Searching for the Principles of Reasoning and Intelligence

Size: px
Start display at page:

Download "Searching for the Principles of Reasoning and Intelligence"

Transcription

1 Searching for the Principles of Reasoning and Intelligence Shakir Mohamed DALI

2 Statistical Operations Estimation and Learning Inference Hypothesis Testing Summarisation Comparison Modelling Data Enumeration Eperimental Design Efron, 1981 Wald Lecture. 2

3 1 Better clinical outcomes 2Enhance 3Reduce costs patient and clinician eperience Autonomous Systems Triple Aims of Healthcare The core questions of AGI are those of probabilistic inference Fair and safe ML 3

4 Inferential Questions Probabilistic deterity is needed to solve the fundamental problems of machine learning and artificial intelligence. p() = Evidence Estimation Z p(, )d Moment Computation Z E[f() ] = f()p( )d Parameter Estimation Prediction Planning Hypothesis Testing Eperimental Design B = log p( H 1 ) log p( H 2 ) 4

5 Latent Variable Models Introduce an unobserved random variable for every observed data point to eplain hidden causes. f() Prescribed models Use observer likelihoods and assume observation noise. Implicit models Likelihood-free or simulation-based models. f() Diggle and Gratton (1984); Mohamed and Lakshminarayanan (2016) 5

6 Variational Inference True posterior KL[q( y)kp( y)] q () Approimation class Learning principle: Model Evidence p() = Z p(, )d f() F(,q)=E q() [log p( )] KL[q()kp()] Appro. Posterior Reconstruction Penalty Q How can we turn variational inference into a generic tool for inference? 6

7 Amortised Inference F(,q)=E q() [log p( )] KL[q()kp()] Alternating optimisation for the variational parameters and then model parameters (VEM). Repeat: log p() E-step M-step /r F(,q) /r F(,q) Var. params Model params KL[q p ] F(,q) Initialisation t = 1 Convergence Reende, Mohamed, Wierstra (2014) 7

8 Amortised Inference Repeat: E-step (compute q) For i = 1, N n /r E q () [log p ( n n )] r KL[q( n )kp()] ~ q( ) M-step / 1 N X E q () [r log p ( n n )] n Instead of solving for every observation, amortise using a model. Inference network: q is an encoder, an inverse model, recognition model. Parameters of q are now a set of global parameters used for inference of all data points - test and train. Amortise (spread) the cost of inference over all data. Joint optimisation of variational and model parameters. Inference Network q( ) Inference networks provide an efficient mechanism for posterior inference with memory Reende, Mohamed, Wierstra (2014) Data Q How to understand correctness, design principles, missing data? 8

9 Posterior Approimation Q General-purpose posterior approimation? High dimensions? Hierarchical models? Families of Posterior Approimations True Posterior Normalising flows K Structured mean-field Covariance models + Fully-factorised 2 1 Auiliary variables p() Mitures y p( ) r(!, ) Most Epressive q ( ) / p( )p() Least Epressive q MF ( ) = Y k q( k ) Reende and Mohamed (2015) 9

10 Stochastic Optimisation r Eq () [f ()] Pathwise Estimator When easy to use transformation is available and differentiable function f. = Ep( ) [r f (g(, ))] p() μ r = µ + R R q () = g(, ) p( ) =r Z q ()f ()d Score-function estimator When function f non-differentiable and q() is easy to sample from. = Eq() [f ()r log q ())] Q New estimators, probabilistic programming, variance properties 10

11 Estimation-by-Comparison For some models, we only have access to an unnormalised probability or partial knowledge of the distribution. f() q() p*() We compare the estimated distribution q() to the true distribution p*() using samples. Ratios p( (1) ) p( (2) ) Learning principle: Two-sample tests p () q() =1 p () =q() Interest is not in estimating the marginal probabilities, only in how they are related. 11

12 Density Estimation by Comparison H 0 : p=q vs H 1 : p q L(, ) Density Difference r = p q Density Ratio r = p q Mitures with identical moments B f [r kr] Ma Mean Discrepency Moment Matching Bregman Divergence Class Probability Estimation f-divergence Comparison: Use a test or comparison to tells how simulated data differs from observed data. Mohamed and Lakshminarayanan (2016) f(u) =u log u (u + 1) log(u + 1) Estimation: Adjust model to match the data distribution using the comparison. 12

13 Density-ratio Estimation p () q() = p(y =1 ) p(y = 1 ) p(y =+1 ) =D () F(,, )=E p ()[log D ()] + E q () [log(1 D ()] f() gen p() gen = f () obs Alternating optimisation Unsupervised-assupervised learning Classifier ABC min ma F(,, ) Instances of testing and inference: Noise-contrastive estimation Adversarial learning; GANs Mohamed and Lakshminarayanan (2016); Rosca et al (2017) real Generative Adversarial Networks Comparison /r E p ()[log D ()] + r E q () [log(1 D ()] Model gen Estimation / r E q() [log(1 D (f ())] 13

14 Method-of-Moments f () h l (h l 1 ; l) Moment estimator Tangent of posterior odds. l h 1 (; 1) r f l () Moment Vector 1 Model r f 1 () g () L G ( ) L M ( ) Moment Network f () Consistent estimators: the number of moments is greater than the number of model parameters. Features should not be not co-linear. More stable than adversarial training. Does not require frequent updating of the classifier. gen Ravuri et al (2018) real Q Right type of feature functions? Connection between adversarial training and statistical efficiency? 14

15 Convergent Approaches Q Scale to higher-dimensions? Meaningful evaluation? Better samples? Replace density ratios by classifiers, replace posteriors with implicit models, view as optimal transport in primal cases, and connections to integral probability metrics. Bellemare et al, (2017), Rosca et al (2018) 15

16 Inference KL[q( y)kp( y)] Approimation class True posterior Summarisation Comparison q () Data Enumeration Model real gen ~ q( ) f() f() Inference Network q( ) Data L G ( ) L M ( ) shakir@deepmind.com Model g () Moment Network f gen real 16

17 Referenced in slides Efron B. Maimum likelihood and decision theory. The annals of Statistics Jun 1: Reende, Danilo Jimene, Shakir Mohamed, and Daan Wierstra. "Stochastic backpropagation and approimate inference in deep generative models. ICML 2014 Reende, Danilo Jimene, and Shakir Mohamed. "Variational inference with normaliing flows." ICML Mohamed S, Lakshminarayanan B. Learning in implicit generative models Mihaela Rosca, Balaji Lakshminarayanan, Shakir Mohamed Distribution Matching in Variational Inference, 2018 Other Important References Frey, Brendan J., and Geoffrey E. Hinton. "Variational learning in nonlinear Gaussian belief networks." Neural Computation 11, no. 1 (1999): Durk Kingma and Ma Welling. "Auto-encoding Variational Bayes." ICLR (2014). Ranganath, Rajesh, Sean Gerrish, and David M. Blei. "Black Bo Variational Inference." In AISTATS, pp Mnih, Andriy, and Karol Gregor. "Neural variational inference and learning in belief networks." arxiv preprint arxiv: (2014). Láaro-Gredilla, Miguel. "Doubly stochastic variational Bayes for non-conjugate inference." (2014). Wingate, David, and Theophane Weber. "Automated variational inference in probabilistic programming." arxiv preprint arxiv: (2013). Paisley, John, David Blei, and Michael Jordan. "Variational Bayesian inference with stochastic search." arxiv preprint arxiv: (2012). Paul Glasserman, Monte Carlo Methods in Financial engineering, 2003 Michael C Fu, Gradient estimation, Handbooks in operations research and management science, 2006 Fan K, Wang Z, Beck J, Kwok J, Heller KA. Fast second order stochastic backpropagation for variational inference. In Advances in Neural Information Processing Systems 2015 (pp ). Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. "The helmholt machine." Neural computation 7, no. 5 (1995): Gershman, Samuel J., and Noah D. Goodman. "Amortied inference in probabilistic reasoning." In Proceedings of the 36th Annual Conference of the Cognitive Science Society Gregor, Karol, Ivo Danihelka, Ale Graves, Danilo Jimene Reende, and Daan Wierstra. "DRAW: A recurrent neural network for image generation." ICML (2015). Maaløe L, Sønderby CK, Sønderby SK, Winther O. Auiliary deep generative models. ICML 2016 Tabak, E. G., and Cristina V. Turner. "A family of nonparametric density estimation algorithms." Communications on Pure and Applied Mathematics 66, no. 2 (2013): Kingma, D.P., Salimans, T. and Welling, M., Improving variational inference with inverse autoregressive flow. arxiv preprint arxiv: Dinh, L., Sohl-Dickstein, J. and Bengio, S., Density estimation using Real NVP. arxiv preprint arxiv: Diggle PJ, Gratton RJ. Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society. Series B (Methodological) Jan 1: Sugiyama, Masashi, Taiji Suuki, and Takafumi Kanamori. Density ratio estimation in machine learning. Cambridge University Press, Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mira, Bing Xu, David Warde-Farley, Sherjil Oair, Aaron Courville, and Yoshua Bengio. "Generative adversarial nets." In Advances in Neural Information Processing Systems, pp Gutmann MU, Dutta R, Kaski S, Corander J. Likelihood-free inference via classification. Statistics and Computing Mar 13:1-5. Nowoin S, Cseke B, Tomioka R. f-gan: Training generative neural samplers using variational divergence minimiation. In Advances in Neural Information Processing Systems 2016 (pp ). Friedman J, Hastie T, Tibshirani R. The elements of statistical learning: Section on Unsupervised as supervised learning."new York: Springer series in statistics;

GENERATIVE ADVERSARIAL LEARNING

GENERATIVE ADVERSARIAL LEARNING GENERATIVE ADVERSARIAL LEARNING OF MARKOV CHAINS Jiaming Song, Shengjia Zhao & Stefano Ermon Computer Science Department Stanford University {tsong,zhaosj12,ermon}@cs.stanford.edu ABSTRACT We investigate

More information

Resampled Proposal Distributions for Variational Inference and Learning

Resampled Proposal Distributions for Variational Inference and Learning Resampled Proposal Distributions for Variational Inference and Learning Aditya Grover * 1 Ramki Gummadi * 2 Miguel Lazaro-Gredilla 2 Dale Schuurmans 3 Stefano Ermon 1 Abstract Learning generative models

More information

Resampled Proposal Distributions for Variational Inference and Learning

Resampled Proposal Distributions for Variational Inference and Learning Resampled Proposal Distributions for Variational Inference and Learning Aditya Grover * 1 Ramki Gummadi * 2 Miguel Lazaro-Gredilla 2 Dale Schuurmans 3 Stefano Ermon 1 Abstract Learning generative models

More information

Local Expectation Gradients for Doubly Stochastic. Variational Inference

Local Expectation Gradients for Doubly Stochastic. Variational Inference Local Expectation Gradients for Doubly Stochastic Variational Inference arxiv:1503.01494v1 [stat.ml] 4 Mar 2015 Michalis K. Titsias Athens University of Economics and Business, 76, Patission Str. GR10434,

More information

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

UAI 2017 Australia. Tutorial on Deep Generative Models. Shakir Mohamed and Danilo Rezende

UAI 2017 Australia. Tutorial on Deep Generative Models. Shakir Mohamed and Danilo Rezende UAI 2017 Australia Tutorial on Deep Generative Models Shakir Mohamed and Danilo Rezende @shakir_za @deepspiker Abstract This tutorial will be a review of recent advances in deep generative models. Generative

More information

Adversarial Sequential Monte Carlo

Adversarial Sequential Monte Carlo Adversarial Sequential Monte Carlo Kira Kempinska Department of Security and Crime Science University College London London, WC1E 6BT kira.kowalska.13@ucl.ac.uk John Shawe-Taylor Department of Computer

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Michalis K. Titsias Department of Informatics Athens University of Economics and Business

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

arxiv: v1 [cs.lg] 28 Dec 2017

arxiv: v1 [cs.lg] 28 Dec 2017 PixelSNAIL: An Improved Autoregressive Generative Model arxiv:1712.09763v1 [cs.lg] 28 Dec 2017 Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, Pieter Abbeel Embodied Intelligence UC Berkeley, Department of

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Improving Variational Inference with Inverse Autoregressive Flow

Improving Variational Inference with Inverse Autoregressive Flow Improving Variational Inference with Inverse Autoregressive Flow Diederik P. Kingma dpkingma@openai.com Tim Salimans tim@openai.com Rafal Jozefowicz rafal@openai.com Xi Chen peter@openai.com Ilya Sutskever

More information

Variational AutoEncoder: An Introduction and Recent Perspectives

Variational AutoEncoder: An Introduction and Recent Perspectives Metode de optimizare Riemanniene pentru învățare profundă Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Competitivitate 2014-2020 Variational AutoEncoder: An

More information

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT MUPROP: UNBIASED BACKPROPAGATION FOR STOCHASTIC NEURAL NETWORKS Shixiang Gu 1 2, Sergey Levine 3, Ilya Sutskever 3, and Andriy Mnih 4 1 University of Cambridge 2 MPI for Intelligent Systems, Tübingen,

More information

Variational Bayes on Monte Carlo Steroids

Variational Bayes on Monte Carlo Steroids Variational Bayes on Monte Carlo Steroids Aditya Grover, Stefano Ermon Department of Computer Science Stanford University {adityag,ermon}@cs.stanford.edu Abstract Variational approaches are often used

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

arxiv: v4 [stat.co] 19 May 2015

arxiv: v4 [stat.co] 19 May 2015 Markov Chain Monte Carlo and Variational Inference: Bridging the Gap arxiv:14.6460v4 [stat.co] 19 May 201 Tim Salimans Algoritmica Diederik P. Kingma and Max Welling University of Amsterdam Abstract Recent

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Denoising Criterion for Variational Auto-Encoding Framework

Denoising Criterion for Variational Auto-Encoding Framework Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Denoising Criterion for Variational Auto-Encoding Framework Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua

More information

arxiv: v1 [cs.lg] 8 Dec 2016

arxiv: v1 [cs.lg] 8 Dec 2016 Improved generator objectives for GANs Ben Poole Stanford University poole@cs.stanford.edu Alexander A. Alemi, Jascha Sohl-Dickstein, Anelia Angelova Google Brain {alemi, jaschasd, anelia}@google.com arxiv:1612.02780v1

More information

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap Markov Chain Monte Carlo and Variational Inference: Bridging the Gap Tim Salimans Algoritmica Diederik P. Kingma and Max Welling University of Amsterdam TIM@ALGORITMICA.NL [D.P.KINGMA,M.WELLING]@UVA.NL

More information

Wild Variational Approximations

Wild Variational Approximations Wild Variational Approximations Yingzhen Li University of Cambridge Cambridge, CB2 1PZ, UK yl494@cam.ac.uk Qiang Liu Dartmouth College Hanover, NH 03755, USA qiang.liu@dartmouth.edu Abstract We formalise

More information

Operator Variational Inference

Operator Variational Inference Operator Variational Inference Rajesh Ranganath Princeton University Jaan Altosaar Princeton University Dustin Tran Columbia University David M. Blei Columbia University Abstract Variational inference

More information

Implicit Variational Inference with Kernel Density Ratio Fitting

Implicit Variational Inference with Kernel Density Ratio Fitting Jiaxin Shi * 1 Shengyang Sun * Jun Zhu 1 Abstract Recent progress in variational inference has paid much attention to the flexibility of variational posteriors. Work has been done to use implicit distributions,

More information

Learning in Implicit Generative Models

Learning in Implicit Generative Models Learning in Implicit Generative Models Shakir Mohamed and Balaji Lakshminarayanan DeepMind, London {shakir,balajiln}@google.com Abstract Generative adversarial networks (GANs) provide an algorithmic framework

More information

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models George Tucker 1,, Andriy Mnih 2, Chris J. Maddison 2,3, Dieterich Lawson 1,*, Jascha Sohl-Dickstein 1 1 Google Brain,

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

Inference Suboptimality in Variational Autoencoders

Inference Suboptimality in Variational Autoencoders Inference Suboptimality in Variational Autoencoders Chris Cremer Department of Computer Science University of Toronto ccremer@cs.toronto.edu Xuechen Li Department of Computer Science University of Toronto

More information

Generative models for missing value completion

Generative models for missing value completion Generative models for missing value completion Kousuke Ariga Department of Computer Science and Engineering University of Washington Seattle, WA 98105 koar8470@cs.washington.edu Abstract Deep generative

More information

Reinforced Variational Inference

Reinforced Variational Inference Reinforced Variational Inference Theophane Weber 1 Nicolas Heess 1 S. M. Ali Eslami 1 John Schulman 2 David Wingate 3 David Silver 1 1 Google DeepMind 2 University of California, Berkeley 3 Brigham Young

More information

Neural Variational Inference and Learning in Undirected Graphical Models

Neural Variational Inference and Learning in Undirected Graphical Models Neural Variational Inference and Learning in Undirected Graphical Models Volodymyr Kuleshov Stanford University Stanford, CA 94305 kuleshov@cs.stanford.edu Stefano Ermon Stanford University Stanford, CA

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS Sergey Bartunov & Dmitry P. Vetrov National Research University Higher School of Economics (HSE), Yandex Moscow, Russia ABSTRACT We

More information

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS Dan Hendrycks University of Chicago dan@ttic.edu Steven Basart University of Chicago xksteven@uchicago.edu ABSTRACT We introduce a

More information

Generative Kernel PCA

Generative Kernel PCA ESA 8 proceedings, European Symposium on Artificial eural etworks, Computational Intelligence and Machine Learning. Bruges (Belgium), 5-7 April 8, i6doc.com publ., ISB 978-8758747-6. Generative Kernel

More information

Learnable Explicit Density for Continuous Latent Space and Variational Inference

Learnable Explicit Density for Continuous Latent Space and Variational Inference Learnable Eplicit Density for Continuous Latent Space and Variational Inference Chin-Wei Huang 1 Ahmed Touati 1 Laurent Dinh 1 Michal Drozdzal 1 Mohammad Havaei 1 Laurent Charlin 1 3 Aaron Courville 1

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

arxiv: v6 [stat.ml] 14 Jun 2016

arxiv: v6 [stat.ml] 14 Jun 2016 Danilo Jimenez Rezende Shakir Mohamed Google DeepMind, London DANILOR@GOOGLE.COM SHAKIR@GOOGLE.COM arxiv:1505.05770v6 [stat.ml] 14 Jun 2016 Abstract The choice of approximate posterior distribution is

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Scalable Non-linear Beta Process Factor Analysis

Scalable Non-linear Beta Process Factor Analysis Scalable Non-linear Beta Process Factor Analysis Kai Fan Duke University kai.fan@stat.duke.edu Katherine Heller Duke University kheller@stat.duke.com Abstract We propose a non-linear extension of the factor

More information

Training Deep Generative Models: Variations on a Theme

Training Deep Generative Models: Variations on a Theme Training Deep Generative Models: Variations on a Theme Philip Bachman McGill University, School of Computer Science phil.bachman@gmail.com Doina Precup McGill University, School of Computer Science dprecup@cs.mcgill.ca

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

A Unified View of Deep Generative Models

A Unified View of Deep Generative Models SAILING LAB Laboratory for Statistical Artificial InteLigence & INtegreative Genomics A Unified View of Deep Generative Models Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University 1 Deep generative

More information

arxiv: v1 [cs.lg] 20 Apr 2017

arxiv: v1 [cs.lg] 20 Apr 2017 Softmax GAN Min Lin Qihoo 360 Technology co. ltd Beijing, China, 0087 mavenlin@gmail.com arxiv:704.069v [cs.lg] 0 Apr 07 Abstract Softmax GAN is a novel variant of Generative Adversarial Network (GAN).

More information

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Ximing Li, Changchun

More information

arxiv: v3 [stat.ml] 20 Feb 2018

arxiv: v3 [stat.ml] 20 Feb 2018 MANY PATHS TO EQUILIBRIUM: GANS DO NOT NEED TO DECREASE A DIVERGENCE AT EVERY STEP William Fedus 1, Mihaela Rosca 2, Balaji Lakshminarayanan 2, Andrew M. Dai 1, Shakir Mohamed 2 and Ian Goodfellow 1 1

More information

Deep Generative Models

Deep Generative Models Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma Deep generative models Transformations between Bayes nets and Neural nets Transformation

More information

arxiv: v3 [stat.ml] 15 Mar 2018

arxiv: v3 [stat.ml] 15 Mar 2018 Operator Variational Inference Rajesh Ranganath Princeton University Jaan ltosaar Princeton University Dustin Tran Columbia University David M. Blei Columbia University arxiv:1610.09033v3 [stat.ml] 15

More information

Quasi-Monte Carlo Flows

Quasi-Monte Carlo Flows Quasi-Monte Carlo Flows Florian Wenzel TU Kaiserslautern Germany wenzelfl@hu-berlin.de Alexander Buchholz ENSAE-CREST, Paris France alexander.buchholz@ensae.fr Stephan Mandt Univ. of California, Irvine

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

arxiv: v2 [stat.ml] 15 Aug 2017

arxiv: v2 [stat.ml] 15 Aug 2017 Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

arxiv: v4 [stat.ml] 27 Feb 2017

arxiv: v4 [stat.ml] 27 Feb 2017 Shakir Mohamed 1 Balaji Lakshminarayanan 1 arxiv:1610.03483v4 [stat.ml] 27 Feb 2017 Abstract Generative adversarial networks (GANs) provide an algorithmic framework for constructing generative models with

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Does the Wake-sleep Algorithm Produce Good Density Estimators?

Does the Wake-sleep Algorithm Produce Good Density Estimators? Does the Wake-sleep Algorithm Produce Good Density Estimators? Brendan J. Frey, Geoffrey E. Hinton Peter Dayan Department of Computer Science Department of Brain and Cognitive Sciences University of Toronto

More information

Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo Jimenez Rezende Shakir Mohamed Daan Wierstra Google DeepMind, London, United Kingdom DANILOR@GOOGLE.COM

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Sylvester Normalizing Flows for Variational Inference

Sylvester Normalizing Flows for Variational Inference Sylvester Normalizing Flows for Variational Inference Rianne van den Berg Informatics Institute University of Amsterdam Leonard Hasenclever Department of statistics University of Oxford Jakub M. Tomczak

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization

Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Sebastian Nowozin, Botond Cseke, Ryota Tomioka Machine Intelligence and Perception Group

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University An Overview of Edward: A Probabilistic Programming System Dustin Tran Columbia University Alp Kucukelbir Eugene Brevdo Andrew Gelman Adji Dieng Maja Rudolph David Blei Dawen Liang Matt Hoffman Kevin Murphy

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Scalable Large-Scale Classification with Latent Variable Augmentation

Scalable Large-Scale Classification with Latent Variable Augmentation Scalable Large-Scale Classification with Latent Variable Augmentation Francisco J. R. Ruiz Columbia University University of Cambridge Michalis K. Titsias Athens University of Economics and Business David

More information

INFERENCE SUBOPTIMALITY

INFERENCE SUBOPTIMALITY INFERENCE SUBOPTIMALITY IN VARIATIONAL AUTOENCODERS Anonymous authors Paper under double-blind review ABSTRACT Amortized inference has led to efficient approximate inference for large datasets. The quality

More information

arxiv: v1 [cs.lg] 15 Jun 2016

arxiv: v1 [cs.lg] 15 Jun 2016 Improving Variational Inference with Inverse Autoregressive Flow arxiv:1606.04934v1 [cs.lg] 15 Jun 2016 Diederik P. Kingma, Tim Salimans and Max Welling OpenAI, San Francisco University of Amsterdam, University

More information

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS

FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS FAST ADAPTATION IN GENERATIVE MODELS WITH GENERATIVE MATCHING NETWORKS Sergey Bartunov & Dmitry P. Vetrov National Research University Higher School of Economics (HSE) Moscow, Russia Yandex Moscow, Russia

More information

Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick Variational ropout and the Local Reparameterization Trick iederik P. Kingma, Tim Salimans and Max Welling Machine Learning Group, University of Amsterdam Algoritmica University of California, Irvine, and

More information

Some theoretical properties of GANs. Gérard Biau Toulouse, September 2018

Some theoretical properties of GANs. Gérard Biau Toulouse, September 2018 Some theoretical properties of GANs Gérard Biau Toulouse, September 2018 Coauthors Benoît Cadre (ENS Rennes) Maxime Sangnier (Sorbonne University) Ugo Tanielian (Sorbonne University & Criteo) 1 video Source:

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

Bayesian Paragraph Vectors

Bayesian Paragraph Vectors Bayesian Paragraph Vectors Geng Ji 1, Robert Bamler 2, Erik B. Sudderth 1, and Stephan Mandt 2 1 Department of Computer Science, UC Irvine, {gji1, sudderth}@uci.edu 2 Disney Research, firstname.lastname@disneyresearch.com

More information

Continuous-Time Flows for Efficient Inference and Density Estimation

Continuous-Time Flows for Efficient Inference and Density Estimation for Efficient Inference and Density Estimation Changyou Chen Chunyuan Li Liqun Chen Wenlin Wang Yunchen Pu Lawrence Carin Abstract Two fundamental problems in unsupervised learning are efficient inference

More information

Deep latent variable models

Deep latent variable models Deep latent variable models Pierre-Alexandre Mattei IT University of Copenhagen http://pamattei.github.io @pamattei 19 avril 2018 Séminaire de statistique du CNAM 1 Overview of talk A short introduction

More information

Hierarchical Implicit Models and Likelihood-Free Variational Inference

Hierarchical Implicit Models and Likelihood-Free Variational Inference Hierarchical Implicit Models and Likelihood-Free Variational Inference Dustin Tran Columbia University Rajesh Ranganath Princeton University David M. Blei Columbia University Abstract Implicit probabilistic

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO

LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO LEARNING TO SAMPLE WITH ADVERSARIALLY LEARNED LIKELIHOOD-RATIO Chunyuan Li, Jianqiao Li, Guoyin Wang & Lawrence Carin Duke University {chunyuan.li,jianqiao.li,guoyin.wang,lcarin}@duke.edu ABSTRACT We link

More information

CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER-

CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER- CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER- ENCE AND DENSITY ESTIMATION Anonymous authors Paper under double-blind review ABSTRACT Two fundamental problems in unsupervised learning are efficient inference

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence

Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence Mohammad Emtiyaz Khan Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland emtiyaz@gmail.com

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

f-gan: Training Generative Neural Samplers using Variational Divergence Minimization

f-gan: Training Generative Neural Samplers using Variational Divergence Minimization f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Sebastian Nowozin, Botond Cseke, Ryota Tomioka Machine Intelligence and Perception Group Microsoft Research {Sebastian.Nowozin,

More information

Bayesian Inference by Density Ratio Estimation

Bayesian Inference by Density Ratio Estimation Bayesian Inference by Density Ratio Estimation Michael Gutmann https://sites.google.com/site/michaelgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

Evaluating the Variance of Likelihood-Ratio Gradient Estimators

Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 1 2 Issei Sato 3 2 Abstract The likelihood-ratio method is often used to estimate gradients of stochastic computations, for which baselines are required to reduce the estimation variance. Many

More information

arxiv: v3 [stat.ml] 3 Apr 2017

arxiv: v3 [stat.ml] 3 Apr 2017 STICK-BREAKING VARIATIONAL AUTOENCODERS Eric Nalisnick Department of Computer Science University of California, Irvine enalisni@uci.edu Padhraic Smyth Department of Computer Science University of California,

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

arxiv: v3 [cs.lg] 4 Jun 2016 Abstract

arxiv: v3 [cs.lg] 4 Jun 2016 Abstract Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks Tim Salimans OpenAI tim@openai.com Diederik P. Kingma OpenAI dpkingma@openai.com arxiv:1602.07868v3 [cs.lg]

More information

Sparse Approximations for Non-Conjugate Gaussian Process Regression

Sparse Approximations for Non-Conjugate Gaussian Process Regression Sparse Approximations for Non-Conjugate Gaussian Process Regression Thang Bui and Richard Turner Computational and Biological Learning lab Department of Engineering University of Cambridge November 11,

More information

Automatic Variational Inference in Stan

Automatic Variational Inference in Stan Automatic Variational Inference in Stan Alp Kucukelbir Columbia University alp@cs.columbia.edu Andrew Gelman Columbia University gelman@stat.columbia.edu Rajesh Ranganath Princeton University rajeshr@cs.princeton.edu

More information

Doubly Stochastic Variational Bayes for non-conjugate Inference

Doubly Stochastic Variational Bayes for non-conjugate Inference Michalis K. Titsias Department of Informatics, Athens University of Economics and Business, Greece Miguel Lázaro-Gredilla Dpt. Signal Processing & Communications, Universidad Carlos III de Madrid, Spain

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

arxiv: v4 [cs.lg] 6 Nov 2017

arxiv: v4 [cs.lg] 6 Nov 2017 RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models arxiv:10.00v cs.lg] Nov 01 George Tucker 1,, Andriy Mnih, Chris J. Maddison,, Dieterich Lawson 1,*, Jascha Sohl-Dickstein

More information