 16: DC Circuits Chapter 16: DC Circuits Why might all the electrical devices in your house suddenly turn off if you simultaneously turn too many on? How can you use an electric circuit to model the circulatory system?

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Unit 6 Current Electricity and Circuits

Unit 6 Current Electricity and Circuits Unit 6 Current Electricity and Circuits 2 Types of Electricity Electricity that in motion. Electricity that in motion. Occurs whenever an moves through a. 2 Types of Current Electricity Electricity that

More information

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250- ohm resistor.

More information

Making Contact with Temperature

Making Contact with Temperature Making Contact with Temperature Here is a look at the phenomenon itself, the basic measurement technologies available, and how industry is presently using them. Jesse Yoder, Flow Research Temperature is

More information

Now let s look at some devices that don t have a constant resistance.

Now let s look at some devices that don t have a constant resistance. Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then

More information

Electron Theory. Elements of an Atom

Electron Theory. Elements of an Atom Electron Theory Elements of an Atom All matter is composed of molecules which are made up of a combination of atoms. Atoms have a nucleus with electrons orbiting around it. The nucleus is composed of protons

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information