Chapter 2: Motion in One Dimension

Size: px
Start display at page:

Download "Chapter 2: Motion in One Dimension"

Transcription

1 Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 2: Motion in One Dimension Section 1: Displacement and Velocity Section 2: Acceleration Section 3: Falling Objects Student s Name.... EP-M./. ID #.. Register # Much of the material within this packet is drawn from the course textbook Holt Physics that each of you have purchased. This content is copyrighted 2012 by Holt McDougal, a division of Houghton Mifflin Harcourt Publishing Company. No part of this work may be reproduced or transmitted in any form without prior written permission of the copyright owner.

2 Mr. Stephen Dobosh Page 2 of 32 THIS PAGE INTENTIONALLY LEFT BLANK

3 Mr. Stephen Dobosh Page 3 of 32 EQUATION SHEET

4 Mr. Stephen Dobosh Page 4 of 32 THIS PAGE INTENTIONALLY LEFT BLANK

5 Mr. Stephen Dobosh Page 5 of 32 Chapter 2.1: Displacement and Velocity (pp ) Practice A, p. 40 #1-6 Due: 1. Heather and Matthew walk with an average velocity of 0.98 m/s eastward. If it takes them 34 min to walk to the store, what is their displacement? 2. If Joe rides his bicycle in a straight line for 15 min with an average velocity of 12.5 km/h south, how far has he ridden? 3. It takes you 9.5 min to walk with an average velocity of 1.2 m/s to the north from the bus stop to the museum entrance. What is your displacement? 4. Simpson drives his car with an average velocity of 48.0 km/h to the east. How long will it take him to drive 144 km on a straight highway? 5. Look back at item 4. How much time would Simpson save by increasing his average velocity to 56.0 km/h to the east? 6. A bus travels 280 km south along a straight path with an average velocity of 88 km/h to the south. The bus stops for 24 min. Then it travels 210 km south with an average velocity of 75 km/h to the south. a. How long does the total trip last? b. What is the average velocity for the total trip?

6 Mr. Stephen Dobosh Page 6 of 32 Chapter 2.1: Displacement and Velocity (pp ) Formative Assessment 2.1, p. 43 #1-6 Due: 1. What is the shortest possible time in which a bacterium could travel a distance of 8.4 cm across a Petri dish at a constant speed of 3.5 mm/s? 2. A child is pushing a shopping cart at a speed of 1.5 m/s. How long will it take this child to push the cart down an aisle with a length of 9.3 m? 3. An athlete swims from the north end to the south end of a 50.0 m pool in 20.0 s and makes the return trip to the starting position in 22.0s. a. What is the average velocity for the first half of the swim? b. What is the average velocity for the second half of the swim? c. What is the average velocity for the roundtrip? 4. Two students walk in the same direction along a straight path, at a constant speed one at 0.90 m/s and the other at 1.90 m/s. a. Assuming that they start at the same point and the same time, how much sooner does the faster student arrive at a destination 780 m away? b. How far would the students have to walk so that the faster student arrives 5.50 min before the slower student?

7 Mr. Stephen Dobosh Page 7 of Does knowing the distance between two objects give you enough information to locate the objects? Explain. 6. Figure 1.9 (2009 ed., Figure 8) shows position-time graphs of the straight-line movement of two brown bears in a wildlife preserve. a. Which bear has the greater average velocity over the entire period? b. Which bear has the greater velocity at t = 8.0 min? c. Is the velocity of bear A always positive? d. Is the velocity of bear B ever negative?

8 Mr. Stephen Dobosh Page 8 of 32 Chapter 2.2: Acceleration (pp ) Practice B, p. 45 #1-5 Due: 1. As the shuttle bus comes to a sudden stop to avoid hitting a dog, it accelerates uniformly at 4.1 m/s 2 as it slows from 9.0 m/s to 0.0 m/s. Find the time interval of acceleration for the bus. 2. A car traveling at 7.0 m/s accelerates uniformly at 2.5 m/s 2 to reach a speed of 12.0 m/s. How long does it take for this acceleration to occur? 3. With an average acceleration of 1.2 m/s 2, how long will it take a cyclist to bring a bicycle with an initial speed of 6.5 m/s to a complete stop? 4. Turner s treadmill runs with a velocity of 1.2 m/s and speeds up at regular intervals during a half-hour workout. After 25 min, the treadmill has a velocity of 6.5 m/s. What is the average acceleration of the treadmill during this period? 5. Suppose a treadmill has an average acceleration of m/s 2. a. How much does its speed change after 5.0 min? b. If the treadmill s initial speed is 1.7 m/s, what will its final speed be?

9 Mr. Stephen Dobosh Page 9 of 32 Chapter 2.2: Acceleration (pp ) Practice C, p. 49 #1-4 Due: 1. A car accelerates uniformly from rest to a speed of 6.6 m/s in 6.5 s. Find the distance the car travels during this time. 2. When Maggie applies the brakes of her car, the car slows uniformly from 15.0 m/s to 0.0 m/s in 2.50 s. How many meters before a stop sign must she apply her brakes in order to stop at the sign? 3. A driver in a car traveling at a speed of 21.8 m/s sees a cat 101 m away on the road. How long will it take for the car to accelerate uniformly to a stop in exactly 99 m? 4. A car enters the freeway with a speed of 6.4 m/s and accelerates uniformly for 3.2 km in 3.5 min. How fast (in m/s) is the car moving after this time?

10 Mr. Stephen Dobosh Page 10 of 32 Chapter 2.2: Acceleration (pp ) Practice D, p. 51 #1-4 Due: Note: Each question has two parts! So you need to have two answers for each! 1. A car with an initial speed of 6.5 m/s accelerates at a uniform rate of 0.92 m/s 2 for 3.6 s. Find the final speed and the displacement of the car during this time. 2. An automobile with an initial speed of 4.30 m/s accelerates uniformly at the rate of 3.00 m/s 2. Find the final speed and the displacement after 5.00 s. 3. A car starts from rest and travels for 5.0 s with a constant acceleration of 1.5 m/s 2.What is the final velocity of the car? How far does the car travel in this time interval? 4. A driver of a car traveling at 15.0 m/s applies the brakes, causing a uniform acceleration of 2.0 m/s 2. How long does it take the car to accelerate to a final speed of 10.0 m/s? How far has the car moved during the braking period?

11 Mr. Stephen Dobosh Page 11 of 32 Chapter 2.2: Acceleration (pp ) Practice E, pp #1-6 Due: 1. Find the velocity after the stroller in Sample Problem E has traveled 6.32 m. 2. A car traveling initially at +7.0 m/s accelerates uniformly at the rate of m/s 2 for a distance of 245 m. a. What is its velocity at the end of the acceleration? b. What is its velocity after it accelerates for 125 m? c. What is its velocity after it accelerates for 67 m? 3. A car accelerates uniformly in a straight line from rest at the rate of 2.3 m/s 2. a. What is the speed of the car after it has traveled 55 m? b. How long does it take the car to travel 55 m? 4. A motorboat accelerates uniformly from a velocity of 6.5 m/s to the west to a velocity of 1.5 m/s to the west. If its acceleration was 2.7 m/s 2 to the east, how far did it travel during the acceleration?

12 Mr. Stephen Dobosh Page 12 of An aircraft has a liftoff speed of 33 m/s. What minimum constant acceleration does this require if the aircraft is to be airborne after a take-off run of 240 m? 6. A certain car is capable of accelerating at a uniform rate of 0.85 m/s 2. What is the magnitude of the car s displacement as it accelerates uniformly from a speed of 83 km/h to one of 94 km/h?

13 Mr. Stephen Dobosh Page 13 of 32 Chapter 2.2: Acceleration (pp ) Formative Assessment 2.2, p. 55 #1-6 Due: 1. Marissa s car accelerates uniformly at a rate of m/s 2. How long does it take for Marissa s car to accelerate from a speed of 24.6 m/s to a speed of 26.8 m/s? 2. A bowling ball with a negative initial velocity slows down as it rolls down the lane toward the pins. Is the bowling ball s acceleration positive or negative as it rolls toward the pins? 3. Nathan accelerates his skateboard uniformly along a straight path from rest to 12.5 m/s in 2.5 s. a. What is Nathan s acceleration? b. What is Nathan s displacement during this time interval? c. What is Nathan s average velocity during this time interval? 4. Critical Thinking Two cars are moving in the same direction in parallel lanes along a highway. At some instant, the instantaneous velocity of car A exceeds the instantaneous velocity of car B. Does this mean that car A s acceleration is greater than car B s? Explain, and use examples.

14 Mr. Stephen Dobosh Page 14 of Interpreting Graphics The velocity-versus-time graph for a shuttle bus moving along a straight path is shown in Figure 2.7 (2009 ed., Figure 13). a. Identify the time intervals during which the velocity of the shuttle bus is constant. b. Identify the time intervals during which the acceleration of the shuttle bus is constant. c. Find the value for the average velocity of the shuttle bus during each time interval identified in b. d. Find the acceleration of the shuttle bus during each time interval identified in b. e. Identify the times at which the velocity of the shuttle bus is zero. f. Identify the times at which the acceleration of the shuttle bus is zero. g. Explain what the slope of the graph reveals about the acceleration in each time interval. 6. Is the shuttle bus in item 5 always moving in the same direction? Explain, and refer to the time intervals shown on the graph.

15 Mr. Stephen Dobosh Page 15 of 32 Chapter 2.3: Falling Objects (pp ) Practice F, pp #1-4 Due: 1. A robot probe drops a camera off the rim of a 239 m high cliff on Mars, where the free-fall acceleration is 3.7 m/s 2. a. Find the velocity with which the camera hits the ground. b. Find the time required for it to hit the ground. 2. A flowerpot falls from a windowsill 25.0 m above the sidewalk. a. How fast is the flowerpot moving when it strikes the ground? b. How much time does a passerby on the sidewalk below have to move out of the way before the flowerpot hits the ground? 3. A tennis ball is thrown vertically upward with an initial velocity of +8.0 m/s. a. What will the ball s speed be when it returns to its starting point? b. How long will the ball take to reach its starting point? 4. Calculate the displacement of the volleyball in Sample Problem F when the volleyball s final velocity is 1.1 m/s upward.

16 Mr. Stephen Dobosh Page 16 of 32 Chapter 2.3: Falling Objects (pp ) Formative Assessment 2.3, p. 61 #1-6 Due: 1. A coin is tossed vertically upward. a. What happens to its velocity while it is in the air? b. Does its acceleration increase, decrease, or remain constant while it is in the air? 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, determine the distance from the edge of the well to the water s surface. 3. A ball is thrown vertically upward. What are its velocity and acceleration when it reaches its maximum altitude? What is its acceleration just before it hits the ground? 4. Two children are bouncing small rubber balls. One child simply drops a ball. At the same time, the second child throws a ball downward so that it has an initial speed of 10 m/s. What is the acceleration of each ball while in motion? 5. Critical Thinking A gymnast practices two dismounts from the high bar on the uneven parallel bars. During one dismount, she swings up off the bar with an initial upward velocity of m/s. In the second, she releases from the same height but with an initial downward velocity of 3.0 m/s. What is her acceleration in each case? How do the final velocities of the gymnast as she reaches the ground differ?

17 Mr. Stephen Dobosh Page 17 of Interpreting Graphics Figure 3.4 (2009 ed., Figure 17) is a position-time graph of the motion of a basketball thrown straight up. Use the graph to sketch the path of the basketball and to sketch a velocity-time graph of the basketball s motion. a. Is the velocity of the basketball constant? (If so, estimate the acceleration.) b. Is the acceleration of the basketball constant? (If so, estimate the acceleration.) c. What is the initial velocity of the basketball?

18 Mr. Stephen Dobosh Page 18 of 32 Chapter 2 Review (pp )

19 Mr. Stephen Dobosh Page 19 of 32

20 Mr. Stephen Dobosh Page 20 of 32

21 Mr. Stephen Dobosh Page 21 of 32

22 Mr. Stephen Dobosh Page 22 of 32

23 Mr. Stephen Dobosh Page 23 of 32

24 Mr. Stephen Dobosh Page 24 of 32

25 Mr. Stephen Dobosh Page 25 of 32

26 Mr. Stephen Dobosh Page 26 of 32

27 Mr. Stephen Dobosh Page 27 of 32

28 Mr. Stephen Dobosh Page 28 of 32 SUPPLEMENTAL A Page 1 of 5 Position-Time and Velocity-Time Graph worksheet Adapted from Modeling Instruction Program 2009 Due: 1. Robin, roller skating down a marked sidewalk, was observed to be at the following positions at the times listed below: a. Plot a position vs. time graph for the skater on the graph provided above. b. How far was Robin from the origin at t = 6 s? c. Write a mathematical model that describes the skater's motion. (Hint: What s the general equation for a line? Adapt that to fit this data!) d. Was his speed constant over the entire interval? How do you know?

29 Mr. Stephen Dobosh Page 29 of 32 SUPPLEMENTAL A Page 2 of 5 Position-Time and Velocity-Time Graph worksheet Adapted from Modeling Instruction Program In a second trial, the timer started her watch a bit sooner. The following data were obtained: a. Plot the position vs. time graph for the skater using the graph provided above. b. How far from the origin was the skater at t = 5 s? How do you know? c. Was the skater s speed constant? If so, what was it? d. In the first trial, the skater was further along at 2 s than he was in the second trial. Does this mean that he was going faster? Explain your answer.

30 Mr. Stephen Dobosh Page 30 of 32 SUPPLEMENTAL A Page 3 of 5 Position-Time and Velocity-Time Graph worksheet Adapted from Modeling Instruction Program Suppose now that our skater was observed in a third trial. The following data were obtained: a. Plot the position vs. time graph for the skater using the graph provided above. b. What do you think is happening during the time interval: t = 4 s to t = 6 s? How do you know? c. What do you think is happening during the time interval: t = 6 s to t = 10 s? How do you know? d. Determine the skater's average velocity from t = 0 s to t = 16 s. (Average velocity is the displacement (final position minus initial position) divided by time elapsed.) e. Determine the skater's average speed from t = 0 s to t = 16 s. (Average speed is the distance traveled along the path (change in odometer reading) divided by time elapsed.) f. List some example situations in which average speed is a better measure of motion than average velocity. g. List some example situations in which average velocity is a better measure of motion than average speed.

31 Mr. Stephen Dobosh Page 31 of 32 SUPPLEMENTAL A Page 4 of 5 Position-Time and Velocity-Time Graph worksheet Adapted from Modeling Instruction Program Rank the following graphs: a. Rank the graphs according to which show the greatest average velocity from the beginning to the end of the motion. (Zero is greater than negative, and ties are possible.) Greatest Least Explain your reasoning for your ranking. (Or instead just show your calculations/work above.) b. Rank the graphs according to which show the greatest average speed from the beginning to the end of the motion. Greatest Least Explain your reasoning for your ranking. (Or instead just show your calculations/work above.)

32 Mr. Stephen Dobosh Page 32 of 32 SUPPLEMENTAL A Page 5 of 5 Position-Time and Velocity-Time Graph worksheet Adapted from Modeling Instruction Program 2009 (Questions 5-7) Draw the velocity vs time graphs for an object whose motion produced the position vs time graphs shown below at left. (The first one has been done for you. ) 8. For many graphs, both the slope of the line and the area between the line and the horizontal axis (a.k.a. the area under the curve ) have physical meanings. a. What does the slope of a position-time graph tell you about the motion of an object? b. Looking at the velocity-time graphs, determine the units for a square of area on the graph. c. What quantity does the area under the velocity-time graph tell you about the motion of an object?

1. Haiwa walks eastward with a speed of 0.98 m/s. If it takes him 34 min to walk to the store, how far has he walked?

1. Haiwa walks eastward with a speed of 0.98 m/s. If it takes him 34 min to walk to the store, how far has he walked? Practice 1A Average velocity and displacement 1. Haiwa walks eastward with a speed of 0.98 m/s. If it takes him 34 min to walk to the store, how far has he walked? v avg = 0.98 m/s east t = 34 min x =?

More information

Chapter 6: Momentum and Collisions

Chapter 6: Momentum and Collisions Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 6: Momentum and Collisions Section 1: Momentum and Impulse Section

More information

SECTION 2. Objectives. Describe motion in terms changing velocity. Compare graphical representations of accelerated and nonaccelerated motions.

SECTION 2. Objectives. Describe motion in terms changing velocity. Compare graphical representations of accelerated and nonaccelerated motions. SECTION Plan and Prepare Preview Vocabulary Academic Vocabulary Remind students that rate describes how something changes compared to something else. In physics, a rate usually refers to a change over

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH Motion 1. Rest : When a body does not change its position with respect to time and its surroundings, the body is said to be at rest. 2. Motion : When a body continuously changes its position with respect

More information

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section.

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. 2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY absolute value Recall and write the definition of the Review Vocabulary term. absolute value NEW VOCABULARY

More information

Ch 2 Homework. Follow the instructions on the problems and show your work clearly.

Ch 2 Homework. Follow the instructions on the problems and show your work clearly. Ch 2 Homework Name: Follow the instructions on the problems and show your work clearly. 1. (Problem 3) A person travels by car from one city to another with different constant speeds between pairs of cities.

More information

2.1 KINEMATICS HW/Study Packet

2.1 KINEMATICS HW/Study Packet 2.1 KINEMATICS HW/Study Packet Required: READ Hamper pp 17-28 READ Tsokos, pp 38-62 SL/HL Supplemental: Cutnell and Johnson, pp 28-52 Giancoli, pp 19-38 ü ü ü ü ü REMEMBER TO. Work through all of the example

More information

CHAPTER 2 Review and Assess

CHAPTER 2 Review and Assess CHAPTER 2 Review and Assess DISPLACEMENT AND VELOCITY Review questions 1. On the graph in Figure 2-19, what is the total distance traveled during the recorded time interval? What is the displacement? Position

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

scalar: quantity described by magnitude (size) only vector: quantity described by both magnitude AND direction

scalar: quantity described by magnitude (size) only vector: quantity described by both magnitude AND direction Unit I: Motion Subunit A: Constant Velocity Chapter 2 Section 1 Texas Physics p. 38-45 Equations Variables, Units NOTES: scalar: quantity described by magnitude (size) only vector: quantity described by

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Chapter 2 Motion in One Dimension Multiple Choice 1. The position of a particle moving along the x axis is given by 2 x = ( 21+ 22t 6 0. t )m, where t is in s. What is the average velocity during the time

More information

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object.

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object. Accelerated Motion 2 Motion with Constant Acceleration 4(A), 4(B) MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY displacement Recall and write the definition of the Review Vocabulary

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

Provincial Exam Review: Motion

Provincial Exam Review: Motion Section 8.1 Provincial Exam Review: Motion 1. Identify each of the following quantities as either vector or scalar. (a) 10 kg (b) 20 m [S] (c) 5 hours driving in a car (d) swimming for 100 m [N] (e) 15

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c. Class: Date: Chapter 2 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

Acceleration and Velocity PreTest (Chap 9)

Acceleration and Velocity PreTest (Chap 9) Science 10 Name: Ver: A Date: Acceleration and Velocity PreTest (Chap 9) 1. Which of the following is a unit of acceleration? a. s 2 b. m 2 c. m/s d. m/s/s 2. Data is plotted on a graph with velocity on

More information

The Science of Physics

The Science of Physics Assessment The Science of Physics Chapter Test B MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A hiker

More information

State the condition under which the distance covered and displacement of moving object will have the same magnitude.

State the condition under which the distance covered and displacement of moving object will have the same magnitude. Exercise CBSE-Class IX Science Motion General Instructions: (i) (ii) (iii) (iv) Question no. 1-15 are very short answer questions. These are required to be answered in one sentence each. Questions no.

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Question 1: An object has moved through a distance. Can it have zero displacement? If yes, support your answer with an example. Yes. An object that has moved through a distance can have zero displacement.

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the What You ll Learn how acceleration, time, and velocity are related the different ways an object can accelerate how to calculate acceleration the similarities and differences between straight line motion,

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

SECTION 2 - VELOCITY

SECTION 2 - VELOCITY MOTION SECTION 2 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67 mph Why

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

11.3 Acceleration The basketball constantly changes velocity as it rises and falls.

11.3 Acceleration The basketball constantly changes velocity as it rises and falls. The basketball constantly changes velocity as it rises and falls. Describing changes in velocity, and how fast they occur, is a part of describing motion. What Is Acceleration? How are changes in velocity

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

Chapter 2 Test Item File

Chapter 2 Test Item File Chapter 2 Test Item File Chapter 2: Describing Motion: Kinetics in One Dimension 1. What must be your average speed in order to travel 350 km in 5.15 h? a) 66.0 km/h b) 67.0 km/h c) 68.0 km/h d) 69.0 km/h

More information

Summary KEY TERMS KEY IDEAS. dx xf- x; dv vf- v; M tf- t;

Summary KEY TERMS KEY IDEAS. dx xf- x; dv vf- v; M tf- t; CHAPTER 2 Summary KEY TERMS acceleration (p. 48) average velocity (p. 43) displacemment(p.41) framme of reference (p. 40) free fall (p. 60) instantaneous velocity (p.46) Key Symbols Quantities Units x

More information

11.3 Acceleration. Section Resources

11.3 Acceleration. Section Resources Section 11.3 11.3 1 FOCUS Objectives 11.3.1 Identify changes in motion that produce acceleration. 11.3.2 Describe examples of constant acceleration. 11.3.3 Calculate the acceleration of an object. 11.3.4

More information

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity.

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity. UNIT A SUMMARY KEY CONCEPTS CHAPTER SUMMARY 1 Constant velocity represents uniform motion. Distance and Displacement Position-time graphs Average speed and average velocity Positive, negative, and zero

More information

Section 2: Acceleration

Section 2: Acceleration : Acceleration Preview Key Ideas Bellringer Acceleration and Motion Calculating Acceleration Math Skills Graphing Accelerated Motion Graphing Skills Essential Questions Section 11-2 1. What is acceleration,

More information

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration Table of Contents Motion 1 Describing Motion 2 Velocity and Momentum 3 Acceleration 1 Describing Motion Motion Are distance and time important in describing running events at the track-and-field meets

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

The picture shows the motion map of a car moving north.

The picture shows the motion map of a car moving north. 1 The Table gives the position and time of an arrow during a 4.0 second flight. Draw a motion map of the arrow's flight. make sure the motion map is drawn to scale What is the arrow s position at t 1 =

More information

This homework is extra credit!

This homework is extra credit! This homework is extra credit! 1 Translate (10 pts) 1. You are told that speed is defined by the relationship s = d /t, where s represents speed, d represents distance, and t represents time. State this

More information

Chapter 1. Kinematics

Chapter 1. Kinematics Chapter 1 Kinematics 3 4 AP Physics Multiple Choice Practice Kinematics 1. A car travels 30 miles at an average speed of 60 miles per hour and then 30 miles at an average speed of 30 miles per hour. The

More information

Physics/PreAP Physics Midterm Review 2013/2014

Physics/PreAP Physics Midterm Review 2013/2014 Physics/PreAP Physics Midterm Review 2013/2014 The midterm exam includes 50 multiple-choice questions. You will have access to a standard formula chart (copies available in the classroom) as well as a

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. VELOCITY Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the

More information

SECTION 3 - VELOCITY

SECTION 3 - VELOCITY UNIT 2 MOTION SECTION 3 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67

More information

Name: Class: Date: v f 2 = v i 2 + 2a x. v f = v i 2 + 2a x = x = v i t a( t)2 = v i t ( g)( t)2

Name: Class: Date: v f 2 = v i 2 + 2a x. v f = v i 2 + 2a x = x = v i t a( t)2 = v i t ( g)( t)2 Assessment Chapter Test B Teacher Notes and Answers Motion in One Dimension CHAPTER TEST B (ADVANCED) 1. a 2. b 3. c 4. a 5. b 6. b 7. a 8. c 9. d 10. c 11. b 12. Although the magnitudes of the displacements

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics?

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics? Describing Motion Section 1 Motion Are distance and time important in describing running events at the track-and-field meets in the Olympics? Comstock/JupiterImages Describing Motion Section 1 Motion Distance

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

4. The diagram below represents two concurrent forces.

4. The diagram below represents two concurrent forces. 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? A) 0º B) 45º C) 90.º D) 180.º 2. Two forces act concurrently

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Practice - Work. b. Explain the results obtained in part (a).

Practice - Work. b. Explain the results obtained in part (a). Practice - Work 1. A weight lifter, Paul Anderson, used a circular platform attached to a harness to lift a class of 30 children and their teacher. While the children and teacher sat on the platform, Paul

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank.

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank. Skills Worksheet Chapter Review USING KEY TERMS Complete each of the following sentences by choosing the correct term from the word bank. free fall projectile motion inertia terminal velocity momentum

More information

Assignment - Kinematics. Reading: Chapter 2. Objectives/HW

Assignment - Kinematics. Reading: Chapter 2. Objectives/HW Assignment - Kinematics Reading: Chapter 2 Objectives/HW The student will be able to: HW: 1 Define and distinguish the concepts scalar and vector. Make the connection between the visual representation

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

MOTION. Chapter 2: Sections 1 and 2

MOTION. Chapter 2: Sections 1 and 2 MOTION Chapter 2: Sections 1 and 2 Vocab: Ch 2.1-2.2 Distance Displacement Speed Average speed Instantaneous speed Velocity Acceleration Describing Motion Motion is an object s change in position relative

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension Kinematic Equations Chapter Motion in One Dimension The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant You may need to use two of the equations to

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information