Unsupervised Learning: Dimension Reduction

Size: px
Start display at page:

Download "Unsupervised Learning: Dimension Reduction"

Transcription

1 Unsupervised Learning: Diension Reduction by Prof. Seungchul Lee isystes Design Lab UNIST Table of Contents I.. Principal Coponent Analysis (PCA) II. 2. PCA Algorith I. 2.. Pre-processing II Maxiize variance III Miniize the su-of-squared error IV Diension Reduction ethod (n k) III. 3. Python Codes IV. 4. PCA Exaple V. 5. PCA Visualization I. 5.. Eigenvalues II Eigenvectors. Principal Coponent Analysis (PCA) Motivation: Can we describe high-diensional data in a "sipler" way? Diension reduction without losing too uch inforation Find a low-diensional, yet useful representation of the data Why diensionality reduction? insights into the low-diensinal structures in the data (visualization) Fewer diensions Less chances of overfitting Better generalization Speeding up learning algoriths Most algoriths scale badly with increasing data diensionality Less storage requireents (data copression) Note: Diensionality Reduction is different fro Feature Selection.. although the goals are kind of the sae Diensionality reduction is ore like Feature Extraction Constructing a sall set of new features fro the original features

2 How? idea: highly correlated data contains redundant features x {, } - Each exaple has 2 features x x 2 - Consider ignoring the feature x 2 for each exaple - Each 2-diensional exaple x now becoes -diensional x = { x } - Are we losing uch inforation by throwing away x 2? - No. Most of the data spread is along x (very little variance along x 2 ) x {, } - Each exaple has 2 features x x 2 - Consider ignoring the feature x 2 for each exaple - Each 2-diensional exaple x now becoes -diensional x = { x } - Are we losing uch inforation by throwing away x 2? - Yes, the data has substantial variance along both features (_i.e._ both axes) - Now consider a change of axes - Each exaple x has 2 features { u, u 2 } - Consider ignoring the feature u 2 for each exaple - Each 2-diensional exaple x now becoes -diensional x = { u } - No. Most of the data spread is along u (very little variance along u 2 )

3 Data projection onto unit vector u^ PCA is used when we want projections capturing axiu variance directions Principal Coponents (PC): directions of axiu variability in the data Roughly speaking, PCA does a change of axes that can represent the data in a succinct anner HOW?. Maxiize variance (ost separable) 2. Miniize the su-of-squares (iniu squared error) 2. PCA Algorith

4 2.. Pre-processing Given data x (i) =, X = x (i) x (i) n (x () ) T (x (2) ) T (x () ) T Shifting (zero ean) and rescaling (unit variance). Shift to zero ean μ = i= x (i) x (i) x (i) μ (zero ean) 2. [optional] Rescaling (unit variance) σ 2 j = i= ( x ) (i) j 2 x (i) j x(i) j σ j 2.2. Maxiize variance Find unit vector u such that axiizes variance of projections for big data variance of projected data = ( u T x (i) ) 2 = ( x (i)t u) 2 i= i= = ( x (i)t u ) T ( u) = x (i)t u T x (i) x (i)t u i= i= Note: = u T ( x (i) x (i)t ) u i= = u T Su (S = X : saple covariance atrix) XT In an optiization for axiize subject to u T Su u T u = u T Su = u T λu = λu T u = λ (Eigen analysis : Su = λu) pick the largest eigenvalue λ of covariance atrix S u = u is the λ s corresponding eigenvector u is the first principal coponent (direction of highest variance in the data)

5 2.3. Miniize the su-of-squared error e (i) 2 = x (i) 2 ( x (i)t u) 2 = x (i) 2 ( x (i)t u ) T ( x (i)t u) = x (i) 2 u T x (i) x (i)t u i= e (i) 2 = x (i) 2 u T x (i) x (i)t u i= i= = x (i) 2 u T ( x (i) x (i)t ) u i= i= In an optiization for iniize x (i) 2 i= constant given x i u T i= u T ( x (i) x (i)t ) u i= axiize axiize ( x (i) x (i)t ) u = ax u T Su iniize erro r 2 = axiize variance

6 2.4. Diension Reduction ethod ( n k). Choose top (orthonoral) eigenvectors, u u 2 2. Project x i onto span { u, u 2,, u k } u T x(i) k U = [,,, ] z (i) Pictorial suary of PCA u T 2 x(i) u k = or z = U T x u T k x(i) x (i) projection onto unit vector u u T x (i) = distance fro the origin along u 3. Python Codes In [3]: iport nupy as np iport atplotlib.pyplot as plt fro pl_toolkits.plot3d iport axes3d %atplotlib inline

7 In [2]: # data generation = 5000 u = np.array([0, 0]) siga = np.array([[3,.5], [.5, ]]) X = np.rando.ultivariate_noral(u, siga, ) X = np.asatrix(x) fig = plt.figure(figsize=(0, 6)) plt.plot(x[:,0], X[:,], 'k.') plt.axis('equal') plt.show() In [3]: S = /(-)*X.T*X S = np.asatrix(s) D, V = np.linalg.eig(s) idx = np.argsort(-d) D = D[idx] V = V[:,idx] print(d) print(v) [ ] [[ ] [ ]]

8 In [4]: h = V[,0]/V[0,0] xp = np.arange(-6, 6, 0.) yp = h*xp fig = plt.figure(figsize=(0, 6)) plt.plot(x[:,0], X[:,], 'k.') plt.plot(xp, yp, 'r', linewidth=4.0) plt.axis('equal') plt.show()

9 In [5]: Z = X*V[:,] plt.figure(figsize=(0, 6)) plt.hist(z, 5) plt.show() 4. PCA Exaple ultiple video caera records of spring and ass syste source: (

10 In [6]: %%htl <center><ifrae width="560" height="35" src=" fraeborder ="0" allowfullscreen> </ifrae></center> 3 cut In [7]: %%htl <center><ifrae width="560" height="35" src=" fraeborder ="0" allowfullscreen> </ifrae></center> 4 cut

11 In [8]: %%htl <center><ifrae width="560" height="35" src=" fraeborder ="0" allowfullscreen> </ifrae></center> 5 cut x (i) x in caera y in caera x in caera 2 =, X = y in caera 2 x in caera 3 y in caera 3 ( x () ) ( x (2) ) ( x () ) In [4]: fro six.oves iport cpickle X = cpickle.load(open('./data_files/pca_spring.pkl','rb')) X = np.asatrix(x.t) print(x.shape) = X.shape[0] (273, 6)

12 In [5]: plt.figure(figsize=(5, 7)) plt.subplot(3) plt.plot(x[:,0], -X[:,],'r') plt.axis('equal') plt.title('caera ') plt.subplot(32) plt.plot(x[:,2], -X[:,3],'b') plt.axis('equal') plt.title('caera 2') plt.subplot(33) plt.plot(x[:,4], -X[:,5],'k') plt.axis('equal') plt.title('caera 3') plt.show()

13 In [6]: X = X - np.ean(x,axis=0) S = /(-)*X.T*X S = np.asatrix(s) D, V = np.linalg.eig(s) idx = np.argsort(-d) D = D[idx] V = V[:,idx] print(d) print(v) [ e e e e e e+00] [[ ] [ ] [ ] [ ] [ ] [ ]] In [7]: plt.figure(figsize=(0,6)) plt.ste(np.sqrt(d)) plt.show()

14 In [9]: # relative agnitutes of the principal coponents Z = X*V xp = np.arange(0,)/24 plt.figure(figsize=(0, 6)) plt.plot(xp, Z) plt.yticks([]) plt.show()

15 In [0]: ## projected onto the first principal coponent # 6 di -> di (di reduction) # relative agnitute of the first principal coponent Z = X*V[:,0] plt.figure(figsize=(0, 6)) plt.plot(z) plt.yticks([]) plt.show() Reference: John P Cunningha & Byron M Yu, Diensionality reduction for large-scale neural recordings, Nature Neuroscience 7, (204)

16 5. PCA Visualization 5.. Eigenvalues, λ λ 2 indicates variance along the eigenvectors, respectively. The larger eigenvalue is, the ore doinante feature (eigenvector) is 5.2. Eigenvectors given basis {, } x^ x^2 to transfored basis { u^, u^2 } [ ] = [ ] [ ] u^ u^2 x^ x^2 c c 3 c 2 c 4 In [5]: %%javascript $.getscript(' c.js')

Logistic Regression. by Prof. Seungchul Lee isystems Design Lab UNIST. Table of Contents

Logistic Regression. by Prof. Seungchul Lee isystems Design Lab  UNIST. Table of Contents Logistic Regression by Prof. Seungchul Lee isystes Design Lab http://isystes.unist.ac.kr/ UNIST Table of Contents I.. Linear Classification: Logistic Regression I... Using all Distances II..2. Probabilistic

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning by Prof. Seungchul Lee isystes Design Lab http://isystes.unist.ac.kr/ UNIST Table of Contents I.. Probabilistic Linear Regression I... Maxiu Likelihood Solution II... Maxiu-a-Posteriori

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Support Vector Machine

Support Vector Machine Support Vector Machine by Prof. Seungchul Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIS able of Contents I.. Classification (Linear) II.. Distance from a Line III. 3. Illustrative Example I.

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Slide10. Haykin Chapter 8: Principal Components Analysis. Motivation. Principal Component Analysis: Variance Probe

Slide10. Haykin Chapter 8: Principal Components Analysis. Motivation. Principal Component Analysis: Variance Probe Slide10 Motivation Haykin Chapter 8: Principal Coponents Analysis 1.6 1.4 1.2 1 0.8 cloud.dat 0.6 CPSC 636-600 Instructor: Yoonsuck Choe Spring 2015 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 How can we

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA Multivariate Methos Xiaoun Qi Principal Coponents Analysis -- PCA he PCA etho generates a new set of variables, calle principal coponents Each principal coponent is a linear cobination of the original

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016/2017 Lessons 9 11 Jan 2017 Outline Artificial Neural networks Notation...2 Convolutional Neural Networks...3

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Machine Learning: Fisher s Linear Discriminant. Lecture 05

Machine Learning: Fisher s Linear Discriminant. Lecture 05 Machine Learning: Fisher s Linear Discriinant Lecture 05 Razvan C. Bunescu chool of Electrical Engineering and Coputer cience bunescu@ohio.edu Lecture 05 upervised Learning ask learn an (unkon) function

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Supervised Learning. 1. Optimization. without Scikit Learn. by Prof. Seungchul Lee Industrial AI Lab

Supervised Learning. 1. Optimization. without Scikit Learn. by Prof. Seungchul Lee Industrial AI Lab Supervised Learning without Scikit Learn by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSECH able of Contents I.. Optimization II.. Linear Regression III. 3. Classification (Linear)

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Linear Classification

Linear Classification Linear Classification by Prof. Seungchul Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIS able of Contents I.. Supervised Learning II.. Classification III. 3. Perceptron I. 3.. Linear Classifier

More information

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x)

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x) 7Applying Nelder Mead s Optiization Algorith APPLYING NELDER MEAD S OPTIMIZATION ALGORITHM FOR MULTIPLE GLOBAL MINIMA Abstract Ştefan ŞTEFĂNESCU * The iterative deterinistic optiization ethod could not

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China 6th International Conference on Machinery, Materials, Environent, Biotechnology and Coputer (MMEBC 06) Solving Multi-Sensor Multi-Target Assignent Proble Based on Copositive Cobat Efficiency and QPSO Algorith

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

arxiv: v1 [cs.ds] 29 Jan 2012

arxiv: v1 [cs.ds] 29 Jan 2012 A parallel approxiation algorith for ixed packing covering seidefinite progras arxiv:1201.6090v1 [cs.ds] 29 Jan 2012 Rahul Jain National U. Singapore January 28, 2012 Abstract Penghui Yao National U. Singapore

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

MULTIAGENT Resource Allocation (MARA) is the

MULTIAGENT Resource Allocation (MARA) is the EDIC RESEARCH PROPOSAL 1 Designing Negotiation Protocols for Utility Maxiization in Multiagent Resource Allocation Tri Kurniawan Wijaya LSIR, I&C, EPFL Abstract Resource allocation is one of the ain concerns

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

Supervised Baysian SAR image Classification Using The Full Polarimetric Data

Supervised Baysian SAR image Classification Using The Full Polarimetric Data Supervised Baysian SAR iage Classification Using The Full Polarietric Data (1) () Ziad BELHADJ (1) SUPCOM, Route de Raoued 3.5 083 El Ghazala - TUNSA () ENT, BP. 37, 100 Tunis Belvedere, TUNSA Abstract

More information

Compression and Predictive Distributions for Large Alphabet i.i.d and Markov models

Compression and Predictive Distributions for Large Alphabet i.i.d and Markov models 2014 IEEE International Syposiu on Inforation Theory Copression and Predictive Distributions for Large Alphabet i.i.d and Markov odels Xiao Yang Departent of Statistics Yale University New Haven, CT, 06511

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Fundamentals of Image Compression

Fundamentals of Image Compression Fundaentals of Iage Copression Iage Copression reduce the size of iage data file while retaining necessary inforation Original uncopressed Iage Copression (encoding) 01101 Decopression (decoding) Copressed

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Multi-Scale/Multi-Resolution: Wavelet Transform

Multi-Scale/Multi-Resolution: Wavelet Transform Multi-Scale/Multi-Resolution: Wavelet Transfor Proble with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of different frequencies. A serious drawback in transforing to the

More information

Lecture 20 November 7, 2013

Lecture 20 November 7, 2013 CS 229r: Algoriths for Big Data Fall 2013 Prof. Jelani Nelson Lecture 20 Noveber 7, 2013 Scribe: Yun Willia Yu 1 Introduction Today we re going to go through the analysis of atrix copletion. First though,

More information

Recovering Data from Underdetermined Quadratic Measurements (CS 229a Project: Final Writeup)

Recovering Data from Underdetermined Quadratic Measurements (CS 229a Project: Final Writeup) Recovering Data fro Underdeterined Quadratic Measureents (CS 229a Project: Final Writeup) Mahdi Soltanolkotabi Deceber 16, 2011 1 Introduction Data that arises fro engineering applications often contains

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

A New Class of APEX-Like PCA Algorithms

A New Class of APEX-Like PCA Algorithms Reprinted fro Proceedings of ISCAS-98, IEEE Int. Syposiu on Circuit and Systes, Monterey (USA), June 1998 A New Class of APEX-Like PCA Algoriths Sione Fiori, Aurelio Uncini, Francesco Piazza Dipartiento

More information

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical IEEE TRANSACTIONS ON INFORMATION THEORY Large Alphabet Source Coding using Independent Coponent Analysis Aichai Painsky, Meber, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE arxiv:67.7v [cs.it] Jul

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Reed-Muller Codes. m r inductive definition. Later, we shall explain how to construct Reed-Muller codes using the Kronecker product.

Reed-Muller Codes. m r inductive definition. Later, we shall explain how to construct Reed-Muller codes using the Kronecker product. Coding Theory Massoud Malek Reed-Muller Codes An iportant class of linear block codes rich in algebraic and geoetric structure is the class of Reed-Muller codes, which includes the Extended Haing code.

More information

Leonardo R. Bachega*, Student Member, IEEE, Srikanth Hariharan, Student Member, IEEE Charles A. Bouman, Fellow, IEEE, and Ness Shroff, Fellow, IEEE

Leonardo R. Bachega*, Student Member, IEEE, Srikanth Hariharan, Student Member, IEEE Charles A. Bouman, Fellow, IEEE, and Ness Shroff, Fellow, IEEE Distributed Signal Decorrelation and Detection in Sensor Networks Using the Vector Sparse Matrix Transfor Leonardo R Bachega*, Student Meber, I, Srikanth Hariharan, Student Meber, I Charles A Bouan, Fellow,

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Perceptron. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Perceptron. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Perceptron by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I.. Supervised Learning II.. Classification III. 3. Perceptron I. 3.. Linear Classifier II. 3..

More information

Construction of an index by maximization of the sum of its absolute correlation coefficients with the constituent variables

Construction of an index by maximization of the sum of its absolute correlation coefficients with the constituent variables Construction of an index by axiization of the su of its absolute correlation coefficients with the constituent variables SK Mishra Departent of Econoics North-Eastern Hill University Shillong (India) I.

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Training an RBM: Contrastive Divergence. Sargur N. Srihari

Training an RBM: Contrastive Divergence. Sargur N. Srihari Training an RBM: Contrastive Divergence Sargur N. srihari@cedar.buffalo.edu Topics in Partition Function Definition of Partition Function 1. The log-likelihood gradient 2. Stochastic axiu likelihood and

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Envelope frequency Response Function Analysis of Mechanical Structures with Uncertain Modal Damping Characteristics

Envelope frequency Response Function Analysis of Mechanical Structures with Uncertain Modal Damping Characteristics Copyright c 2007 Tech Science Press CMES, vol.22, no.2, pp.129-149, 2007 Envelope frequency Response Function Analysis of Mechanical Structures with Uncertain Modal Daping Characteristics D. Moens 1, M.

More information

Linear Transformations

Linear Transformations Linear Transforations Hopfield Network Questions Initial Condition Recurrent Layer p S x W S x S b n(t + ) a(t + ) S x S x D a(t) S x S S x S a(0) p a(t + ) satlins (Wa(t) + b) The network output is repeatedly

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

An l 1 Regularized Method for Numerical Differentiation Using Empirical Eigenfunctions

An l 1 Regularized Method for Numerical Differentiation Using Empirical Eigenfunctions Journal of Matheatical Research with Applications Jul., 207, Vol. 37, No. 4, pp. 496 504 DOI:0.3770/j.issn:2095-265.207.04.0 Http://jre.dlut.edu.cn An l Regularized Method for Nuerical Differentiation

More information

Variational Adaptive-Newton Method

Variational Adaptive-Newton Method Variational Adaptive-Newton Method Mohaad Etiyaz Khan Wu Lin Voot Tangkaratt Zuozhu Liu Didrik Nielsen AIP, RIKEN, Tokyo Abstract We present a black-box learning ethod called the Variational Adaptive-Newton

More information

6.2 Grid Search of Chi-Square Space

6.2 Grid Search of Chi-Square Space 6.2 Grid Search of Chi-Square Space exaple data fro a Gaussian-shaped peak are given and plotted initial coefficient guesses are ade the basic grid search strateg is outlined an actual anual search is

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes Graphical Models in Local, Asyetric Multi-Agent Markov Decision Processes Ditri Dolgov and Edund Durfee Departent of Electrical Engineering and Coputer Science University of Michigan Ann Arbor, MI 48109

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network 565 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 07 Guest Editors: Zhuo Yang, Junie Ba, Jing Pan Copyright 07, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 83-96 The Italian Association

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Boosting Mehryar Mohri Courant Institute and Google Research ohri@cis.nyu.edu Weak Learning Definition: concept class C is weakly PAC-learnable if there exists a (weak)

More information

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm Acta Polytechnica Hungarica Vol., No., 04 Sybolic Analysis as Universal Tool for Deriving Properties of Non-linear Algoriths Case study of EM Algorith Vladiir Mladenović, Miroslav Lutovac, Dana Porrat

More information

The linear sampling method and the MUSIC algorithm

The linear sampling method and the MUSIC algorithm INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS Inverse Probles 17 (2001) 591 595 www.iop.org/journals/ip PII: S0266-5611(01)16989-3 The linear sapling ethod and the MUSIC algorith Margaret Cheney Departent

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

arxiv: v2 [cs.lg] 30 Mar 2017

arxiv: v2 [cs.lg] 30 Mar 2017 Batch Renoralization: Towards Reducing Minibatch Dependence in Batch-Noralized Models Sergey Ioffe Google Inc., sioffe@google.co arxiv:1702.03275v2 [cs.lg] 30 Mar 2017 Abstract Batch Noralization is quite

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence

Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence Best Ar Identification: A Unified Approach to Fixed Budget and Fixed Confidence Victor Gabillon Mohaad Ghavazadeh Alessandro Lazaric INRIA Lille - Nord Europe, Tea SequeL {victor.gabillon,ohaad.ghavazadeh,alessandro.lazaric}@inria.fr

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

(t, m, s)-nets and Maximized Minimum Distance, Part II

(t, m, s)-nets and Maximized Minimum Distance, Part II (t,, s)-nets and Maxiized Miniu Distance, Part II Leonhard Grünschloß and Alexander Keller Abstract The quality paraeter t of (t,, s)-nets controls extensive stratification properties of the generated

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Lower Bounds for Quantized Matrix Completion

Lower Bounds for Quantized Matrix Completion Lower Bounds for Quantized Matrix Copletion Mary Wootters and Yaniv Plan Departent of Matheatics University of Michigan Ann Arbor, MI Eail: wootters, yplan}@uich.edu Mark A. Davenport School of Elec. &

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

Kernel based Object Tracking using Color Histogram Technique

Kernel based Object Tracking using Color Histogram Technique Kernel based Object Tracking using Color Histogra Technique 1 Prajna Pariita Dash, 2 Dipti patra, 3 Sudhansu Kuar Mishra, 4 Jagannath Sethi, 1,2 Dept of Electrical engineering, NIT, Rourkela, India 3 Departent

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

arxiv: v1 [stat.ml] 31 Jan 2018

arxiv: v1 [stat.ml] 31 Jan 2018 Increental kernel PCA and the Nyströ ethod arxiv:802.00043v [stat.ml] 3 Jan 208 Fredrik Hallgren Departent of Statistical Science University College London London WCE 6BT, United Kingdo fredrik.hallgren@ucl.ac.uk

More information