scalar: quantity described by magnitude (size) only vector: quantity described by both magnitude AND direction

Size: px
Start display at page:

Download "scalar: quantity described by magnitude (size) only vector: quantity described by both magnitude AND direction"

Transcription

1 Unit I: Motion Subunit A: Constant Velocity Chapter 2 Section 1 Texas Physics p Equations Variables, Units NOTES: scalar: quantity described by magnitude (size) only vector: quantity described by both magnitude AND direction

2 Unit I-A Objectives What you should know when all is said and done 1. You should distinguish between a scalar and a vector: a. know the difference between distance and displacement. b. know the difference between speed and velocity. c. know the difference between average and instantaneous speed and velocity. 2. You should be able to determine the average velocity of an object in two ways: a. determining the slope of an x vs t graph. b. using the equation v = Δx/Δt 3. You should be able to determine the displacement of an object in two ways: a. finding the area under a v vs t graph. b. using the equation Δx = vt 4. Given an x vs t graph, you should be able to: a. describe the motion of the object (starting position, direction of motion, velocity) b. draw the corresponding v vs t graph c. determine the average velocity of the object (slope). d. write the mathematical model which describes the motion. 5. Given a v vs t graph, you should be able to: a. describe the motion of the object (direction of motion, how fast) b. draw the corresponding x vs t graph c. determine the displacement of the object (area under curve). d. write a mathematical model to describe the motion.

3 Unit I-A: Constant Velocity Worksheet 1 (refer to p.82 Texas Physics for intro to scalar and vector) 1. When choosing a 1-dimensional horizontal reference frame, or coordinate system, we usually choose the positive direction to be toward the (right / left) and the negative direction to be toward the (right / left). 2. A quantity that only describes how much (magnitude) is referred to as a A) scalar quantity B) vector quantity 3. A quantity that describes how much (magnitude) and which way (direction) is referred to as a A) scalar quantity B) vector quantity 3. Some examples of scalars are: 4. Some examples of vectors are: 5. To measure displacement, or change in position Δx, A) measure every meter moved B) take the final position minus the initial position only 6. True or False: An object can be moving for 10 seconds and still have zero displacement. 7. True or False: It is possible for an object to move for 10 seconds at a high speed and end up with negative displacement. 8. Johnny drives to 1920 miles in 32 hours and returns home by the same route in the same amount of time. A) Determine his average speed. B) Determine his average velocity. C) Compare these two values and explain any differences.

4 9. A cross-country skier moves from location A to location B to location C to location D. Each leg of the back-and-forth motion takes 1 minute to complete; the total time is 3 minutes. A) What is the distance traveled by the skier during the three minutes of recreation? B) What is the net displacement of the skier during the three minutes of recreation? C) What is the displacement during the second minute (from 1 min. to 2 min.)? D) What is the displacement during the third minute (from 2 min. to 3 min.)? E) Calculate the average speed (in m/min) and the average velocity (in m/min) of the skier during the three minutes o recreation.

5 10. A) Equation: B) This object starts meters away from the origin and travels with a in the (+ / - ) direction, (away from/towards) the origin, for 10 seconds at a speed of.

6 11. A) Equation: B) This object starts meters away from the origin and travels with a in the (+ / - ) direction, (away from/towards) the origin, for 10 seconds at a speed of.

7 12. A) Equation: B) Describe the motion of this object as above. This object starts -2 meters away from the origin and travels with a constant velocity in the (-) direction, away from the origin, for 8 seconds at a speed of 1 m/s

8 Unit I-A: Constant Velocity Worksheet 2 1. Consider the position vs. time graph below for cyclists A and B. A) Do the cyclists start at the same point? How do you know? If not, which is ahead? B) At t = 7 s, which cyclist is ahead? How do you know? C) Which cyclist is traveling faster at t = 3 s? How do you know? D) Are their velocities equal at any time? How do you know? E) What is happening at the intersection of line A and B?

9 2. Consider the position vs. time graph below for cyclists A and B. A) How does the motion of the two cyclists in this graph compare to the previous question? B) Which cyclist has the greater speed? How do you know? C) Which cyclist has traveled further during the first 5 seconds? How do you know?

10 3. A) Using the Data Table below, create a graph and write the corresponding equation Time (s) Position (m) A) Find the equation of the line. B) Describe the motion of the object.

11 4. The graph at below shows the motion of a girl on a jet ski moving in a straight line. A) What is the total distance she travels? B) What is her total displacement? C) What is her average speed? D) What is her average velocity?

12 Unit I-A: Constant Velocity Worksheet 3 1. A motorized scooter was observed to be at the following positions at the times listed below: t (s) x (m) A) Plot the position vs. time graph for the scooter. B) Was the scooter s velocity constant throughout the whole interval? How do you know? C) What is the velocity of the scooter? Show work. D) What would his position be at t = 7 s if his velocity remains constant? Use your equation to find out.

13 2. Robin, roller-skating down a sidewalk, was observed to be at the following positions at the times listed below: t (s) x (m) A) Plot a position vs. time graph for the skater. B) Find the velocity of the skater. C) What is the equation that models her motion? D) How far from the origin was she at t = 6 s? Show work. E) What would be her position at t = 12 seconds if her velocity remains constant? Show work.

14 3. The following data were obtained for the skater s second trial: t (s) x (m) A) Plot the position vs. time graph for the skater. B) Find the velocity of the skater. C) What is the equation that models her motion? D) How far from the origin was she at t = 5 s? E) What would be her position at t = 12 seconds if her velocity remains constant?

15

16 5. The spider is now seen to move in the following manner: t (s) x (m) A) Plot the position vs. time graph for the spider. B) During what time interval is the spider traveling the fastest? How do you know? C) What do you think is happening during the time interval t = 4s to t = 6 s? How do you know? D) Determine the spider s average speed from t = 0s to t = 12s. E) Determine the spider s average velocity from t = 0s to t = 12s.

17 6. This data table shows information about two toy cars that were raced side-by-side. t (s) x1 (m) x2 (m) A) Draw a graph of both cars on the same graph B) Find the velocity of each toy car. Show your work.

18

19 4. A spider runs back and forth in a straight line with the following data obtained: t (s) x (m) A) Plot the position vs. time graph for the spider. B) What do you think is happening during the time interval: t = 4s to t = 6 s? How do you know? C) What do you think is happening during the time interval t = 6s to t = 12s? How do you know? D) Determine the spider s average speed from t = 0s to t = 12s. E) Determine the spider s average velocity from t = 0s to t = 12s.

20 Unit I-A: Constant Velocity Worksheet 4 t (s) x (m) 1. Use the table below to answer the following questions A) Draw position-time and velocity-time graphs for the object on the graphs below Position (m) Velocity (m/s) Time (s) Time (s) B) Write mathematical expressions that represent the relationships between position and time and between velocity and time for the object. C) Describe what the area under the line in velocity-time graph represents. Crosshatch this area.

21 2. Use the position-time data below to answer the following questions. A) Construct a position vs. time graph and a velocity vs. time graph for this data. Position (m) t (s) x (m) B) Determine the displacement from t = 3.0 s to 5.0 s using the velocity-time graph. Show on the graph what you did and explain your thinking. C) Determine the displacement from t = 7.0 s to 9.0 s using the velocity-time graph. Show on the graph what you did and explain your thinking. D) Compare your results to the position-time graph. Do the two results match? Time (s)

22 Unit I-A: Constant Velocity Worksheet 5 1. Sketch the position vs. time graph and the velocity vs. time graph corresponding to the following descriptions of the motion of an object. A) The object is moving away from the origin at a constant (steady) speed. B) The object is standing still. C) The object moves towards the origin at a steady speed, then it stands still. D) The object moves away from the origin at a steady speed, then reverses direction and moves back towards the origin at the same speed.

23 2. Draw the velocity vs. time graph for an object whose motion produced the distance vs. time graphs shown below at left.

24 3. For many graphs, both the slope of the line and the area between the line and the horizontal axis have physical meanings. A) What does the slope of a position time graph tell you about the motion of an object? B) Looking at the velocity time graphs, determine the units for a square of area on the graph. C) What does the area under the velocity-time graph tell you about the motion of an object?

25 Unit I-A: Constant Velocity Worksheet 6 Fill in the blank boxes with the correct complete information. x - t Graph v - t Graph Written Description The object starts at 2m and moves with a constant positive velocity for two seconds, then stops for 2s, then returns past the starting point at a faster speed in 2s. Object moves with constant negative velocity then turns around and moves with a constrant positive veliocity, then stops. Object moves at constant negative velocity for 3 sec, then stops for 3 sec, then moves at a greater negative velocity towards the origin for 2 seconds. object is still for 2 seconds then moves at 2 m// s for 2 sec in the positive direction. Then slows to 1 m/s in the negative direction.

26 x - t Graph v - t Graph Written Description The object moves with a constant positive velocity for 4 seconds. Then, it stops for 2 seconds and returns to the initial position in 2 seconds. The object starts 5m away from the origin and moves towards the origin with a constant velocity for 2 seconds. Then it stops at 1m from the origin for 2 seconds. Then it turns around and moves away from the origin with half the velocity for 4 seconds. Object A starts 10m to the right of zero and moves to the left at 2m/s. Object B starts at zero and moves to the right at 3 m/s Object A starts at the origin and moves with a constant positive velocity for 5 seconds. Object B starts 1m away from the origin and moves with the same constant velocity as object A.

27 Unit I-A: Constant Velocity Review Worksheet (Also, practice 1-6 p.42 and 1-6 p.45 Texas Physics) Vocabulary Terms Coordinate System Displacement Distance Scalar Quantity Vector Quantity Frame of reference Average Velocity Average Speed Instantaneous Velocity the velocity of an object at an instant or a specific point in the object's path

28 Review Problems 1. Consider the position vs. time graph shown. A) Determine the average velocity of the object. B) Write the mathematical equation to describe the motion of the object. C) Using the equation for the graph, find the position of the object at t = 10 s.

29 2. Consider the following v vs. t graph. A) Describe the behavior of the object. B) Draw a position vs. time graph to model the behavior of the object. C) How far did the object travel in the interval t = 1s to t = 2s? D) What is the TOTAL displacement? Explain how you got your answer.

30 A) What distance was traveled between time 2 s and time 6 s? What was the displacement? B) What was the speed between times 2 s and 6 s? What was the velocity? C) What is the distance traveled between time 4 s and time 12 s? What was the displacement? D) What was the average speed between time 4 s and time 12 s? What was the average velocity over this time frame? E) What is the total distance traveled? Total displacement? Average speed? Average velocity?

31 4. A racecar travels at a speed of 95 m/s. How much time does it take to reach the finish line 500 m away? 5. A hummingbird averages a speed of about 28 miles/hour (Cool facts: They visit up to 1000 flowers per day, and reach maximum speed while diving... up to 100 miles/hour!). Ruby-throated hummingbirds take a 2000-mile journey when they migrate, including a non-stop trip across Gulf of Mexico in which they fly for 18 hours straight! How far is the trip across the Gulf of Mexico?

32 6. Dr. Foster and Mr. Padilla are out skateboarding. The table shows their motion over time. Use the table to answer the questions. B) Does either one of the administrators move at a constant velocity? How do you know? C) Do Dr. Foster and Mr. Padilla move in the same direction? How do you know? D) What is happening at time = 15s? E) How fast is Dr. Foster going? How fast is Mr. Padilla going? Show your work.

33

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.cfm http://www.physicsclassroom.com/class/1dkin/u1l1b.cfm

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Name: Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.html http://www.physicsclassroom.com/class/1dkin/u1l1b.html

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

More information

If you do not have access to a computer, please let me know and I will provide a reading document for you for lesson 2.

If you do not have access to a computer, please let me know and I will provide a reading document for you for lesson 2. AP PHYSICS 1 SUMMER ASSIGNMENT Being in AP physics necessitates a fast pace due to the fact that the AP physics exam is in early May. This summer homework will allow us to remain on schedule in order to

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Chapter 2: Motion in One Dimension

Chapter 2: Motion in One Dimension Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 2: Motion in One Dimension Section 1: Displacement and Velocity Section

More information

Motion Graphs Refer to the following information for the next four questions.

Motion Graphs Refer to the following information for the next four questions. Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember

More information

What is Motion? any physical movement or change in position or place, relative to a reference point. Movement. Reference Point

What is Motion? any physical movement or change in position or place, relative to a reference point. Movement. Reference Point Motion What is Motion? any physical movement or change in position or place, relative to a reference point Movement Reference Point Distance = how far an object has moved. Measured in meters, kilometers

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

CHAPTER 2. Motion Notes

CHAPTER 2. Motion Notes CHAPTER 2 Motion Notes DISTANCE AND DISPLACEMENT Distance and displacement are two quantities which may seem to mean the same thing, yet have distinctly different definitions and meanings. DISTANCE Distance

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

The Language of Motion

The Language of Motion The Language of Motion Textbook pages 344 361 Section 8.1 Summary Before You Read What does the term uniform mean to you? If motion is uniform, how does it behave? Write your ideas in the lines below.

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object.

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object. Accelerated Motion 2 Motion with Constant Acceleration 4(A), 4(B) MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY displacement Recall and write the definition of the Review Vocabulary

More information

MOTION. Chapter 2: Sections 1 and 2

MOTION. Chapter 2: Sections 1 and 2 MOTION Chapter 2: Sections 1 and 2 Vocab: Ch 2.1-2.2 Distance Displacement Speed Average speed Instantaneous speed Velocity Acceleration Describing Motion Motion is an object s change in position relative

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

End of chapter exercises

End of chapter exercises End of chapter exercises Problem 1: Give one word/term for the following descriptions. 1. The shortest path from start to finish. 2. A physical quantity with magnitude and direction. 3. The quantity defined

More information

average speed instantaneous origin resultant average velocity position particle model scalar

average speed instantaneous origin resultant average velocity position particle model scalar REPRESENTING MOTION Vocabulary Review Write the term that correctly completes the statement. Use each term once. average speed instantaneous origin resultant average velocity position particle model scalar

More information

a) Use the graph above and calculate the slope of the line for each case. Explain how you calculated the slope. How is the slope similar to the index?

a) Use the graph above and calculate the slope of the line for each case. Explain how you calculated the slope. How is the slope similar to the index? Slopes and Expressions: Speed and Velocity 5.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes. a) Use

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

Unit 01 Motion with constant velocity. What we asked about

Unit 01 Motion with constant velocity. What we asked about Unit 01 Motion with constant velocity Outline for this unit: Displacement, Velocity: numerically and graphically Mechanics Lecture 1, Slide 1 What we asked about Would like to see more practice problems

More information

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Motion along a straight line

Motion along a straight line 1 Motion along a straight line Relativeness of motion Activity: Observations from inside and outside of a moving bus. When you look outside a moving bus, do the trees and houses appear to move backwards?

More information

Lesson 7: Slopes and Functions: Speed and Velocity

Lesson 7: Slopes and Functions: Speed and Velocity Lesson 7: Slopes and Functions: Speed and Velocity 7.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes.

More information

Honors Physics / Unit 01 / CVPM. Name:

Honors Physics / Unit 01 / CVPM. Name: Name: Constant Velocity Model The front of each model packet should serve as a storehouse for things you ll want to be able to quickly look up later. We will usually try to give you some direction on a

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue.

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue. Chapter 2: Representing Motion Click the mouse or press the spacebar to continue. Chapter 2 Representing Motion In this chapter you will: Represent motion through the use of words, motion diagrams, and

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below:

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below: Motion Unit Test Motion ONLY, no forces Name: Question 1 (1 point) Examine the graphs below: Which of the four graphs shows the runner with the fastest speed? A. Graph A B. Graph B C. Graph C D. Graph

More information

Graphing and Physical Quantities

Graphing and Physical Quantities Show all work on a separate sheet of paper. 3.1 Observe and Describe Graphing and Physical Quantities Taylor recorded the position of a motorized toy car using the origin as her reference point. She wrote

More information

Solving Problems In Physics

Solving Problems In Physics Solving Problems In Physics 1. Read the problem carefully. 2. Identify what is given. 3. Identify the unknown. 4. Find a useable equation and solve for the unknown quantity. 5. Substitute the given quantities.

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h Name: KEY IP 644 lock: Date: / / Review Packet: Position, Distance, Displacement, Motion, Speed and Velocity Multiple Choice C 1. When a driver checks her speedometer, she is checking a. acceleration.

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76 Unit 2 - Motion Chapter 3 - Distance and Speed Unit 2 - Motion 1 / 76 Precision and Accuracy Precision is a measure of how closely individual measurements agree with one another. Accuracy refers to how

More information

Average Velocity. Before You Read. What is the difference between velocity and speed? How is velocity determined on a position-time graph?

Average Velocity. Before You Read. What is the difference between velocity and speed? How is velocity determined on a position-time graph? Average Velocity Textbook pages 362 375 Section 8. 2 Summary Before You Read Based on your current knowledge, how do you think speed differs from velocity? Write your answer in the lines below. State the

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

8.1 The Language of Motion

8.1 The Language of Motion 8.1 The Language of Motion 1 VOCABULARY MAGNITUDE = size, amount or number (1, 15, 4..) DIRECTION = direction (east, west, left, up ) MAKE a FOLDABLE 3 Direction Makes Difference Jimmy lives 1 km from

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

PHYSICS Principles and Problems. Chapter 2: Representing Motion

PHYSICS Principles and Problems. Chapter 2: Representing Motion PHYSICS Principles and Problems Chapter 2: Representing Motion CHAPTER 2 Representing Motion BIG IDEA You can use displacement and velocity to describe an object s motion. CHAPTER 2 Table Of Contents Section

More information

Unit 2 - Linear Motion and Graphical Analysis

Unit 2 - Linear Motion and Graphical Analysis Unit 2 - Linear Motion and Graphical Analysis Motion in one dimension is particularly easy to deal with because all the information about it can be encapsulated in two variables: x, the position of the

More information

Provincial Exam Review: Motion

Provincial Exam Review: Motion Section 8.1 Provincial Exam Review: Motion 1. Identify each of the following quantities as either vector or scalar. (a) 10 kg (b) 20 m [S] (c) 5 hours driving in a car (d) swimming for 100 m [N] (e) 15

More information

Position-Time Graphs

Position-Time Graphs Position-Time Graphs Suppose that a man is jogging at a constant velocity of 5.0 m / s. A data table representing the man s motion is shown below: If we plot this data on a graph, we get: 0 0 1.0 5.0 2.0

More information

Section 1 Force and Motion: Review

Section 1 Force and Motion: Review Section 1 Force and Motion: Review 1. MAIN IDEA How does a motion diagram represent an object s motion? A motion diagram shows the positions of a moving object at equal time intervals. 2. Motion Diagram

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

2.1 How Do We Measure Speed? Student Notes HH6ed

2.1 How Do We Measure Speed? Student Notes HH6ed 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

SECTION 3 - VELOCITY

SECTION 3 - VELOCITY UNIT 2 MOTION SECTION 3 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67

More information

average rate of change

average rate of change average rate of change Module 2 : Investigation 5 MAT 170 Precalculus August 31, 2016 question 1 A car is driving away from a crosswalk. The distance d (in feet) of the car from the crosswalk t seconds

More information

Physics Notes Part III. Uniform/Non-uniform Motion and Graphing

Physics Notes Part III. Uniform/Non-uniform Motion and Graphing Physics Notes Part III Uniform/Non-uniform Motion and Graphing Uniform Motion Rolling ball is an example of uniform motion. 1) Speed of the ball is constant (with no friction). 2) In a straight line (direction

More information

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration.

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. What does the below equation tell us? v = d t NOTES 2.1: ONE-DIMENSIONAL

More information

Physics/PreAP Physics Midterm Review 2013/2014

Physics/PreAP Physics Midterm Review 2013/2014 Physics/PreAP Physics Midterm Review 2013/2014 The midterm exam includes 50 multiple-choice questions. You will have access to a standard formula chart (copies available in the classroom) as well as a

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Velocity Time Graphs 12.2

Velocity Time Graphs 12.2 1. Velocity Time Graphs How are velocities represented on a graph? You can translate the situation shown in Figure 1 into a velocity time graph by first assigning one direction, for example east, as the

More information

Unit 1 Our Dynamic Universe

Unit 1 Our Dynamic Universe North Berwick High School Higher Physics Department of Physics Unit 1 Our Dynamic Universe Section 1 Equations of Motion Section 1 Equations of Motion Note Making Make a dictionary with the meanings of

More information

Physics #1 - Motion Notebook

Physics #1 - Motion Notebook Name Hour Group # Test Date Physics #1 - Motion Notebook Physics #1 - LEARNING Targets Physics #1 Vocabulary: You re The Scientist #1 Getting to Know a Physicist! You will research a physicist and create

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force.

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force. Car materials: 2 toilet paper rolls 8 water bottle caps 2 straws masking tape 2 4-inch bamboo skewers 5 paper clips 10 toothpicks PHYSICS: the study of matter and its motion through space and time, along

More information

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas KINEMATIC GRAPHS SPEED TIME GRAPHS Question (**) A runner is running along a straight horizontal road. He starts from rest at point A, accelerating uniformly for 6 s, reaching a top speed of 7 ms. This

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

2º ESO UNIT 1: Forces and movements. Susana Morales Bernal

2º ESO UNIT 1: Forces and movements. Susana Morales Bernal 2º ESO UNIT 1: Forces and movements Objectives 1. To know that the motion of an object implicates a change in its position respect to another one that is considered as reference. 2. To know if an object

More information

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1 Motion Part 1: Constant Speed What is Physics? Physics is the study of the physical world (energy and matter) and how they are related. Ms. Levine 1 Create your own motion map What is the purpose of these

More information

Unit 1 Physics and Chemistry Kinematics

Unit 1 Physics and Chemistry Kinematics 4 th ESO. UNIT 1: KINEMATICS Kinematics is a branch of Physics which describes the motion of bodies without regard to its causes. A reference frame is a set of coordinate axis in terms of which the position

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Part I: Review Data Tables & Graphing Part II: Speed Acceleration

Part I: Review Data Tables & Graphing Part II: Speed Acceleration Part I: Review Data Tables & Graphing Part II: Speed Acceleration A Standard Data table consist of two columns. The left-hand column contains the values for the Independent Variable in numerical order.

More information

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0.

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0. The position of this car at 50 cm describes where the

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Converting Base Units The Step Stair Method is a simple trick to converting these units. Kilo (k) Hecta (h) Deka (D) Larger unit as you go up the steps! Divide

More information

Displacement, Velocity & Acceleration

Displacement, Velocity & Acceleration Displacement, Velocity & Acceleration Honors/AP Physics Mr. Velazquez Rm. 254 1 Velocity vs. Speed Speed and velocity can both be defined as a change in position or displacement over time. However, speed

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Newton s Laws &Weight Question Paper 1 Level Edexcel Subject Physics Exam Board GCSE(9-1) Topic Motions and Forces Sub Topic Newton s Laws & Weight Booklet Question Paper 1 Time Allowed: Score: Percentage:

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Describing Mo tion. Speed and Velocity. What is speed?

Describing Mo tion. Speed and Velocity. What is speed? CHAPTER 1 LESSON 2 Describing Mo tion Speed and Velocity Key Concepts What is speed? How can you use a dis tance-time graph to calculate average speed? What are ways velocity can change? What do you think?

More information

Engage 1. Compare the total distance traveled between A and B, if both paths arrive at the factory.

Engage 1. Compare the total distance traveled between A and B, if both paths arrive at the factory. Unit 1: Phenomenon The Physics of Skydiving Lesson 2.f Displacement and Velocity Student Performance Objectives Students will define displacement. Students will define velocity. Students will differentiate

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chapter 2 Kinematics in One Dimension The Cheetah: A cat that is built for speed. Its strength and agility allow it to sustain a top speed of over 100 km/h. Such speeds can only be maintained for about

More information

V-t graphs and acceleration. Book page 5 8 Syllabus

V-t graphs and acceleration. Book page 5 8 Syllabus V-t graphs and acceleration Book page 5 8 Syllabus 1.5 1.8 What does the graph show? Multiple-choice quiz Does this show acceleration? Aim Interpret velocity / time graphs to: - compare acceleration between

More information

2.1 KINEMATICS HW/Study Packet

2.1 KINEMATICS HW/Study Packet 2.1 KINEMATICS HW/Study Packet Required: READ Hamper pp 17-28 READ Tsokos, pp 38-62 SL/HL Supplemental: Cutnell and Johnson, pp 28-52 Giancoli, pp 19-38 ü ü ü ü ü REMEMBER TO. Work through all of the example

More information

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis.

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis. KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Name Date Partners. HOMEWORK FOR LAB 1: INTRODUCTION TO MOTION Position-Time Graphs. Answer the following questions in the spaces provided.

Name Date Partners. HOMEWORK FOR LAB 1: INTRODUCTION TO MOTION Position-Time Graphs. Answer the following questions in the spaces provided. Name Date Partners HOMEWORK FOR LAB 1: INTRODUCTION TO MOTION Graphs Answer the following questions in the spaces provided Note: These materials may have been modified locally Page H12 Real Physics: Active

More information