Lecture 11: Two Way Analysis of Variance

Size: px
Start display at page:

Download "Lecture 11: Two Way Analysis of Variance"

Transcription

1 Lecture 11: Two Way Analysis of Variance Review: Hypothesis Testing o ANOVA/F ratio: comparing variances o F = s variance between treatment effect + chance s variance within sampling error (chance effects) o Remember, null hypotheses assumes there s NO treatment effect o Therefore your equation becomes chance divided by chance What s something divided by itself? 1 Two or More IVs / Factorial Design: more than one manipulation Factor Independent Variable Allows you to consider multiple independent variables that might be interacting with each other and effect your results E.g. Consider, what things could have gotten in the way of you getting to class today? Weather, car troubles, illness, personal problems, apathy, etc There s virtually endless reasons & each one counts as a variable Can handle any number of variables and any number of treatments Gives you a better picture of reality + IVs with + treatments per IV; the most complex design Can handle any number of IVs & any number of treatments for those IVs E.g.: You want to compare different methods of weight loss, diet and exercise. IV: Pritikans DV: weight loss IV: Exercise Aerobics

2 Exercise Exercise Brittany s notes 4/0/17 X Factorial Each represents an IV The number inside each represents the number of treatments for that IV (WT) (AT) AT + WT Pritikans (PR) PR + WT Aerobics (AE) AT + AE PR + AE How do you determine how many groups you need? Multiply _#_ X _#_ diet X exercise: X = 4 groups i.e: AT+WT ; AT+AE ; PR+WT ; PR+AE all possible treatment combinations What if you add another IV (like metabolism)? add another space # X # X # diet X exercise X metabolism What if each has treatments? X X = 8 groups What if diet has 3 treatments, exercise has 3 treatments, and metabolism has treatments? _3_ X _3_ X = 18 groups How do you determining if there is a main effect of the IVs? Compare the averages of the treatments for each IV A yes or no question, asked for each IV. Is there a main effect of diet? Do a column comparison: Add values in columns then divide by the # of treatments you added Pritikans 7 lb loss 10 lb loss Aerobics 15 lb loss 1 lb loss = = 11

3 DV: loss Exercise Brittany s notes 4/0/17 NO, there is not a main effect of diet Becausec the averages are the same If the averages were different, there WOULD be a main effect Is there a main effect of exercise? Do a row comparison Add values in each then divide by the # of treatments you added Pritikins 7 lb loss 10 lb loss Aerobics 15 lb loss 1 lb loss YES, there is a main effect of exercise B/c the averages are different = 8.5 = 13.5 Interaction effect: determining if the IVs are interacting with each other A yes or no question, asked for each possible interaction How do you determine if there s an interaction effect? Graph Choose either IV to label the X axis (it doesn t matter which you choose, the other IV will be plotted as data points) Is there an interaction effect between diet and exercise? Pritikins Pritikins 6 4 Aerobics YES, there is an interaction effect of diet & exercise.

4 When is there they no intersecting/ no interaction effect? When the lines are parallel or coinciding (on top of each other) Hypothesis Testing for ANOVA o Diagram EACH possible treatment effect, including interactions o Hypotheses ALWAYS written as non-directional

5 Class DEMO: Two-way ANOVA (F ratio) Part 1 IV: Pritikans Is there a main effect of diet? yes/no Explanations H1: makes a difference H0: does not make a difference Prob. Calc. outcomes HIGH Probability α =.05 LOW probability decisions Accept H0 Reject H0, accept H1 Is there an interaction effect? yes/no Explanations H1: There is an interaction effect H0: There is not an interaction effect Prob. Calc. outcomes HIGH Probability α =.05 LOW probability decisions Accept H0 Reject H0, accept H1 IV: Exercise Aerobics Is there a main effect of diet? yes/no Explanations H1: Exercise makes a difference H0: Exercise does not make a difference Prob. Calc. outcomes HIGH Probability α =.05 LOW probability decisions Accept H0 Reject H0, accept H1

6 Create Table of Variance Source SS df s or MS F ratio Between Groups 3 A (rows): Exercise 1 B (column): 1 AXB interaction: Exercise X 1 Within Groups 36 Total 39 Determine CRITICAL REGIONS 1. dfbetween = k 1 = 4 1 = 3. dfwithin = (n1 + n + n3 + n4) k = ( ) 4 = 40 4 = 36 denominator 3. dfexercise = (# of levels/treatments of A) 1 = 1 = 1 numerator 4. df = (# of levels/treatments of B) 1 = 1 = 1 numerator 5. dfexercisex consider relationships (refer to formula sheet) a. dfbetween = dfexercise + df + dfexercisex 3 = numerator 6. Total = dfbetween + dfwithin = 39 Now go to statistical table to determine critical F values for each: row, column, & interaction then Graph each

7 Row: F critical (1, 36) = 4.11 Column: F critical (1, 36) = 4.11 Interaction: F critical (1, 36) = 4.11 Continue to Part

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

ONE FACTOR COMPLETELY RANDOMIZED ANOVA

ONE FACTOR COMPLETELY RANDOMIZED ANOVA MALLOY PSYCH 3000 1-ANOVA PAGE 1 ONE FACTOR COMPLETELY RANDOMIZED ANOVA Sampling Distribution of F F is a test statistic [ ][ ][ ][ ] Test Statistic: F = MALLOY PSYCH 3000 1-ANOVA PAGE 2 ONE WAY ANOVA

More information

PSY 216. Assignment 12 Answers. Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true.

PSY 216. Assignment 12 Answers. Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true. PSY 21 Assignment 12 Answers 1. Problem 1 from the text Explain why the F-ratio is expected to be near 1.00 when the null hypothesis is true. When H0 is true, the treatment had no systematic effect. In

More information

Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares

Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares K&W introduce the notion of a simple experiment with two conditions. Note that the raw data (p. 16)

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

Variance Estimates and the F Ratio. ERSH 8310 Lecture 3 September 2, 2009

Variance Estimates and the F Ratio. ERSH 8310 Lecture 3 September 2, 2009 Variance Estimates and the F Ratio ERSH 8310 Lecture 3 September 2, 2009 Today s Class Completing the analysis (the ANOVA table) Evaluating the F ratio Errors in hypothesis testing A complete numerical

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means ANOVA: A Framework Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one-way between-subjects

More information

REVIEW 8/2/2017 陈芳华东师大英语系

REVIEW 8/2/2017 陈芳华东师大英语系 REVIEW Hypothesis testing starts with a null hypothesis and a null distribution. We compare what we have to the null distribution, if the result is too extreme to belong to the null distribution (p

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts Statistical methods for comparing multiple groups Lecture 7: ANOVA Sandy Eckel seckel@jhsph.edu 30 April 2008 Continuous data: comparing multiple means Analysis of variance Binary data: comparing multiple

More information

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt PSY 305 Module 5-A AVP Transcript During the past two modules, you have been introduced to inferential statistics. We have spent time on z-tests and the three types of t-tests. We are now ready to move

More information

While you wait: Enter the following in your calculator. Find the mean and sample variation of each group. Bluman, Chapter 12 1

While you wait: Enter the following in your calculator. Find the mean and sample variation of each group. Bluman, Chapter 12 1 While you wait: Enter the following in your calculator. Find the mean and sample variation of each group. Bluman, Chapter 12 1 Chapter 12 Analysis of Variance McGraw-Hill, Bluman, 7th ed., Chapter 12 2

More information

The t-statistic. Student s t Test

The t-statistic. Student s t Test The t-statistic 1 Student s t Test When the population standard deviation is not known, you cannot use a z score hypothesis test Use Student s t test instead Student s t, or t test is, conceptually, very

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

An Old Research Question

An Old Research Question ANOVA An Old Research Question The impact of TV on high-school grade Watch or not watch Two groups The impact of TV hours on high-school grade Exactly how much TV watching would make difference Multiple

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Inferences About Two Proportions

Inferences About Two Proportions Inferences About Two Proportions Quantitative Methods II Plan for Today Sampling two populations Confidence intervals for differences of two proportions Testing the difference of proportions Examples 1

More information

Factorial Independent Samples ANOVA

Factorial Independent Samples ANOVA Factorial Independent Samples ANOVA Liljenquist, Zhong and Galinsky (2010) found that people were more charitable when they were in a clean smelling room than in a neutral smelling room. Based on that

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

One-factor analysis of variance (ANOVA)

One-factor analysis of variance (ANOVA) One-factor analysis of variance (ANOVA) March 1, 2017 psych10.stanford.edu Announcements / Action Items Schedule update: final R lab moved to Week 10 Optional Survey 5 coming soon, due on Saturday Last

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

CHAPTER 10. Regression and Correlation

CHAPTER 10. Regression and Correlation CHAPTER 10 Regression and Correlation In this Chapter we assess the strength of the linear relationship between two continuous variables. If a significant linear relationship is found, the next step would

More information

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species Lecture notes 2/22/2000 Dummy variables and extra SS F-test Page 1 Crab claw size and closing force. Problem 7.25, 10.9, and 10.10 Regression for all species at once, i.e., include dummy variables for

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic One-Way ANOVA F-test One factor J>2 independent samples H o :µ 1 µ 2 µ J F 3.Distribution

More information

Chi Square Analysis M&M Statistics. Name Period Date

Chi Square Analysis M&M Statistics. Name Period Date Chi Square Analysis M&M Statistics Name Period Date Have you ever wondered why the package of M&Ms you just bought never seems to have enough of your favorite color? Or, why is it that you always seem

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Analysis of Variance: Part 1

Analysis of Variance: Part 1 Analysis of Variance: Part 1 Oneway ANOVA When there are more than two means Each time two means are compared the probability (Type I error) =α. When there are more than two means Each time two means are

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Note: k = the # of conditions n = # of data points in a condition N = total # of data points

Note: k = the # of conditions n = # of data points in a condition N = total # of data points The ANOVA for2 Dependent Groups -- Analysis of 2-Within (or Matched)-Group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different, but

More information

Two-Way ANOVA. Chapter 15

Two-Way ANOVA. Chapter 15 Two-Way ANOVA Chapter 15 Interaction Defined An interaction is present when the effects of one IV depend upon a second IV Interaction effect : The effect of each IV across the levels of the other IV When

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 Data Analysis: The mean egg masses (g) of the two different types of eggs may be exactly the same, in which case you may be tempted to accept

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Factorial Analysis of Variance

Factorial Analysis of Variance Factorial Analysis of Variance Conceptual Example A repeated-measures t-test is more likely to lead to rejection of the null hypothesis if a) *Subjects show considerable variability in their change scores.

More information

Elementary Statistics Triola, Elementary Statistics 11/e Unit 17 The Basics of Hypotheses Testing

Elementary Statistics Triola, Elementary Statistics 11/e Unit 17 The Basics of Hypotheses Testing (Section 8-2) Hypotheses testing is not all that different from confidence intervals, so let s do a quick review of the theory behind the latter. If it s our goal to estimate the mean of a population,

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion Lecture 26 Section 8.4 Robb T. Koether Hampden-Sydney College Mon, Mar 1, 2010 Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

More information

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes Two-Way Analysis of Variance 44 Introduction In the one-way analysis of variance (Section 441) we consider the effect of one factor on the values taken by a variable Very often, in engineering investigations,

More information

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong Statistics Primer ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong 1 Quick Overview of Statistics 2 Descriptive vs. Inferential Statistics Descriptive Statistics: summarize and describe data

More information

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

More information

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

More information

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent:

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent: Activity #10: AxS ANOVA (Repeated subjects design) Resources: optimism.sav So far in MATH 300 and 301, we have studied the following hypothesis testing procedures: 1) Binomial test, sign-test, Fisher s

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Introduction to Analysis of Variance. Chapter 11

Introduction to Analysis of Variance. Chapter 11 Introduction to Analysis of Variance Chapter 11 Review t-tests Single-sample t-test Independent samples t-test Related or paired-samples t-test s m M t ) ( 1 1 ) ( m m s M M t M D D D s M t n s s M 1 )

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t =

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t = 2. The distribution of t values that would be obtained if a value of t were calculated for each sample mean for all possible random of a given size from a population _ t ratio: (X - µ hyp ) t s x The result

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

DISTRIBUTIONS USED IN STATISTICAL WORK

DISTRIBUTIONS USED IN STATISTICAL WORK DISTRIBUTIONS USED IN STATISTICAL WORK In one of the classic introductory statistics books used in Education and Psychology (Glass and Stanley, 1970, Prentice-Hall) there was an excellent chapter on different

More information

Design of Experiments. Factorial experiments require a lot of resources

Design of Experiments. Factorial experiments require a lot of resources Design of Experiments Factorial experiments require a lot of resources Sometimes real-world practical considerations require us to design experiments in specialized ways. The design of an experiment is

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Prob and Stats, Sep 23

Prob and Stats, Sep 23 Prob and Stats, Sep 23 Calculator Scatter Plots and Equations of Lines of Fit Book Sections: 4.1 Essential Questions: How can the calculator help me to produce a scatter plot, and also the equation of

More information

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE It would be very unusual for all the research one might conduct to be restricted to comparisons of only two samples. Respondents and various groups are seldom divided

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Lecture 26 Section 8.4. Wed, Oct 14, 2009

Lecture 26 Section 8.4. Wed, Oct 14, 2009 PDFs n = Lecture 26 Section 8.4 Hampden-Sydney College Wed, Oct 14, 2009 Outline PDFs n = 1 2 PDFs n = 3 4 5 6 Outline PDFs n = 1 2 PDFs n = 3 4 5 6 PDFs n = Exercise 8.12, page 528. Suppose that 60% of

More information

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878 Contingency Tables I. Definition & Examples. A) Contingency tables are tables where we are looking at two (or more - but we won t cover three or more way tables, it s way too complicated) factors, each

More information

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd Why We Use Analysis of Variance to Compare Group Means and How it Works The question of how to compare the population means of more than two groups is an important one to researchers. Let us suppose that

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Lecture 18: Analysis of variance: ANOVA

Lecture 18: Analysis of variance: ANOVA Lecture 18: Announcements: Exam has been graded. See website for results. Lecture 18: Announcements: Exam has been graded. See website for results. Reading: Vasilj pp. 83-97. Lecture 18: Announcements:

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000 Lecture 14 Analysis of Variance * Correlation and Regression Outline Analysis of Variance (ANOVA) 11-1 Introduction 11-2 Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA)

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) Outline Lecture 14 Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) 11-1 Introduction 11- Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

INTRODUCTION TO ANALYSIS OF VARIANCE

INTRODUCTION TO ANALYSIS OF VARIANCE CHAPTER 22 INTRODUCTION TO ANALYSIS OF VARIANCE Chapter 18 on inferences about population means illustrated two hypothesis testing situations: for one population mean and for the difference between two

More information

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not?

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not? Hypothesis testing Question Very frequently: what is the possible value of μ? Sample: we know only the average! μ average. Random deviation or not? Standard error: the measure of the random deviation.

More information

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation Analysis of Variance ANOVA 8//007 P7 Analysis of Variance What We Will Cover in This Section Introduction. Overview. Simple ANOVA. Repeated Measures ANOVA. Factorial ANOVA 8//007 P7 Analysis of Variance

More information

Lesson 8: Graphs of Simple Non Linear Functions

Lesson 8: Graphs of Simple Non Linear Functions Student Outcomes Students examine the average rate of change for non linear functions and learn that, unlike linear functions, non linear functions do not have a constant rate of change. Students determine

More information

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels.

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. Contingency Tables Definition & Examples. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. (Using more than two factors gets complicated,

More information

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006 and F Distributions Lecture 9 Distribution The distribution is used to: construct confidence intervals for a variance compare a set of actual frequencies with expected frequencies test for association

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

Two Factor ANOVA. March 2, 2017

Two Factor ANOVA. March 2, 2017 Two Factor ANOVA March, 07 Contents Two Factor ANOVA Example : peanut butter and jelly Within-cell variance - the denominator of all three F-tests Main effects for rows: Does peanut butter affect taste

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 PDF file location: http://www.murraylax.org/rtutorials/regression_anovatable.pdf

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

Factorial Analysis of Variance

Factorial Analysis of Variance Factorial Analysis of Variance Overview of the Factorial ANOVA In the context of ANOVA, an independent variable (or a quasiindependent variable) is called a factor, and research studies with multiple factors,

More information

Ch. 16: Correlation and Regression

Ch. 16: Correlation and Regression Ch. 1: Correlation and Regression With the shift to correlational analyses, we change the very nature of the question we are asking of our data. Heretofore, we were asking if a difference was likely to

More information

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis Rebecca Barter April 6, 2015 Multiple Testing Multiple Testing Recall that when we were doing two sample t-tests, we were testing the equality

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Used for comparing or more means an extension of the t test Independent Variable (factor) = categorical (qualita5ve) predictor should have at least levels, but can have many

More information

Mark Scheme 4766 June 2005 Statistics (4766) Qn Answer Mk Comment (i) Mean = 657/20 = 32.85 cao 2 (i) 657 2 Variance = (22839 - ) = 66.3 9 20 Standard deviation = 8.3 32.85 + 2(8.3) = 49. none of the 3

More information

5:1LEC - BETWEEN-S FACTORIAL ANOVA

5:1LEC - BETWEEN-S FACTORIAL ANOVA 5:1LEC - BETWEEN-S FACTORIAL ANOVA The single-factor Between-S design described in previous classes is only appropriate when there is just one independent variable or factor in the study. Often, however,

More information

Regression Analysis and Forecasting Prof. Shalabh Department of Mathematics and Statistics Indian Institute of Technology-Kanpur

Regression Analysis and Forecasting Prof. Shalabh Department of Mathematics and Statistics Indian Institute of Technology-Kanpur Regression Analysis and Forecasting Prof. Shalabh Department of Mathematics and Statistics Indian Institute of Technology-Kanpur Lecture 10 Software Implementation in Simple Linear Regression Model using

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

Business Statistics 41000: Homework # 5

Business Statistics 41000: Homework # 5 Business Statistics 41000: Homework # 5 Drew Creal Due date: Beginning of class in week # 10 Remarks: These questions cover Lectures #7, 8, and 9. Question # 1. Condence intervals and plug-in predictive

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Using SPSS for One Way Analysis of Variance

Using SPSS for One Way Analysis of Variance Using SPSS for One Way Analysis of Variance This tutorial will show you how to use SPSS version 12 to perform a one-way, between- subjects analysis of variance and related post-hoc tests. This tutorial

More information

10.2 Hypothesis Testing with Two-Way Tables

10.2 Hypothesis Testing with Two-Way Tables 10.2 Hypothesis Testing with Two-Way Tables Part 2: more examples 3x3 Two way table 2x3 Two-way table (worksheet) 1 Example 2: n Is there an association between the type of school area and the students'

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

Exam details. Final Review Session. Things to Review

Exam details. Final Review Session. Things to Review Exam details Final Review Session Short answer, similar to book problems Formulae and tables will be given You CAN use a calculator Date and Time: Dec. 7, 006, 1-1:30 pm Location: Osborne Centre, Unit

More information