DIMENSION REDUCTION FOR CENSORED REGRESSION DATA

Size: px
Start display at page:

Download "DIMENSION REDUCTION FOR CENSORED REGRESSION DATA"

Transcription

1 The Annals f Statstcs 1999, Vl. 27, N. 1, 1 23 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA BY KER-CHAU LI, 1 JANE-LING WANG 2 AND CHUN-HOUH CHEN Unversty f Calfrna, Ls Angeles, Unversty f Calfrna, Davs and Academa Snca, Tawan Wthut parametrc assumptns, hgh-dmensnal regressn analyss s already cmplex. Ths s made even harder when data are subject t censrng. In ths artcle, we seek ways f reducng the dmensnalty f the regressr befre applyng nnparametrc smthng technques. If the censrng tme s ndependent f the lfetme, then the methd f slced nverse regressn can be appled drectly. Otherwse, mdfcatn s needed t adjust fr the censrng bas. A key dentty leadng t the bas crrectn s derved and the rt-n cnsstency f the mdfed estmate s establshed. Patterns f censrng can als be studed under a smlar dmensn reductn framewrk. Sme smulatn results and an applcatn t a real data set are reprted. 1. Intrductn. Survval data are ften subject t censrng. When ths ccurs, the ncmpleteness f the bserved data may nduce a substantal bas n the sample. Several appraches have been suggested t vercme the asscated dffcultes n regressn, ncludng the accelerated falure tme mdel, censred lnear regressn, the Cx prprtnal hazard mdel and many thers. Survval analyss becmes even mre ntrcate when the dmensn f the regressr ncreases. T apply any f the afrementned methds, users are requred t specfy a functnal frm whch relates the utcme varables t the nput nes. Hwever, n realty, knwledge needed fr an apprprate mdel specfcatn s ften nadequate. As a matter f fact, the acqustn f such nfrmatn may well turn ut t be ne f the prmary gals f the study tself. Under such crcumstances, t seems preferable t have explratry tls that rely less n such mdel specfcatn. Ths s the ssue t be addressed n ths artcle. The dmensn reductn apprach f L Ž wll be extended t settngs whch allw fr censrng n the data. We shall ffer methds f fndng lw-dmensnal prjectns f the data fr vsually examnng the censrng pattern. We shall shw hw censred regressn data can stll be analyzed wthut assumng the functnal frm a prr. Receved January 1997; revsed September Supprted n part by an NSF grant and a Guggenhem Fellwshp. Part f the research was carred ut whle vstng the Insttute f Statstcal Scence, Academa Snca, Tawan, n 1994 wth supprt frm the Natnal Scence Cuncl, Tawan, R.O.C. 2 Supprted n part by NSF Grant DMS AMS 1991 subject classfcatns. 62G05, 62J20. Key wrds and phrases. accelated falure tme mdel, censred lnear regressn, Cx mdel, curse f dmensnalty, hazard functn, Kaplan-Meer estmate, regressn graphcs, slced nverse regressn, survval analyss 1

2 2 K.-C. LI, J.-L. WANG AND C.-H. CHEN Dmensnalty sets a severe lmtatn even n the explratry stage f data analyss. Ths s true even wthut the presence f censrng. Fr example, when the dmensn s ne r tw, a tw-dmensnal r threedmensnal scatterplt f the respnse varable aganst the regressr s helpful n btanng general deas abut the shape f the regressn functn, the pattern f hetergenety and ther valuable structural nfrmatn. Hwever, as the dmensn ncreases, the ttal number f tw-dmensnal r three dmensnal scatterplts escalates quckly. Very sn ths task culd turn nt an extremely labrus exercse. Wthut prper gudance, t may nt be easy fr us t put tgether a clear glbal pcture abut the data frm varus plts. Hw t bypass the curse f dmensnalty has been an mprtant ssue; see, fr example, Huber Ž L s framewrk fr dmensn reductn n regressn begns wth the fllwng frmulatn: Ž 1.1. Y g Ž x,..., 1 k x,.. The man feature f Ž 1.1. s that g s cmpletely unknwn and s s the dstrbutn f, whch s ndependent f the p-dmensnal regressr x. When k s smaller than p, Ž 1.1. mpses a dmensn reductn structure by clamng that the dependence f Y n the p-dmensnal x nly cmes frm the k varates, x,..., 1 k x, but the functnal frm f the dependence structure s nt specfed. The k-dmensnal space spanned by the k vectrs s called the e.d.r. Ž effectve dmensn reductn. space and any vectr n ths space s referred t as an e.d.r. drectn. The prmary gal f L s apprach s t estmate the e.d.r. drectns s that we can plt y aganst the e.d.r. varates fr vsually explrng the structure f the regressn and fr mre effectvely applyng varus lw-dmensnal regressn technques t the reduced space. The ntn f e.d.r. space and ts rle n regressn graphcs are further explred n Ck Ž and Ck and Wesberg Ž T ncrprate censrng nt the dmensn reductn framewrk, let Y the true Ž unbservable. lfetme, C the censrng tme, the censrng ndcatr; 1, f Y C and 0, therwse, Y mn Y, C 4, the bserved tme. We assume that Ž 1.2. Y fllws mdel Ž 1.1.; Ž 1.3. Cndtnal n x, C s ndependent f Y. The bserved sample cnssts f n..d. bservatns, Ž Y, x,., 1,..., n frm the dstrbutn f Y, x,. The cntnuus randm varables, Y, C, are nt bserved. Cndtn Ž 1.3. s the usual ndependence assumptn t ensure dentfablty under the randm censrng scheme. If Ž 1.3. s vlated, then ne needs mre nfrmatn n the censrng mechansm t buld an apprprate mdel. Ths s nt cnsdered n ths paper.

3 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 3 Fr k 1, ur frmulatn may nclude the generalzed lnear mdel McCullagh and Nelder Ž and the lnear transfrmatn mdel Dksum Ž as specal cases. The latter als ncludes several survval analyss mdels such as the accelerated falure tme mdel, the prprtnal hazard mdel, the prprtnal dds mdel and the lgt and prbt mdels Dksum and Gask Ž Wthut censrng, slced nverse regressn Ž SIR. s a smple methd fr fndng the e.d.r. space. Instead f drectly estmatng EY Ž x.,a p-dmensnal surface, the rles f x and Y are reversed the fcus turns t the p nverse regressn E x Y, whch s a curve n R. Under apprprate cndtns Lemma 3.1 f L Ž 1991., the nverse regressn curve s shwn t fall nt a k-dmensnal subspace. In partcular, when the regressr dstrbutn has mean zer and wth the dentty cvarance, ths k-dmensnal subspace cncdes wth the e.d.r. space. Explrng ths cnnectn, SIR begns wth a smple estmate f the nverse regressn curve by parttnng the data nt several slces accrdng t the Y values and cmputng the mean f x wthn each slce; ths s the slcng step. It s then fllwed by an egenvalue decmpstn step a prncpal cmpnent type f analyss ntended t lcate the subspace cntanng the nverse regressn curve. See L Ž fr further detals. Prpertes f SIR have been studed n several places: Carrll and L Ž 1992, 1995., Chen and L Ž 1998., Ck and Wesberg Ž 1991, 1994., Duan and L Ž 1991., Hsng and Carrll Ž 1992., Schtt Ž 1994., Zhu and Ng Ž Hw des censrng affect SIR? Ths depends n the relatnshp between the censrng tme C and the regressr x. Sectn 2 cnsders the ndependence case n whch Ž 1.4. C s ndependent f x and Y. We shw that the general thery f SIR s applcable wthut mdfcatn and the drectns fund by SIR are stll cnsstent. Thus fr the ndependence case, censrng des nt ntrduce bas t the SIR estmates. Hwever, SIR wll be affected by ther censrng mechansms that d nt fllw Ž In Sectn 3, we ntrduce a general strategy t vercme ths dffculty. The prpsed apprach s t ntrduce a sutable weght functn fr the censred bservatns fr ffsettng bas n estmatng the slce means. The weght functn can be estmated by nnparametrc estmatn technques fr cndtnal survval functns. Fr smplcty, the kernel methd s used and we establsh the rt-n cnsstency fr the mdfed SIR. In Sectn 4, we brng ut a dmensn reductn settng fr studyng the pattern f censrng when the ndependent censrng cndtn Ž 1.4. s vlated. We argue fr the mprtance f vsualzng the heavy censrng regn, a nntrval task n the hgh-dmensnal stuatn. Data analysts have t recgnze ths regn because heavy censrng sets severe lmtatns n fndng the structure f regressn. The dmensn reductn assumptn n C s a natural cunterpart f Ž 1.2., Ž 1.5. C hž x,..., x,.. 1 c

4 4 K.-C. LI, J.-L. WANG AND C.-H. CHEN Then Ž 1.2. and Ž 1.5. tgether allw us t treat the survval tme and censrng tme equvalently. But t avd cnfusn, we shall refer t s and ther lnear cmbnatns as e.d.r. censrng drectns. In cntrast, the e.d.r. drectns fr Y wll be called e.d.r. lfetme drectns. Bth censrng and lfetme drectns as well as ther lnear cmbnatns wll be called jnt e.d.r. drectns. We shw hw t estmate the jnt e.d.r. drectns thrugh a duble slcng prcedure. Frm the jnt e.d.r. drectns, we can recver the e.d.r. lfetme drectns by further applyng the mdfed SIR strategy f Sectn 3. Ths s llustrated n Sectn 5. The perfrmance f the prcedure s examned thrugh tw smulatn studes. We apply ur methd t a data set abut the study f prmary blary crrhss Ž PBC. at the May Clnc. Sectn 6 cncludes ths artcle by summarzng ur fndngs. Sme questns are rased fr further study. 2. SIR under the ndependence assumptn ( 1.4 ). Dente the uncen Ž. Ž sred nverse regressn curve by y E x Y y.. Wthut censrng Ž.e., Y Y., the ppulatn versn f SIR s based n the fllwng egenvalue decmpstn: Ž 2.1. b b, x, 1 p where Ž 2.2. cv EŽ x Y. and x cvž x.. The justfcatn fr usng the frst k egenvectrs b wth nnzer egen- values t estmate the e.d.r. Ž lfetme. drectns fllws frm Lemma 3.1 fl Ž 1991., whch can be stated as fllws. LEMMA 2.1. Assume that the dmensn reductn assumptn Ž 1.2. hlds. Then fr any y, Ž Ž y. EŽ x.. falls nt the e.d.r. Ž lfetme. x space under the cndtn that Ž 2.3. fr any vectr b, EŽ b x x,..., 1 k x. s lnear. Desgn cndtn Ž 2.3. has been dscussed n several places. The perfrmance f SIR s nt very senstve t ths cndtn; see the dscussn and the rejnder f L Ž 1991., Ck Ž 1994., Ck and Wesberg Ž 1991, Carrll and L Ž In vew f the fact that mst lw-dmensnal prjectns f hgh-dmensnal data ften appear lke nrmal dstrbutns D- acns and Freedman Ž 1984., Hall and L Ž argue fr the generalty f ths cndtn n hgh-dmensnal stuatns. On the ther hand, reweghtng and subsamplng methds can als be appled t acheve Ž 2.3.: Brllnger Ž 1991., Ck and Nachtshem Ž Further dscussn n ths cndtn can be fund n L Ž

5 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 5 Censrng alters the dstrbutn f the bserved tme Y. Its effect n SIR can be studed by cmparng the censred nverse regressn curve Ž y. EŽ x Y y. wth the uncensred ne Ž y.. By cndtnng, we have Ž 2.4. EŽ x Y y. EŽ EŽ x Y, C. Y y.. Ž. Ž. Under 1.4, E x Y, C s equal t E x Y, mplyng that Ž 2.5. EŽ x Y y. EŽ Ž Y. Y y.. Ž. Snce Lemma 2.1 apples t y, the fllwng result s btaned. LEMMA 2.2. Assume that 1.2 and 1.4 hld. Then Ž Ž y. EŽ x.. x falls nt the e.d.r lfetme space under Ž T mplement SIR n the data Ž Y, x., 1,..., n, we fllw L Ž Frst we parttn y s nt H ntervals, I h, h 1,..., H. Then fr each nterval, we cmpute the parttn slce mean x by averagng where n h 1 x x, h Ý n h x I h s the number f cases fallng nt I. Then the cvarance matrx H n h Ž x x.ž x x. ˆ n Ý h h h s frmed. Fnally we cnduct the egenvalue decmpstn ˆ ˆ ˆ ˆ b b, x ˆ ˆ. 1 p Wth Lemma 2.2 and fllwng the argument n L Ž 1991., we btan the rt-n cnsstency f SIR estmates ˆb fr fndng e.d.r. lfetme drectns. Thus censrng des nt ntrduce bas t SIR. Hwever, ths s true nly when the censrng tme s ndependent f the regressrs and the true lfetme. Wthut Ž 1.4., ths appealng result vanshes and substantal bas may be nduced by censrng under the mre general cndtn Ž A strategy fr mdfyng SIR under ( 1.3 ). An deal way f bypassng the dffcultes caused by general censrng Ž 1.3. s t slce the true survval tme Y. At frst sght, ths des nt appear feasble because under censrng, Y s unbservable. The prmse cmes frm an dentty derved n Sectn 3.1, whch relates the cndtnal expectatn f x n each slce t the bserved tme Y and the censred ndcatr. Ths leads t a mdfed slcng step by a sutable weghtng scheme fr ffsettng the censrng bas n estmatng the slce means. The cnsstency f ths new prcedure s dscussed n Sectn 3.2. h h

6 6 K.-C. LI, J.-L. WANG AND C.-H. CHEN 3.1. An dentty. Let 0 t1 t2 th th be a parttn n the survval tme. The expected value f x n a slce, m j E x Y t, t.4, can be wrtten as j j ½ PY t j, tj. 4 E1Ž Y tj. 4 E1Ž Y tj. 4 E x1 Y t, t j j. E x1 Y tj E x1 Y tj Ž 3.1. m j, where 1Ž. s the ndcatr functn. The tw numeratr terms take the same Ž frm, whch nvlves the unbservable ndcatr 1 Y t.. They can be cnverted nt terms wth Y and va the dentty, Ž 3.2. Ex1Ž Y t. 4 Ex1Ž Y t. 4 Ex1Ž Y t, 0. wž Y, t, x. 4, where fr t t, S Ž t x. Ž 3.3. wž t, t, x., S Ž t x. Ž 3.4. S Ž t x. P Y t x4 cndtnal survval functn fr Y, gven x. Cnsder the plane f varables Y and C n Fgure 1. The ntegratn regn Y t s decmpsed nt tw parts. The frst regn Žarea I n Fg-. ure 1 wth Y t, C t r equvalently, Y t, cntrbutes t the frst term n the rght sde f 3.2. The secnd regn wth Y t, C t, falls nt the censred area, 0. It s cntaned n the larger regn Ždashed area II n Fgure 1. wth Y t and 0. The secnd term n the rght sde f Ž 3.2. cmes frm ntegratn ver ths larger regn wth the weght adjustment FIG. 1. Integratn regns.

7 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 7 w,,. Cndtnng s the key t justfy ths term: 4 4 Ex1Ž Y t, 0. E 1Ž Y t. Y, 0, x 4 Ex1Ž Y t, 0. E 1Ž Y t. C, Y C, x 4 Ex1Ž Y t, 0. wž C, t, x. 4 Ex1Ž Y t, 0. wž Y, t, x. 4. E x1ž Y t, C t. E x1ž Y t, 01Y. Ž t. Here the next t the last equalty s due t the cndtnal ndependence assumptn Ž 1.3., whch assures that cndtnal n x, the prbablty fr the true survval tme Y t exceed t gven C t and Y t s equal t the cndtnal prbablty gven by Ž By a smlar argument, the denmnatr terms can be cnverted va the dentty Ž 3.5. E1Ž Y t. 4 E1Ž Y t. 4 E1Ž Y t, 0. wž Y, t, x. 4. The weght functn Ž 3.3. can be further expressed as Ž 3.6. wž t, t, x. exp Ž t, t x. 4, where 1 Ž t Y t, 1 t, t x E. x, S Ž Y x. ½ 5 Y SY Ž x. the cndtnal survval functn f Y cndtnal n x. Then Ž 3.6. fllws frm the well-knwn relatnshp between survval functns and cumulated hazards; fr a prf, see the Appendx. The term Ž t, t x. s smply the ntegrated cndtnal hazard Ž gven x. functn ver the nterval t, t Estmatn. T cnstruct an estmate fr m, we replace each expecj tatn term n 3.2 and 3.5 by the crrespndng frst sample mment, ˆ ˆ E x1ž Y tj. E x1ž Y tj. Ž 3.7. mˆ j, ˆ ˆ PY t PY t j j n n Ý Ý ˆ : Y t : Y t, 0 Ž 3.8. Eˆ x1ž Y t. 4 n x n x wž Y, t, x., ˆ 4 n 4 Ý ˆ : Y t, 0 Ž 3.9. P Y t : Y t n n wž Y, t, x., where wˆ Ž,,. dentes an estmate f the weght functn Ž 3.3. t be dscussed later.

8 8 K.-C. LI, J.-L. WANG AND C.-H. CHEN After estmatng each slce mean by Ž 3.7., we can frm the cvarance matrx f the slce means n the usual way; Ý ˆ mˆ x mˆ x p ˆ, j j j j 4 4 ˆ ˆ p PY t PY t. ˆj j j Fnally, we may cnduct the egenvalue decmpstn as befre t fnd the SIR drectns Ž ˆ ˆ b ˆˆ ˆ b, x ˆ ˆ. 1 p Smthng s needed n estmatng wt, Ž t, x.. There are several ways t prceed. Fr example, we can apply Beran s estmates fr cndtnal survval functns and ther varants. Under apprprate cndtns, Beran Ž and Dabrwska Ž 1987, establshed the cnsstency f ther estmates at cnvergence rates Ž slwer than the rt n rate. smlar t thse cmmnly fund n nnparametrc regressn. These cnsstency results lead t the cnsstency f mˆ h as an estmate f m h. It s easy t see that ˆ s als cnsstent fr the cvarance matrx f the slce means m s. As n L Ž h, we can apply Lemma 2.1 t establsh the cnsstency f ˆb as estmates f e.d.r. lfetme drectns. Despte the slw rate f cnvergence n estmatng cndtnal survval functns hence the weght Ž 3.3., t s stll pssble t establsh the rt n cnvergence fr m ˆ h. We nly cnsder the kernel smthng methd here fr Ž. p smplcty. Let K p be a kernel functn n R and hn be the bandwdth n p each crdnate. We shall assume that hn 1 and nhn tends t nfnty. Further cnstrants wll be mpsed later. It s cmmn fr K Ž. p t take a prduct frm, K Ž x,..., x. KŽ x. KŽ x. p 1 p 1 p, fr sme ne-dmensnal kernel functn KŽ.. Our kernel estmate f Ž 3.6. s defned by settng n ˆ p n Ý: t Y t, SYŽ Y x. hn Kp hn Ž x x. Ž ˆ Ž t, t x. ˆf Ž x. n Ý n j: Y Y h p n Kp h n Ž x j x. j Ž Sˆ YŽ Y x., ˆf Ž x. n p Ý n p n Ž fˆ Ž x. n h K h Ž x x.. A sketch prf f the fllwng clam tgether wth the regularty cndtns needed s gven n the Appendx. LEMMA 3.1. Under the regularty cndtns Ž B.1., Ž B.3., Ž B.5. and Ž B.8., gven n the Appendx, m s a rt-n cnsstent estmate fr m, h 1,..., H. ˆ h h,

9 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 9 We can use ths lemma and fllw the same argument as n L 1991 t shw that the mdfed SIR s rt-n cnsstent. Ths s stated n the fllwng therem. The prf s mtted. THEOREM 3.2. Under the assumptn f Lemma 3.1, each ˆb h s a rt-n cnsstent estmate fr an e.d.r. drectn. Assume that fž. and SŽ x. are d-tmes cntnuusly dfferentable and that the kernel functn satsfed the mment cndtns Hx K Ž x. p dx 0 fr d 1,..., d 1, and Hx K Ž x. p dx s nnzer. Then the regularty assump- tns n Lemma 3.1 can be satsfed wth bandwdth H n 2 d prvded p d. What we have presented s far n ths sectn s a general strategy fr ffsettng the bas due t censrng. The theretcal result f Therem 3.2, hwever, may nt help much n practce. The prblem s that kernel smthng nly wrks well n the lw-dmensnal case. Thus, befre applyng the kernel methd n estmatng the weght functn, we may want t reduce the dmensnalty frst. Ths s t be dscussed n the next tw sectns. 4. Dmensn reductn mdel fr censrng tme. Analyzng the censrng pattern s an mprtant step n studyng the censred data. It helps the recgntn f the nfrmatn-pr regn n x, the regn where censrng s heavy and the regressn structure s thus harder t explre. Smetmes such an analyss may even becme a prmary part f the study. In sme ndustral applcatns, Y may be the ptental yeld f a prductn prcess and censrng C may ccur because f machne malfunctnng, fr example. In addtn t learnng hw varus nput varables x may affect the ptental yeld, qualty cntrl engneers may equally be nterested n hw they affect the censrng rate; they need such knwledge t prevent machne malfunctnng as much as pssble. Lke ts cunterpart Y, we nw assume that the censrng tme C als has a dmensn reductn structure gven by Ž Agan, the functnal frm f h and the dstrbutnal frm f are bth unspecfed. Ths mdel suggests nly that the dmensn f the regressr can be reduced frm p t c. The relatnshp between the e.d.r. space fr the censrng tme and the e.d.r. space fr the true lfetme s arbtrary. They can be ether dentcal, partly verlapped, r dsjnt. Lnear cmbnatns f ther elements frm a space whch wll be called the jnt e.d.r. space. If Y and C were used fr slcng, then by the same argument used n dervng Lemma 2.1, t s easy t see that Ž 4.1. x Ž EŽ x Y, C. EŽ x.. falls nt the jnt e.d.r. space. Ž Hwever, nstead f Y, C., we can nly bserve Y and. Ths suggests that Y and can be used smultaneusly fr slcng. Let Ž Y,0. EŽ d x Y y, 0., and Ž Y,1. EŽ x Y y, 1.. We may replace Ž 2.1. wth Ž 4.2. d Cv dž Y,. b x b, p.

10 10 K.-C. LI, J.-L. WANG AND C.-H. CHEN Ž Ž By cndtnng, E x Y, EEx Y, C. Y,... Thus frm Ž 4.1., we see that Ž y,. EŽ x. falls nt the jnt e.d.r. space. x d Ths justfes the use f egenvectrs frm Ž 4.2. t estmate the jnt e.d.r. space. The sample versn f Ž 4.2. s easy t carry ut. Dente the number f slces fr the uncensred Ž 1. bservatns by H 1. Let I 1j, j 1,..., H1 be a parttn f the pstve real lne nt nnverlappng ntervals. Smlarly, dente the number f slces fr the censred Ž 0. bservatns by H 0, and let I 0 j, j 1,..., H0 be anther parttn f the pstve real lne. We frst frm the ndvdual slce means by takng n lj Ž ˆlj. Ý Ž lj. x np x 1 l, Y I, where pˆlj s the prprtn f cases wth l fallng nt nterval I lj. Then we cmpute the cvarance matrx fr the slce means, ˆ ÝÝ p Ž d l jˆlj x lj x.ž x x.. Fnally we cnduct the egenvalue decmpstn lj Ž 4.3. ˆ ˆb ˆ ˆ ˆb, d d d x d ˆ ˆ. d1 L 1991 prpsed a ch-squared test fr determnng the number f sgnfcant e.d.r. drectns btaned by SIR. It shuld be clear that we can use the same test fr the duble slcng case. S far we have nly lcated the jnt e.d.r. drectns. We shall shw n the next sectn hw t use the prcedure n Sectn 3 t recver the e.d.r. lfetme drectns. Lkewse, we can als recver the e.d.r. drectns fr censrng tme by exchangng the rles f censrng tme and lfetme. Befre we prceed, an example s gven belw t llustrate the duble slcng prcedure dscussed n ths sectn. EXAMPLE 4.1. Take p 6 and let x Ž x,..., x. 1 6 be generated frm the standard nrmal dstrbutn. Suppse Y 4 x 1 1, 1 1 C fr x1 0, x2 x3 0, 10 therwse, where Here 1, 2 are nrmal randm varables. Generate 300 cases. Sxty-sx bservatns n the data set are censred. Nw apply duble slcng wth the number f slces equal t 5 and 10, respectvely, fr the censred and the uncensred grups. The egenvalues f SIR are fund t be 0.76, 0.35, 0.08, 0.06,..., ndcatng that the frst tw egenvectrs, ˆb d1 Ž 1.14, 0.05, 0.03, 0.00, 0.04, and ˆb Ž d2 0.06, 0.69, 0.74, 0.02, 0.10, are mprtant. Ths s cnfrmed by the ch-squared test n L Ž dp

11 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 11 The jnt e.d.r. drectns Ž 1, 0, 0, 0, 0, 0. and Ž 1 2.Ž 0,1,1,0,0,0. are captured successfully by ˆb and ˆ d1 b d2. The censred cases are fund t cluster n the frst quadrant n the plt f the frst tw SIR varates; see Fgure 2Ž. c. Statstcal nfrmatn abut the behavr f the true lfetme n that regn s very sparse. 5. Implementatn f mdfed SIR. The drectns fund by duble slcng can be used t releve the dffcultes encuntered n Sectn 3 when kernel smthng s t be appled fr estmatng the weght functn Ž Under the dmensn reductn assumptns fr bth the true lfetme and the censrng tme, Ž 1.2. and Ž 1.5., t s easy t see that the dependence f the weght functn Ž 3.3. nx s nly thrugh jnt e.d.r. varates. Ths suggests the fllwng tw-stage prcedure: 1. Apply duble slcng n Ž Y,. and fnd the jnt e.d.r. drectns, ˆb d. Let Bˆ Ž ˆb,..., ˆb. r d1 dr be the matrx frmed by the frst r sgnfcant drec- tns. 2. Apply r-dmensnal kernel smthng n Bˆ rx, t btan the weght functn w, ˆ 4 Ž 5.1. wˆ Ž t, t, x. exp ˆ Ž t, t x., where ' Ž 5.2. ˆ Ž t, t x. ž / n ˆ r n Ý S Y x h K h Bˆ : t Y t, YŽ. n r n rž x x. ˆf Ž x., FIG. 2. Three-dmensnal scatterplt f Y aganst the frst SIR varate Ž x-axs. and the secnd SIR varate Ž z-axs. fund by duble slcng. The hghlghted pnts are censred.

12 12 K.-C. LI, J.-L. WANG AND C.-H. CHEN n r ž ž ˆ // 5 j: Y j Y n r n r j ½ n Ý h K h B Ž x x. Ž 5.3. Sˆ YŽ Y x. max, c, ˆf Ž x. n r Ý n r n ˆ r Ž 5.4. fˆž x. n h K h B Ž Ž x x... Nte that a small pstve number c Ž set t 0.05 n ur examples. s used t bund Sˆ Ž Y x. Y away frm zer. Ths s needed n rder t ncrease the ˆ stablty f the factr S Y x n Ž 5.2. Y. After estmatng the weght functn, we can apply Ž 3.7. Ž 3.9. and then carry ut the egenvalue decmpstn Ž t btan estmates f e.d.r. lfetme drectns. We frst reprt tw smulatn studes t llustrate hw ths strategy wrks. Then we apply ur methd t a data set cncernng a study f prmary blary crrhss n the lver Ž PBC.. EXAMPLE 5.1. We take p 6 and generate x Ž x,..., x. 1 6 frm the standard nrmal dstrbutn. The true survval tme Y and the censrng tme C are generated frm lg lg 2 Y ; C, x1 x 2 where, are ndependent unfrm randm varables frm 0, Cndtnal n x, Y and C are seen t fllw the expnental dstrbutns wth the natural parameters, lnkng t x va x 1 ; x , respectvely. We btan 300 ndependent bservatns f Ž Y,.; amng them, 138 cases are censred. We prceed wth the SIR analyss. Frst, the methd f duble slcng n Y and as descrbed by Ž 4.3. gves egenvalues 0.34, 0.27, 0.05,.... The frst tw egenvectrs, ˆb Ž 0.67, 0.70, 0.08, 0.06, 0.11, d1 and ˆb Ž 0.69, 0.73, 0.12, 0.04, 0.10, d2, are clse t the jnt e.d.r. space fr Y and C. We use these tw drectns t reduce the x dmensn befre estmatng the weght functn wž,,.. Wth the weght adjustment gven by Ž 5.1., we perfrm SIR as descrbed by Ž 3.7. Ž t fnd the e.d.r. lfetme drectns. The egenvalues are 0.40, 0.10, 0.03,..., and the leadng egenvectr s ˆ b Ž 0.92, 0.12, 0.21, 0.08, 0.25, We see that ˆ 1 b1 s qute clse t the true e.d.r. lfetme drectn Ž 1, 0,...,0.. Fr cmparsn, we als carry ut the SIR analyss n Y wthut weght adjustment as f the censrng were ndependent f x. The frst drectn Ž 0.68, 0.69, 0.058, 0.07, 0.13, des have a substantal bas. Therefre the weght adjustment s crucal n ths example. We used the bvarate nrmal kernel functn here and the bandwdth s set at The senstvty t the bandwdth chce seems mld. EXAMPLE 5.2. Imprtant prgnstc varables affectng the hazard rate may be dfferent at dfferent survval stages. In ths example, we assume that the true survval tme Y fllws an expnental dstrbutn wth the

13 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 13 TABLE 1 The frst three egenvectrs and egenvalues f SIR fr Example 5.2 wth the duble slcng prcedure Frst vectr Ž 0.93, 0.11, 0.03, 0.03, 0.04, Secnd vectr Ž 0.09, 0.76, 0.60, 0.01, 0.03, Thrd vectr Ž 0.10, 0.55, 0.73, 0.03, 0.02, Egenvalues Ž 0.52, 0.21, 0.15, 0.03, 0.01, natural parameter equal t 2 x 1 untl tme lg 2. Frm tme n, the addtnal survval tme fllws the expnental dstrbutn wth the natural parameter 3 x 2. Mre specfcally, we assume Y * expnental wth parameter 2 x 1, Y ** expnental wth parameter 3 x 2, Y Y *1Ž Y *. Ž Y **. 1Ž Y *.. The censrng tme C fllws an expnental dstrbutn wth parameter equal t x 3. Agan 300 ndependent bservatns f Ž Y,. are btaned. Amng them, 98 cases are censred. The utput f the duble slcng prcedure s gven n Table 1. The frst three egenvectrs, whch have relatvely larger egenvalues cmpared t the rest, are then used n estmatng the weght functn fr fndng the true e.d.r. lfetme drectns. After the weght adjustment, the fnal utput f SIR s gven n Table 2. Nw we see that nly the frst tw egenvectrs stand ut and the mprtant varables x1 and x2 can be dentfed. EXAMPLE 5.3. The PBC data set cllected at the May Clnc between 1974 and 1986 has been analyzed n the lterature. The data set and a detaled descrptn can be fund n Flemng and Harrngtn Ž There are rgnally seventeen regressrs. Flemng and Harrngtn selected fve f them n ther fnal equatn fr fttng a Cx prprtnal mdel. These fve regressrs plus anther varable, the platelet cunt Ž x belw. 5, wll be used n ths llustratn: Y number f days between regstratn and the earler f death r censrng; 1f Y s due t death; 0 therwse; x age n years; 1 x presence f edema; 2 x serum blrubn, n mg dl; 3 x albumn, n gm dl; 4

14 14 K.-C. LI, J.-L. WANG AND C.-H. CHEN TABLE 2 The frst tw egenvectrs and egenvalues f SIR fr fnal result f Example 5.2 wth weght adjustment Frst vectr Ž 0.97, 0.15, 0.10, 0.04, 0.10, Secnd vectr Ž 0.16, 0.95, 0.18, 0.02, 0.06, Egenvalues Ž 0.66, 0.34, 0.05, 0.04, 0.02, x platelet cunt; 5 x prthrmbn tme. 6 Cases wth mssng values are gnred and there are 308 cases remanng. We frst apply duble censrng wth slce numbers H1 H0 10. The frst tw drectns are sgnfcant, as judged frm the sequence f utput egenvalues 0.55, 0.15, 0.05, 0.0, 0.0, 0.0. Fgure 3 shws the scatterplt f the frst tw SIR varates. Tw utlers labeled as 104 and 276 are fund frm the three-dmensnal plt Ž nt shwn here. f Y aganst the frst tw SIR varates. They are remved. We apply duble slcng agan t the remanng 306 cases. The SIR utput essentally remans the same. Ths suggests that the dmensn f the jnt e.d.r. space s tw. We prceed t fnd the true e.d.r. lfetme drectns. We take r 2 and use the tw SIR drectns reprted n Table 3 t reduce the x dmensn befre estmatng the weght functn. The kernel functn and the bandwdth are the same as n Example 5.1. The utput f the weghted SIR s gven n Table 4. Judgng frm the egenvalue sequence, the frst drectn ˆ b s 1 FIG. 3. Scatterplt f the frst tw SIR varates fund by duble slcng. bserved, square censred cases.

15 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 15 TABLE 3 The frst tw egenvectrs and egenvalues f SIR fr the PBC data n Example 5.3 Frst vectr Ž 0.02, 1.04, 0.10, 0.50, 0.00, Secnd vectr Ž 0.02,.62, 0.17, 0.97, 0.00, Egenvalues Ž 0.54, 0.16, 0.05, 0.01, 0.00, clearly mprtant. The secnd drectn s als wrth further examnatn. Fgure 4Ž a. and Ž b. shw the scatterplts f Y aganst ˆ b1x and aganst ˆ b2x. Earler analyss n Flemng and Harrngtn Ž yelds that the true lfetme depends n x thrugh the varate Q x x lg x lg x lg x 6. Ths varate turns ut hghly ˆ crrelated wth the frst SIR varate b x; the crrelatn ceffcent s ' The crrelatn between Q and 1.3b ˆ x 0.25b ˆ x s equal t ' Varable x5 makes very lttle cntrbutn t the frst tw SIR varates, wth a squared multple crrelatn f nly Ths s cnsstent wth Flemng and Harrngtn s fndng that platelet cunt s nt mprtant. Fnally, we estmate the censrng e.d.r. drectns by reversng the rles f censrng tme and the true lfetme. Ths amunts t replacng wth 1 thrughut ur estmatn prcedure. The utput s gven by Table 5 and Fgure 5. The assumptn f ndependent censrng Ž 1.4. s seen t be nvald fr ths data set. We further ntce that the frst censrng tme drectn s qute clse t the frst lfetme drectn. The crrelatn ceffcent between the frst lfetme SIR varate and the frst censrng SIR varate turns ut t be ' Sme cautn needs t be taken regardng the desgn cndtn. Of specal cncern s the secnd regressr Ž presence f edema. whch s dscrete and takes nly three values Ž 0, 0.5, 1.. Nevertheless, the crrespndng regressn ceffcent frm Table 4 s 0.90, whch s qute clse t the ceffcent based n the Cx prprtnal hazard mdel. A further study wuld be t carry ut anther SIR analyss by fcusng n the grup wth x2 0. The ther grups have nly 29 and 19 cases and thus t s nt feasble t carry ut separate analyses fr them. TABLE 4 The frst tw egenvectrs and egenvalues f the lfetme SIR drectns fr the PBC data n Example 5.3 Frst vectr Ž 0.02, 0.90, 0.09, 0.62, 0.00, Secnd vectr Ž 0.03, 2.3, 0.20, 0.28, 0.00, Egenvalues 0.54, 0.16, 0.05, 0.02, 0.01, 0.00

16 16 K.-C. LI, J.-L. WANG AND C.-H. CHEN FIG. 4. cases. Scatterplt f Y aganst the frst tw lfetme SIR varates. bserved, dt censred REMARK 5.1. In bth f ur smulatn examples, we take p 6. As the regressr dmensn p gets larger, the prblem certanly gets harder and ne mght expect the perfrmance f ur prcedure t deterrate as well. T study ths effect, we vary p frm 6 t 10, 15 and 20. The sample sze s kept the same, n 300. Fr each smulatn run, we cmpute an R-squared term fr evaluatng hw clse t the true e.d.r. lfetme drectns the estmated drectns are. Fr the set-up f Example 5.1, whch has nly ne true e.d.r. lfetme drectn, the R-squared term s smply the squared crrelatn ceffcent between ˆ b1 x and x. Snce x x 1, the R-squared term s equal t the square f the frst crdnate f ˆ b. Table 6 Ž left sde panel. 1 gves a summary f the R-squared values fr 100 smulatn runs n each case. Fr cmparsn, the R-squared values fr the SIR estmate wthut the weght adjustment are gven n the rght sde panel. We can see that the mprvement fr the mdfed SIR prcedure s stll substantal fr p as large as 20. The set-up f Example 5.2 has tw true e.d.r. lfetme drectns. Fr the frst mdfed SIR drectn, the R-squared term s just the R-squared value fr regressng ˆ b1 x aganst x and 2x lnearly. Ths s equal t the sum f the square f the frst tw ceffcents n ˆb. The R-squared value fr the secnd mdfed SIR drectn s defned smlarly. A summary fr 100 smulatn runs s gven n Table 7. TABLE 5 The frst tw egenvectrs and egenvalues f the censrng tme SIR varates fr the PBC data n Example 5.3 Frst vectr Ž 0.01, 1.43, 0.05, 0.42, 0.00, Secnd vectr Ž 0.02, 0.38, 0.15, 1.22, 0.00, Egenvalues 0.39, 0.22, 0.05, 0.03, 0.01, 0.00

17 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 17 FIG. 5. Scatterplt f Y aganst the frst tw censrng tme SIR varates. bserved, dt censred bservatns. 6. Cnclusn. We have demnstrated hw t extend the dmensn reductn methd f slced nverse regressn Ž SIR. t censred data. The extensn s straghtfrward f censrng tme s ndependent f the regressr. SIR can be appled t the bserved data Ž Y, x. drectly. Hwever, f censr- ng tme depends n the regressr, then SIR needs t be mdfed. We TABLE 6 Perfrmance f mdfed SIR as the number f regressrsž p. ncreases under the settng f Example 5.1 wth 100 runs Mean ( standard devatn) fr R p Mdfed SIR Orgnal SIR Ž Ž Ž Ž Ž Ž

18 18 K.-C. LI, J.-L. WANG AND C.-H. CHEN TABLE 7 Perfrmance f mdfed SIR as the number f regressrsž p. ncreases under the settng f Example 5.2 wth 100 runs Mean ( standard devatn) fr R p Frst mdfed SIR drectn Secnd mdfed SIR drectn Ž Ž Ž Ž Ž Ž Ž Ž ntrduce a weght functn n estmatng the slce means. The estmatn f the weght functn requres nnparametrc smthng. There are tw ptns. The frst ne s t apply the kernel smthng methd f Sectn 3. Ths s feasble nly f the number f regressrs s small Ž e.g., p 3. rfthe sample sze s substantally large. The ther ptn, whch seems mre realstc, s the tw-stage prcedure f Sectn 5. We cnduct a duble slcng SIR frst t reduce the dmensn f x befre applyng kernel smthng. Ths tw-stage prcedure reles n cndtn Ž 1.5., whch assumes that the censrng varable als has a dmensn reductn structure wth respect t the regressr. Ths assumptn appears reasnable and t ffers the pssblty f examnng the censrng pattern vsually. The man feature that dstngushes ur apprach frm mst ther methds n survval analyss s that t des nt requre the estmatn f g at the dmensn reductn stage f data analyss. Instead, after the dmensn s reduced, the estmatn f g can be pursued by applyng any lw-dmensnal smthng methds. Furthermre, ur apprach can be used t check f a ppular survval mdel s apprprate by examnng the egenvalues and the lw-dmensnal plts generated by SIR. These plts prvde valuable nfrmatn abut the general pattern f censrng, pssble presence f utlers and the shape f the regressn surface. Imputatn s a pwerful way f dealng wth the ncmplete censred bservatn. We can mpute the censred Y bservatn frst and then apply the SIR methd n L Ž drectly t the mputed data. One pssble mputatn methd s gven n Fan and Gjbels Ž Whle ther methd s effectve fr ne r tw regressrs, t s nt apprprate n the hgher-dmensnal stuatn. A feasble alternatve s frst t apply the dmensn reductn methd as utlned n ths artcle and then apply mputatn t the reduced varables. Ths prspect merts further study. The prf f rt n cnsstency as utlned n the Appendx can perhaps be mprved wth less strenuus assumptns. Whle ths requres further theretcal nvestgatn, t shuld nt affect the applcablty f the prcedure prpsed here.

19 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 19 APPENDIX ( ) A. Dervatn f 3.6. It suffces t shw that 1Ž t Y, 1. A.1 S t x exp E x. S Ž Y x. ½ 5 Y Frst, the cndtnal ndependence assumptn Ž 1.3. mples that S Ž y x. Y S Ž y x. S Ž y x., where S Ž y x. PC y x 4 C C. Usng ths relatnshp, the expectatn term n Ž A.1. can be wrtten as 1 Ž t Y, 1. 1 Ž t Y. 1 Ž Y C ½ 5 ½. S Ž Y x. S Ž Y x. S Ž Y x. 5 Y C E x E x ½ 5 C 1Ž t Y. E E Ž 1Ž Y C. x, Y. x S Ž Y x. S Ž Y x. Ž Ž.. Ž By 1.3 agan, we have E 1 Y C x, Y S Y x. C. The last expressn s seen t becme 1 Ž t Y E½. x S Ž Y x. 5 The rest f the dervatn s straghtfrward frm the relatnshp between the hazard and the survval functns. B. Prf f Lemma 3.1. T btan the rt n cnsstency fr m gven by Ž 3.7. usng the kernel estmates Ž Ž 3.13., sme regularty cndtns wll be mpsed. Let w h p K h Ž x x., j n p j 4 u w Ew x. j j j j ˆ We frst requre that the bas term f f x s f the rt n, 4 Ž B.1. Ew x f Ž x. O Ž n 2.. j j j p The trade-ff fr mpsng a smaller bas s the ncreasng f the varance, but by averagng ut many pnt estmates ver an nterval, the varance wll eventually reman small. The bas term, n the ther hand, s harder t cancel ut. T ensure Ž B1., we need t use a bandwdth smaller than the usual ptmal rate. Wth Ž B.1., we can wrte ˆ Ý k p 2 k Ž B.2. f Ž x. f Ž x. n u O Ž n.. The rate f cnvergence fr the term cntrbutng t the varance s mre flexble. We need nly assume that Ž B.3. n u O Ž n 4.. Ý k k p ˆ h

20 20 K.-C. LI, J.-L. WANG AND C.-H. CHEN Next we als assume that the bas fr the kernel estmate f S als has the rt n rate 2 B.4 E 1 Yk Yj wkj x j, Yj SY Yj x j f x j Op n. Y Ž t x. fž x. Typcally wth sutable smthness cndtns n S Ž t x. Y, the same bandwdth used t acheve Ž B.1. may als mply Ž B.4.. Dente vkj 1Ž Yk Yj. wkj E 1Ž Yk Yj. wkj x j, Y j. Smlarly t B.3, we assume Ý kj k Ž B.5. n v O Ž n 4.. By Taylr s expansn, we can fnd the leadng terms fr the term Sˆ Ž Y Yj x., j Ž B.6. Sˆ Ž Y x. fˆž x. S Ž Y x. f Ž x. n Ý v O Ž n. 2 Y j j j Y j j j kj p k p ž / ž fˆ x f x S Y x Ž j. Ž j. YŽ j j j YŽ j j. Ý kj p / k f Ž x. S Y x n v O Ž n. 2 YŽ j j. Ž j. YŽ j j. Ý kj k S Y x f x S Y x n v Ý 2 j Y j j kj p k f Ž x. S Y x n u O Ž n.. The last expressn s btaned frm Ž B.2. and the assumptns Ž B.3. and Ž B.5.. T prceed, let us smplfy the ntatn by takng f f Ž x., SYŽ Yj x j. S j,1jž Y Yj t, j 1., Ž Y, t x., ˆ ˆŽ Y, t x.. Nw apply Ž B.2. and Ž B.6. and expand the term ˆ : Ž B.7. ˆ fˆž x. n 1 Sˆ Ž Y x. w Ý j Y j j j j f n Ý 1 S w j j j j Ý Ý f n 1 w f S 2 n v j j j j kj j k

21 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 21 Ý Ý f n 1 w f S n u j j j j kj j k ž Ý /ž Ý / f 2 n u n 1 S w O Ž n 2.. k j j j p k j The frst term wll cnverge t the cumulatve hazard. Agan, under sutable smthness and bundedness cndtns n the hazard functn, the same bandwdth used befre shuld gve a bas term at the rt n rate. We shall assume that 2 B.8 E 1jSj wj x, Y f Op n. Ž Let 1 S w E 1 S w x, Y. j j j j j j j, and dente the secnd, thrd and furth terms n the rght sde f Ž B.7. as Ž I., Ž II., Ž III., respectvely. By Ž B.8., we can rewrte Ž B.7. as ˆ 2 Ý j p j f n Ž I. Ž II. Ž III. O Ž n.. Dente 1 1 Y t, 0,w. We can expand the secnd term n the rght sde f equatn Ž 3.8. t Ž B.9. Ý Ý ˆ ˆ 4 n 1 x w Y, t, x n 1 x exp Ý Ý n x 1 w n 2 x 1 wf j, j n Ý x 1w Ž I. Ž II. Ž III.. Ž 2 It remans t shw that the secnd and thrd terms are O n. p. Abbrevate the cndtnal expectatn E x, Y by E. Nte that we Ž p have E 0, E 0, var Oh. j j j n. The secnd term takes the frm f n 2 Ý a wth a x 1 wf, j j. T evaluate ts varance, we frst bserve that EŽ a ja j. 0 f j j OŽ 1. f j j, O h p n f, j j. Frm ths, a straghtfrward calculatn leads t ž / B p var n Ý a j n n O 1 n OŽ h n. O n., j The varance fr the thrd term n Ž B.9. can als be evaluated smlarly. We 2 can rewrte n Ý x 1 w I as n Ý av, wth where j, k j kj a j n Ý x 1 wf 1 f S 2 j j j w j, E v j 0, var v O h p. kj kj n Frm ths expressn, we can calculate ts varance and btan a result Ž 2. Ž smlar t B.10 : var n Ý av On.. The calculatn fr the var- j, k j kj

22 22 K.-C. LI, J.-L. WANG AND C.-H. CHEN ance f n Ý x 1 w Ž II. can be carred ut n exactly the same way. Fnally, t deal wth the term n Ý x 1 w Ž III., we express t as n 2 Ý, kau k wth 2 a x 1wf n Ý j1jsj w j. Then agan, by the same argument, the var- ance s shwn t have the rder f n. We have nw cmpleted the prf fr the rt n cnvergence fr Ž The prf fr Ž 3.9. s the same. Therefre, mˆ h s rt n cnsstent, as clamed n Lemma 3.1. REFERENCES BERAN, R. Ž Nnparametrc regressn wth randmly censred survval data. Techncal reprt, Unv. Calfrna, Berkeley. BRILLINGER. Ž Cmment n Slced nverse regressn fr dmensn reductn, by K. C. L. J. Amer. Statst. Assc CARROLL, R. J. and LI, K. C. Ž Measurement errr regressn wth unknwn lnk: dmensn reductn and data vsualzatn. J. Amer. Statst. Assc CARROLL, R. J. and LI, K. C. Ž Bnary regressrs n dmensn reductn mdels: a new lk at treatment cmparsns. Statst. Snca CHEN, C. H. and LI, K. C. Ž Can SIR be as ppular as multple lnear regressn? Statst. Snca COOK, R. D. Ž On the nterpretatn f regressn plts. J. Amer. Statst. Assc COOK, R. D. and NACHTSHEIM, C. J. Ž Re-weghtng t acheve ellptcally cntured cvarates n regressn. J. Amer. Statst. Assc COOK, R. D. and WEISBERG, S. Ž Cmment n Slced nverse regressn fr dmensn reductn, by K. C. L. J. Amer. Statst. Assc COOK, R. D. and WEISBERG, S. Ž An Intrductn t Regressn Graphcs. Wley, New Yrk. DABROWSKA, D. M. Ž Nn-parametrc regressn wth censred survval tme data. Scand. J. Statst DABROWSKA, D. M. Ž Varable bandwdth cndtnal Kaplan Meer estmate. Scand. J. Statst DIACONIS, P. and FREEDMAN, D. Ž Asympttcs f graphcal prjectn pursut. Ann. Statst DOKSUM, K. A. Ž An extensn f partal lkelhd methds fr prprtnal hazard mdels t general transfrmatn mdels. Ann. Statst DOKSUM, K. A. and GASKO, M. Ž On a crrespndence between mdels n bnary regressn analyss and n survval analyss. Internat. Statst. Rev DUAN, N. and LI, K. C. Ž Slcng regressn: a lnk-free regressn methd. Ann. Statst FAN, J. and GIJBELS, I. Ž Censred regressn: lcal lnear apprxmatns and ther applcatns, J. Amer. Statst. Assc FLEMING, T. R. and HARRINGTON, D. P. Ž Cuntng Prcesses and Survval Analyss. Wley, New Yrk. HALL, P. and LI, K. C. Ž On almst lnearty f lw dmensnal prjectn frm hgh dmensnal data. Ann. Statst HSING, T. and CARROLL, R. J. Ž An asympttc thery fr slced nverse regressn. Ann. Statst HUBER, P. Ž Prjectn pursut Ž wth dscussn.. Ann. Statst LI, K. C. Ž Slced nverse regressn fr dmensn reductn Ž wth dscussn.. J. Amer. Statst. Assc LI, K. C. Ž Uncertanty analyss fr mathematcal mdels wth SIR. In Prbablty and Statstcs Ž Z. P. Jang, S. H. Yan, P. Cheng and R. Wu, eds Wrld Scentfc Press, Sngapre.

23 DIMENSION REDUCTION FOR CENSORED REGRESSION DATA 23 LI, K. C. Ž Nnlnear cnfundng n hgh dmensnal regressn. Ann. Statst MCCULLAGH, P. and NELDER, J. A. Ž Generalzed Lnear Mdels, 2nd. ed. Chapman and Hall, Lndn. SCHOTT, J. R. Ž Determnng the dmensnalty n slced nverse regressn. J. Amer. Statst. Assc ZHU, L. X. and NG, K. W. Ž Asympttcs f slced nverse regressn. Statst. Snca K.-C. LI DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA kcl@math.ucla.edu J.-L. WANG DIVISION OF STATISTICS UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA C.-H. CHEN INSTITUTE OF STATISTICAL SCIENCE ACADEMIA SINICA TAIWAN

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Section 10 Regression with Stochastic Regressors

Section 10 Regression with Stochastic Regressors Sectn 10 Regressn wth Stchastc Regressrs Meanng f randm regressrs Untl nw, we have assumed (aganst all reasn) that the values f x have been cntrlled by the expermenter. Ecnmsts almst never actually cntrl

More information

Regression with Stochastic Regressors

Regression with Stochastic Regressors Sectn 9 Regressn wth Stchastc Regressrs Meanng f randm regressrs Untl nw, we have assumed (aganst all reasn) that the values f x have been cntrlled by the expermenter. Ecnmsts almst never actually cntrl

More information

ENGI 4421 Probability & Statistics

ENGI 4421 Probability & Statistics Lecture Ntes fr ENGI 441 Prbablty & Statstcs by Dr. G.H. Gerge Asscate Prfessr, Faculty f Engneerng and Appled Scence Seventh Edtn, reprnted 018 Sprng http://www.engr.mun.ca/~ggerge/441/ Table f Cntents

More information

Inference in Simple Regression

Inference in Simple Regression Sectn 3 Inference n Smple Regressn Havng derved the prbablty dstrbutn f the OLS ceffcents under assumptns SR SR5, we are nw n a pstn t make nferental statements abut the ppulatn parameters: hypthess tests

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatnal Data Assmlatn (4D-Var) 4DVAR, accrdng t the name, s a fur-dmensnal varatnal methd. 4D-Var s actually a smple generalzatn f 3D-Var fr bservatns that are dstrbuted n tme. he equatns are the same,

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

A Note on the Linear Programming Sensitivity. Analysis of Specification Constraints. in Blending Problems

A Note on the Linear Programming Sensitivity. Analysis of Specification Constraints. in Blending Problems Aled Mathematcal Scences, Vl. 2, 2008, n. 5, 241-248 A Nte n the Lnear Prgrammng Senstvty Analyss f Secfcatn Cnstrants n Blendng Prblems Umt Anc Callway Schl f Busness and Accuntancy Wae Frest Unversty,

More information

Water vapour balance in a building moisture exposure for timber structures

Water vapour balance in a building moisture exposure for timber structures Jnt Wrkshp f COST Actns TU1 and E55 September 21-22 9, Ljubljana, Slvena Water vapur balance n a buldng msture expsure fr tmber structures Gerhard Fnk ETH Zurch, Swtzerland Jchen Köhler ETH Zurch, Swtzerland

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

Shell Stiffness for Diffe ent Modes

Shell Stiffness for Diffe ent Modes Engneerng Mem N 28 February 0 979 SUGGESTONS FOR THE DEFORMABLE SUBREFLECTOR Sebastan vn Herner Observatns wth the present expermental versn (Engneerng Dv nternal Reprt 09 July 978) have shwn that a defrmable

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

14 The Boole/Stone algebra of sets

14 The Boole/Stone algebra of sets 14 The Ble/Stne algebra f sets 14.1. Lattces and Blean algebras. Gven a set A, the subsets f A admt the fllwng smple and famlar peratns n them: (ntersectn), (unn) and - (cmplementatn). If X, Y A, then

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

A Note on Equivalences in Measuring Returns to Scale

A Note on Equivalences in Measuring Returns to Scale Internatnal Jurnal f Busness and Ecnmcs, 2013, Vl. 12, N. 1, 85-89 A Nte n Equvalences n Measurng Returns t Scale Valentn Zelenuk Schl f Ecnmcs and Centre fr Effcenc and Prductvt Analss, The Unverst f

More information

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD Reprucng ernel Hlbert spaces Nun Vascncels ECE Department UCSD Classfcatn a classfcatn prblem has tw tpes f varables X -vectr f bservatns features n the wrl Y - state class f the wrl Perceptrn: classfer

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

Section 14 Limited Dependent Variables

Section 14 Limited Dependent Variables Sectn 14 Lmted Dependent Varables What s a lmted dependent varable? Our standard assumptn f an errr term that s nrmally dstrbuted cndtnal n the regressrs mples that the dependent varable can be (wth pstve

More information

MAXIMIN CLUSTERS FOR NEAR-REPLICATE REGRESSION LACK OF FIT TESTS. BY FORREST R. MILLER, JAMES W. NEILL AND BRIAN W. SHERFEY Kansas State University

MAXIMIN CLUSTERS FOR NEAR-REPLICATE REGRESSION LACK OF FIT TESTS. BY FORREST R. MILLER, JAMES W. NEILL AND BRIAN W. SHERFEY Kansas State University The Annals f Statstcs 1998, Vl. 6, N. 4, 14111433 MAXIMIN CLUSTERS FOR NEAR-REPLICATE REGRESSION LACK OF FIT TESTS BY FORREST R. MILLER, JAMES W. NEILL AND BRIAN W. SHERFEY Kansas State Unversty T assess

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( )

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( ) Fall 00 Analyss f Epermental Measrements B. Esensten/rev. S. Errede Let s nvestgate the effect f a change f varables n the real & symmetrc cvarance matr aa the varance matr aa the errr matr V [ ] ( )(

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

Feature Selection for Time Series Modeling *

Feature Selection for Time Series Modeling * Jurnal f Intellgent Learnng Systems Applcatns, 013, 5, 15-164 http://dxdrg/10436/lsa01353017 Publshed Onlne August 013 (http://wwwscrprg/urnal/lsa) Feature Selectn fr Tme Seres Mdelng * Qng-Gu Wang, Xan

More information

Integrating Certified Lengths to Strengthen Metrology Network Uncertainty

Integrating Certified Lengths to Strengthen Metrology Network Uncertainty Integratng Certfed engths t Strengthen Metrlgy Netwrk Uncertanty Authrs: Jseph Calkns, PhD New Rver Knematcs je@knematcs.cm Sctt Sandwth New Rver Knematcs sctt@knematcs.cm Abstract Calbrated and traceable

More information

State-Space Model Based Generalized Predictive Control for Networked Control Systems

State-Space Model Based Generalized Predictive Control for Networked Control Systems Prceedngs f the 7th Wrld Cngress he Internatnal Federatn f Autmatc Cntrl State-Space Mdel Based Generalzed Predctve Cntrl fr Netwred Cntrl Systems Bn ang* Gu-Png Lu** We-Hua Gu*** and Ya-Ln Wang**** *Schl

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS 6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS Elutratn s the prcess n whch fne partcles are carred ut f a fludzed bed due t the flud flw rate passng thrugh the bed. Typcally, fne partcles are elutrated

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

The Support Vector Machine

The Support Vector Machine he Supprt Vectr Machne Nun Vascncels (Ken Kreutz-Delgad) UC San Deg Gemetrc Interpretatn Summarzng, the lnear dscrmnant decsn rule 0 f g> ( ) > 0 h*( ) = 1 f g ( ) < 0 has the fllng prpertes th It dvdes

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27%

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27% /A/ mttrt?c,&l6m5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA Exercses, nuts! A cmpany clams that each batch f ttse&n ta-ns 5 2%-cas-hews, 27% almnds, 13% macadama nuts, and 8% brazl nuts. T test ths

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PRELIMINARY STUDY OF NON-LINEAR AEROELASTIC PHENOMENA IN HYPERSONIC FLOW Zhang Wewe, Ye Zhengyn, Yang Yngnan Cllege f Aernautcs, Nrthwestern Plytechncal

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

Mode-Frequency Analysis of Laminated Spherical Shell

Mode-Frequency Analysis of Laminated Spherical Shell Mde-Frequency Analyss f Lamnated Sphercal Shell Umut Tpal Department f Cvl Engneerng Karadenz Techncal Unversty 080, Trabzn, Turkey umut@ktu.edu.tr Sessn ENG P50-00 Abstract Ths paper deals wth mde-frequency

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31 Bg Data Analytcs! Specal Tpcs fr Cmputer Scence CSE 4095-001 CSE 5095-005! Mar 31 Fe Wang Asscate Prfessr Department f Cmputer Scence and Engneerng fe_wang@ucnn.edu Intrductn t Deep Learnng Perceptrn In

More information

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow Amercan urnal f Operatns Research,,, 58-588 Publshed Onlne Nvember (http://www.scrp.rg/urnal/ar) http://dx.d.rg/.46/ar..655 Lnear Plus Lnear Fractnal Capactated Transprtatn Prblem wth Restrcted Flw Kavta

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven Prblem Set 5 Slutns - McQuarre Prblems 3.0 MIT Dr. Antn Van Der Ven Fall Fall 003 001 Prblem 3-4 We have t derve the thermdynamc prpertes f an deal mnatmc gas frm the fllwng: = e q 3 m = e and q = V s

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

This is natural first assumption, unless theory rejects it.

This is natural first assumption, unless theory rejects it. Sectn Smple Regressn What regressn es Relatnshp between varables Often n ecnmcs we beleve that there s a (perhaps causal) relatnshp between tw varables. Usually mre than tw, but that s eferre t anther

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Department of Applied Mathematics, Tsinghua University Beijing , People's Republic of China Received 17 August 1998; accepted 10 December 1998

Department of Applied Mathematics, Tsinghua University Beijing , People's Republic of China Received 17 August 1998; accepted 10 December 1998 Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 www.elsever.cm/lcate/cma The dscrete art cal bndary cndtn n a plygnal art cal bndary fr the exterr prblem f Pssn equatn by usng the drect methd f lnes

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko.

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko. TRANSPORT MOMENTS beynd the leadng rder arxv:1012.3526 Jack Kupers Unversty f Regensburg wth Gregry Berklak Texas A&M Transprt mments p.1/24 OUTLINE Open systems mments crrelatn functns semclasscal expressn

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

A method of constructing rock-analysis diagrams a statistical basks.

A method of constructing rock-analysis diagrams a statistical basks. 130 A methd f cnstructng rck-analyss dagrams a statstcal basks. 0T~ By W. ALF~.D ll~ch).ra)so.~, ~.Se., B.Se. (Eng.), F.G.S. Lecturer n Petrlgy, Unversty Cllege, Nttngham. [Read January 18, 1921.] D R.

More information

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil XXIX CILAMCE Nvember 4 th t 7 th, 8 Maceó - Bral ELECTROMAGNETIC SCATTERING PROBLEM SOLVED BY BOTH NODAL AND GALERKIN FEM-BEM APPROACHES M. M. Afns M. O. Schreder T. A. S. Olvera marcmatas@des.cefetmg.br

More information

In-State versus Out-of-State Students: The Divergence of Interest between Public Universities and State Governments

In-State versus Out-of-State Students: The Divergence of Interest between Public Universities and State Governments In-State versus Out-f-State Students: The Dvergence f Interest between Publc Unverstes and State Gvernments Jeff Gren and Mchelle J. Whte Unversty f Mchgan Aprl 2000 Frst draft nt fr qutatn Abstract Ths

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Nomenclature: number of electrons e -1. electron charge F constant number, (columbs/moles of e -1 ) atomic number g

Nomenclature: number of electrons e -1. electron charge F constant number, (columbs/moles of e -1 ) atomic number g Quanttatve Analyss f Irreversbltes Causes Vltage Drp n Fuel cell (Smulatn) Hssen Ghadaman*, Dr. Yadlah Sabh** Department f Energy Engneerng, Scence and Research Branch Azad Unversty, Islamc Republc f IRAN

More information

t r m o o H Is The Sensitive Information Of Your Company Completely Secure?

t r m o o H Is The Sensitive Information Of Your Company Completely Secure? : n t a c f t r e C 1 0 0 7 l 2 l O W S I y n a p m C r u Y w H t f e n e B Cyber crmnals are fndng ncreasngly clever ways every day t be able t peek ver yur shulder, and wth ths llegal ndustry beng an

More information

Basics of heteroskedasticity

Basics of heteroskedasticity Sect 8 Heterskedastcty ascs f heterskedastcty We have assumed up t w ( ur SR ad MR assumpts) that the varace f the errr term was cstat acrss bservats Ths s urealstc may r mst ecmetrc applcats, especally

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Analytical Modeling of Natural Convection in Horizontal Annuli

Analytical Modeling of Natural Convection in Horizontal Annuli Analytcal Mdelng f Natural Cnvectn n Hrzntal Annul Peter Teertstra, M. Mchael Yvanvch, J. Rchard Culham Mcrelectrncs Heat Transfer Labratry Department f Mechancal Engneerng Unversty f Waterl Waterl, Ontar,

More information

The soft-margin support vector machine. Nuno Vasconcelos ECE Department, UCSD

The soft-margin support vector machine. Nuno Vasconcelos ECE Department, UCSD he sft-margn supprt vectr machne Nun Vascncels EE Department USD lassfcatn a classfcatn prlem has t tpes f varales e.g. X - vectr f servatns features n the rld Y - state class f the rld X R fever ld pressure

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Differential Fault Analysis of SHA3-224 and SHA3-256

Differential Fault Analysis of SHA3-224 and SHA3-256 Dfferental Fault Analyss f SHA3-4 and SHA3-256 Pe Lu, Yuns Fe, Lwe Zhang, and A Adam Dng slencelu@gmalcm, yfe@eceneuedu, mathlwe@gmalcm, adng@neuedu Electrcal & Cmputer Engneerng Department, Nrtheastern

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

The support vector machine. Nuno Vasconcelos ECE Department, UCSD

The support vector machine. Nuno Vasconcelos ECE Department, UCSD he supprt vectr machne Nun Vascncels ECE Department UCSD Outlne e have talked abut classfcatn and lnear dscrmnants then e dd a detur t talk abut kernels h d e mplement a nn-lnear bundar n the lnear dscrmnant

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Inverse Prob. 1/p(z) Amount z (millions of US dollars)

Inverse Prob. 1/p(z) Amount z (millions of US dollars) BAYESIAN STATISTICS 6, pp. 000{000 J. M. Bernard, J. O. Berger, A. P. Dawd and A. F. M. Smth (Eds.) Ofrd Unversty Press, 1998 = Bayesan and Frequentst Appraches t Parametrc Predctve Inference RICHARD L.

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

A Proposal of Heating Load Calculation considering Stack Effect in High-rise Buildings

A Proposal of Heating Load Calculation considering Stack Effect in High-rise Buildings A Prpsal f Heatng Lad Calculatn cnsderng Stack Effect n Hgh-rse Buldngs *Dsam Sng 1) and Tae-Hyuk Kang 2) 1) Department f Archtectural Engneerng, Sungkyunkwan Unversty, 2066 Sebu-r, Jangan-gu, Suwn, 440-746,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

An Architecture for Making Judgments Using Computing with Words 1

An Architecture for Making Judgments Using Computing with Words 1 Mendel, J. M., "An Archtecture fr Makng Judgments Usng Cmputng Wth Wrds," Int. J. Appl. Math. Cmput. Sc., vl. 12, N. 3, pp. 325-335, 2002. An Archtecture fr Makng Judgments Usng Cmputng wth Wrds 1 Jerry

More information