Low Energy Precision Measurements

Size: px
Start display at page:

Download "Low Energy Precision Measurements"

Transcription

1 Low Energy Precision Measurements Shufang Su U. of Arizona For details, see review paper M. RamseyMusolf, S. Su, hepph/ S. Su

2 Precision measurements vs. direct detection (indirect) (direct) Direct vs. indirect detection provide complementary m t =178.0 ± 4.3 GeV information success of SM consistency check of any LEP EWWG new physics scenario LEP EWWG 2004 winter S. Su 2

3 Low energy precision measurements address questions difficult to study at high energy weak interactions (parity violation) high precision low energy experiment available size of loop effects from new physics: (α/π)(m/m new ) 2 muon g2: M=m µ, δ new 2x10 9, δ exp < 10 9 βdecay, πdecay: M=m W, δ new 10 3, δ exp 10 3 parityviolating electron scattering: M=m W, δ new /Q W e,p 10 more sensitive to new physics need δ exp 10 2 Q W e,p 14 sin 2 θ W 0.1 easier experiment probe new physics off the resonance sensitive to new physics not mix with S. Su 3

4 Outline Neutral current experiments Determination of sin2 θ eff Neutral current measurements PVES DISparity APV NuTeV Charge current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay kaon β decay Flavor, CP and Neutrinos µ eγ, µ e conversion EDM S. Su 4

5 Outline Neutral current experiments Determination of sin2 θ eff Neutral current measurements PVES DISparity APV NuTeV Charge current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay Flavor, CP and Neutrinos µ eγ, µ e conversion kaon β decay John Hardy, Superallowed nuclear beta decay: test of CVC and CKM unitarity Bertram Blank, New experimental studies of superallowed 0+ to 0+ decays EDM Nathal S. Su Severjins, Searches for physics beyond the standard electroweak model 4 in beta decay

6 Outline Neutral current experiments Determination of sin2 θ eff Neutral current measurements PVES DISparity APV NuTeV Charge current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay kaon β decay Flavor, CP and Neutrinos µ eγ, µ e conversion EDM S. Su 4

7 Outline Neutral current experiments Determination of sin2 θ eff Neutral current measurements PVES DISparity Oscar NaviliatCuncic, The neutron electric dipole moment Jon Engel, Schiff moments and atomic EDMs Eli Ben Haim, Overview of CP violation in the quark sector Mauro Mezzetto, Future CP violation searches in the lepton sector Annelise Malkus, Physics beyond the Standard Models of particle and solar physics with solar neutrinos APV S. Su 4 NuTeV Hiro Ejiri, Present and future of double beta decay searches Charge current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay Fedor Simkovic, Double beta decay: a problem of particles, nuclear and atomic physics Serguey Petcov, Neutrino mixing, dirac and majorana leptonic CPviolation and the baryon asymmetry of the Universe Rimantas Lazauskas, Aspect of neutrino interaction studies using beta beams Julien Welzel, The neutrino magnetic moment and nucleosysthesis George Fuller, Surprising new results on neutrino flavor transformation in supernovae... pion β decay Flavor, CP and Neutrinos µ eγ, µ e conversion kaon β decay EDM

8 Outline Neutral current experiments Determination of sin2 θ eff Neutral current measurements PVES DISparity APV NuTeV Charge current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay kaon β decay Flavor, CP and Neutrinos µ eγ, µ e conversion EDM S. Su 4

9 Neutral Current experiments S. Su 5

10 Møller Scattering e e γ e e Purely Leptonic QWeak (JLab) e γ Coherent quarks in p Results in ~2009 2(2C 1u +C 1d ) e DISParity p n e γ Isoscaler quark scattering (2C 1u C 1d )+Y(2C 2u C 2d ) e Atomic Parity Violation e γ Cs 133 Coherent quarks in entire nucleus Nuclear structure uncertainties 376 C 1u 422 C 1d Neutrino Scattering ν µ ν S. Su 6 Courtesy of P. Reimer and R. Arnold W + Quark scattering (from nucleus) Weak charged and neutral current difference ν

11 Test of sin 2 θ W running Weak mixing angle sinθ W g sinθ W = g cosθ W = e Q W e Jlab Moller Qweak SLAC E158 NuTeV Cs APV Standard Model Prediction Erler, Kurylov & RamseyMusolf, Phys. Rev. D 72, (2005) DISparity S. Su 7

12 Precision of sin 2 θ W determination Measurement Δsin 2 θ W /sin 2 θ W Δsin 2 θ W pole 0.07% % Q w (Cs) 0.7% NuTeV 0.7% % Q w (e) SLAC 0.5% % Q w (e) Jlab 0.1% (on par with pole) 4% Q W (p) 0.3% % DISparity 0.45% reactor based νee scattering 1% Joao S. Su H. De Jesus, Measurement of the Weinberg angle with betabeams 8

13 Sensitivity to new physics scale RamseyMusolf(1999) Λ: new physics scale O(1) Take δq Wp =4% courtesy of Carlini probe new physics scale comparable to LHC confirmation of LHC discovery (couplings, charges) S. Su 9

14 Misc. model sensitivities (nonsusy) Experiment M( Χ ) M( LR ) (TeV) (TeV) Leptoquarks M LQ (up) M LQ (down) (TeV) (TeV) Courtesy of D. Mack Compositeness (LL) eq (TeV) direct limits ee (TeV) EW fit % Q w (Cs) % Q w (e) % Q w (e) % Q w (p) under construction scaled from RMusolf, PRC 60 (1999), Collider limits from Erler and Langacker, hepph/ S. Su 10

15 Moller and Qweak A V weak charge Q W f = 2g f V = 2 If 3 4Q f s2 S. Su 11

16 Moller and Qweak Q W p (Qweak) Q W e (SLAC) Q W e (Jlab) Q e,p W tree 14s 2 (14s 2 ) Q e,p W loop q GeV GeV GeV 2 A LR 0.29 ppm ppm 0.04 ppm exp precision 4% 13% 2.5% δ sin 2 θ W clean environment: Hydrogen target theoretically clean: small hadronic uncertainties tree level 0.1 sensitive to new physics S. Su 12

17 SUSY contributions Kurylov, RamseyMusolf, Su (2003) RPV 95% CL No SUSY DM MSSM loop S. Su 13

18 SUSY contributions Kurylov, RamseyMusolf, Su (2003) RPV 95% CL No SUSY DM MSSM loop 4% Qweak S. Su 13

19 SUSY contributions Kurylov, RamseyMusolf, Su (2003) RPV 95% CL No SUSY DM MSSM loop 4% Qweak Future 2.5% Moller S. Su 13

20 Correlation between Q Wp, QW e Distinguish new physics Δ Q W p Erler, Kurylov and RamseyMusolf (2003) Δ Q W e exp MSSM extra RPV SUSY leptonquark ± SM ± SM Distinguish via APV Q W Cs S. Su 14

21 Correlation between Q Wp, QW e Distinguish new physics Δ Q W p Erler, Kurylov and RamseyMusolf (2003) Δ Q W e exp MSSM extra RPV SUSY leptonquark ± SM ± SM Distinguish via APV Q W Cs Combinations of NC exps could be used to distinguish various new physics S. Su 14

22 Extract Q W p use kinematics to simplify: at forward angle θ Musolf et. al., (1994) measure F(θ,q 2 ) over finite range in q 2, extrapolate F to small q 2 existing PVES: SAMPLE, HAPPEX, G0, A4 minimize effect of F by making q 2 small q GeV 2, still enough statistics δ Q p W / Qp W hadronic effects 2 % S. Su 15

23 Extract Q W p use kinematics to simplify: at forward angle θ Musolf et. al., (1994)? measure F(θ,q 2 ) over finite range in q 2, extrapolate F to small q 2 existing PVES: SAMPLE, HAPPEX, G0, A4 minimize effect of F by making q 2 small q GeV 2, still enough statistics δ Q p W / Qp W hadronic effects 2 % S. Su 15

24 Extract Q W p use kinematics to simplify: at forward angle θ Musolf et. al., (1994)? measure F(θ,q 2 ) over finite range in q 2, extrapolate F to small q 2 existing PVES: SAMPLE, HAPPEX, G0, A4 minimize effect of F by making q 2 small q GeV 2, still enough statistics δ Q p W / Qp W hadronic effects 2 % S. Su 15

25 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p W δ Q W P W γ e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

26 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p W δ Q W P W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

27 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p W δ Q W P W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

28 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p δ Q W P W noncalculable W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

29 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p δ Q W P W suppression noncalculable W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

30 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p Similar to nuclear βdecay W δ Q W P e ν e γ W suppression noncalculable p γ γ e p e p e p e p 26% 3% 6% kw loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) n using OPE (pqcd) δ Q P W (QCD) 0.7% 0.08% nonperturbative S. Su 16

31 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p Similar to nuclear βdecay W δ Q W P e ν e γ W suppression noncalculable p γ γ e p e p e p e p 26% 3% 6% kw loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) n C using OPE (pqcd) nonperturbative γw < 2 (CKM unitarity) δ Q P W (QCD) C 0.7% γ < % 0.65% S. Su 16

32 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p W δ Q W P W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) nonperturbative δ Q P W (QCD) 0.7% 0.08% 0.65% S. Su 16

33 QCD correction to ep scattering P Box diagram contribution to Q W e p e p Erler, Kurylov and RamseyMusolf (2003) e p e p W δ Q W P W γ γ e p e p e p e p 26% 3% 6% k loop O(m W ) k loop O(m ) Λ QCD < k loop < O(m ) using OPE (pqcd) nonperturbative δ Q P W (QCD) 0.7% 0.08% 0.65% Total theoretical uncertainty 0.8% S. Su 16

34 DISparity: ed scattering Longitudinally polarized electrons on unpolarized deuterium target Cahn and Gilman (1978) e e δ A d /A d = 0.8% δ sin 2 θ W /sin 2 θ W = 0.45% S. Su 17

35 Ranges of C 1u, C 1d, C 2u, C 2d Courtesy of P. Reimer S. Su 18

36 Ranges of C 1u, C 1d, C 2u, C 2d Courtesy of P. Reimer S. Su 18

37 Atomic parity violation Two approaches rotation of polarization plane of linearly polarized light apply external E field parity forbidden atomic transition Boulder group: cesium APV 0.35% exp uncertainty wood et. Al. (1997) S. Su 19

38 Atomic parity violation Two approaches rotation of polarization plane of linearly polarized light apply external E field parity forbidden atomic transition Boulder group: cesium APV 0.35% exp uncertainty wood et. Al. (1997) Q W Cs (exp) = ± 0.48 Q W Cs (SM)=72.09 (3) agree S. Su 19

39 Sensitivity to new physics Distinguish new physics MSSM δ Q W (,N)=(2+N) δ Q W u +(2N+) δ QW d δ Q W u >0 δ Q W d <0 δ Q W (,N) / Q W (,N) < 0.2 % for Cs δ Q W p δ Q W e δ Q W Cs exp MSSM extra ± ± small SM SM sizable Erler, Kurylov and RamseyMusolf (2003) S. Su 20

40 NuTeV experiment NC CC g L,R2 =(ε u L,R )2 +(ε d L,R )2 δr ν = ± δr ν = ± exp fit (ρ=1): sin2 θ W onshell = ± SM fit to pole: sin2 θ W onshell = ± (3 σ away) S. Su 21

41 NuTeV anomaly SM QCD effects: nuclear shadowing Miller and Thomas (2002), eller et. Al. (2002), Kovalenkov, schmidt and Yang (2002) asymmetry in strange sea distribution Davidson, Forte, Gambino, Rius and Strumia (2002), Goncharov et. al. (2001) isospin symmetry breaking Bodek et. al. (1999), eller et. Al. (2002) QCD corrections Dobrescu and Ellis (2003), Kretzer et. al. (2003), Davidson et. al. (2002) S. Su 22

42 New physics explanation Difficult! Supersymmetry: δ R ν, ν > 0 Kurylov, RamseyMusolf, Su (2003), Davidson, Forte, Gambino, Rius and Strumia (2002) Extra : family nonuniversal, finetuning Langacker and Plumacher (2000) Leptoquark: tune mass splitting Davidson, Forte, Gambino, Rius and Strumia (2002) ν µ mixing with extra heavy neutrino: constraints from other observables Babu and Pati (2002), Loinaz et. al. (2003) S. Su 23

43 New physics explanation Difficult! Supersymmetry: δ R ν, ν > 0 Kurylov, RamseyMusolf, SS (2002) Kurylov, RamseyMusolf, Su (2003), Davidson, Forte, Gambino, Rius and Strumia (2002) Extra : family nonuniversal, finetuning Langacker and Plumacher (2000) Leptoquark: tune mass splitting Davidson, Forte, Gambino, Rius and Strumia (2002) ν µ mixing with extra heavy neutrino: MSSM constraints from other observables Babu and Pati (2002), Loinaz et. al. (2003) RPV S. Su 23

44 Charged Current Processes S. Su 24

45 Charged current processes PV asymmetry in the beta decay of polarized 60 Co and µ + decay confirmation of PV weak interaction and VA structure muon life time Gµ (9x10 6 ), one of the three exp input nuclear β decay Vud (most precisely known CKM element) branching ratio of kaon leptonic decay Vus, test of CKM unitarity comparison of Γ(π µνµ(γ)) and Γ(π eνe(γ)) test of universality in CC leptonic interaction at few parts per thousand level S. Su 25

46 Recent developments Recent experimental developments New measurements of Michel parameters that characterize the µ decay New effort to measure τ μ with an order of magnitude improvement in precision Recent penning trap measurement of superallowed nuclear βdecay Q values test of CKM unitarity New measurement of τ n and decay correlation coefficients determine Vud free from possible nuclear structure ambiguities New measurements of Kaon leptonic decay branching ratios Vus Improved precision in pion βdecay branching ratios New effort to measure Ratio Re/µ = Γ(π eνe(γ))/γ(π µνµ(γ)) S. Su 26

47 Recent developments Recent theoretical developments New analysis in strong interaction uncertainties in Δrβ V that associated with Wγ box graphs reduced theoretical uncertainties in Vud from β decay rate by a factor of two Computations of O(p 6 ) loop correction to kaon decay form factor f+ K (t) Vus from kaon decay branching ratio New analysis of O(p 6 ) counterterm contributions to f+ K (0) using large Nc QCD and lattice QCD computations S. Su 27

48 Charged current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay kaon β decay S. Su 28

49 Charged current processes Pure leptonic CC interactions: muon decay semileptonic CC processes pion leptonic decays neutron and nuclear β decay pion β decay kaon β decay S. Su 28

50 Muon decay muon decay spectrum, angular distribution and electron polarization are described by 11 Michel parameters { dγ = G2 µm 5 µ dω 1 + h(x) 192π 3 4π x2 dx 1 + 4η(m e /m µ ) ±P µ ξ cos θ [ 4(1 x) δ(8x 6) + α 2π in SM, ρ = δ = 3/4, P µ ξ = 1, and η = 0, [ 12(1 x) + 4 [ 3 ρ(8x 6) + 24 m e { (1 x) m µ x ] η ] } g(x), (91) x 2 x = p e / p e max, θ = cos 1 (ˆp e ŝ µ ), entum dependent radiative correcti η affect τ µ in pure (VA) theory 1 τ µ = m5 µ 192π 3 G2 µ [1 + δ QED ] [ 1 + 4η m e m µ 8 Danneberg et. al. (2005) ( me m µ ) 2 ] [ ( mµ M W ) 2 ] S. Su 29

51 Muon decay muon decay spectrum, angular distribution and electron polarization are described by 11 Michel parameters { dγ = G2 µm 5 µ dω 1 + h(x) 192π 3 4π x2 dx 1 + 4η(m e /m µ ) ±P µ ξ cos θ [ 4(1 x) δ(8x 6) + α 2π in SM, ρ = δ = 3/4, P µ ξ = 1, and η = 0, [ 12(1 x) + 4 [ 3 ρ(8x 6) + 24 m e { (1 x) m µ x ] η ] } g(x), (91) x 2 x = p e / p e max, θ = cos 1 (ˆp e ŝ µ ), entum dependent radiative correcti η affect τ µ in pure (VA) theory Danneberg et. al. (2005) η = (71±37±5) 10 3 (transverse positron polarization from µ + decay) increase in the δgµ by a factor of 40 S. Su 29

52 Muon decay effective, four fermion lagrangians (SM, g LL V =1) µ ν ν µ L µ decay = 4G µ 2 γ g γ ɛµ ēɛγ γ ν e ν µ Γ γ µ µ ν e χ + χ gll V and grr S (few X10 4 ) l e 1 ξ δ ρ = 2 gv RR gs RR gs LR 2gT LR 2 ξ =... Exp result: Stoker et. al. (1985); Jodidio et. al. (1986) P µ ξ δ = ± ρ ξ = 1.00 ± 0.04 grr S < 90% C.L. Gagliardi, Tribble and Williams (2005) S. Su 30

53 Michel parameters present limit is about two order of magnitude larger than SUSY expectations direct probe of g RR S loop via Michael parameters is challenging g RR S contribution to η could be large enough to affect the extraction of Gµ from τµ G µ G µ = m e Re gll V gs, RR, loop + ppm effect in m µ gll V 2 Gµ PSI experiment S. Su 31

54 [ ] Pion leptonic decay Γ(π+ µ + ν(γ)) pion decay constant Fπ [ 1 α π Γ[π + l + ν l (γ)] = G2 µ V ud 2 Fπ 2 m π m 2 l 4π { 3 2 ln µ + m C 1 (µ) + C 2 (µ) m2 l π Λ 2 χ ln µ2 m 2 l [ 1 m2 l m 2 π + C 3 (µ) m2 l Λ 2 χ ] 2 [ 1 + 2α π ln M µ ] }] [ α ] π F (x) Marciano and Sirline (1993) S. Su 32

55 [ ] Pion leptonic decay Γ(π+ µ + ν(γ)) pion decay constant Fπ [ 1 α π Γ[π + l + ν l (γ)] = G2 µ V ud 2 Fπ 2 m π m 2 l 4π { 3 2 ln µ + m C 1 (µ) + C 2 (µ) m2 l π Λ 2 χ ln µ2 m 2 l [ 1 m2 l m 2 π + C 3 (µ) m2 l Λ 2 χ ] 2 [ 1 + 2α π ln M µ ] }] [ α ] π F (x) Marciano and Sirline (1993) incalculable nonperturbative QCD effects ±0.56% uncertainty in Γ (dominating) S. Su 32

56 [ ] Pion leptonic decay Γ(π+ µ + ν(γ)) pion decay constant Fπ [ 1 α π Γ[π + l + ν l (γ)] = G2 µ V ud 2 Fπ 2 m π m 2 l 4π { 3 2 ln µ + m C 1 (µ) + C 2 (µ) m2 l π Λ 2 χ ln µ2 m 2 l [ 1 m2 l m 2 π + C 3 (µ) m2 l Λ 2 χ ] 2 [ 1 + 2α π ln M µ ] }] [ α ] π F (x) Marciano and Sirline (1993) S. Su 32

57 [ ] Pion leptonic decay Γ(π+ µ + ν(γ)) pion decay constant Fπ [ 1 α π Γ[π + l + ν l (γ)] = G2 µ V ud 2 Fπ 2 m π m 2 l 4π { 3 2 ln µ + m C 1 (µ) + C 2 (µ) m2 l π Λ 2 χ ln µ2 m 2 l [ 1 m2 l m 2 π + C 3 (µ) m2 l Λ 2 χ ] 2 [ 1 + 2α π ln M µ ] }] [ α ] π F (x) Marciano and Sirline (1993) pion lifetime (±0.02%), leptonic branching ratio (± %) F π = 92.4 ± ± 0.25 Vud Ci(mρ) MeV S. Su 32

58 [ ] Pion leptonic decay Γ(π+ µ + ν(γ)) pion decay constant Fπ [ 1 α π Γ[π + l + ν l (γ)] = G2 µ V ud 2 Fπ 2 m π m 2 l 4π { 3 2 ln µ + m C 1 (µ) + C 2 (µ) m2 l π Λ 2 χ ln µ2 m 2 l [ 1 m2 l m 2 π + C 3 (µ) m2 l Λ 2 χ ] 2 [ 1 + 2α π ln M µ ] }] [ α ] π F (x) Marciano and Sirline (1993) pion lifetime (±0.02%), leptonic branching ratio (± %) F π = 92.4 ± ± 0.25 Vud Ci(mρ) MeV measurement of Γ(π+ µ + ν(γ)) does not provide a probe of new physics effects; new physics alter the extracted value of Fπ. e.g., RPV SUSY, 0.25% in Fπ. S. Su 32

59 ( ) { ( [ Re/µ [ To circumvent the hadronic matrix element uncertainties, consider R e/µ = Γ[π+ e + ν e (γ)] Γ[π + µ + ν µ (γ)] { [ Re/µ SM ˆr A π (e) ˆr π A (µ) ] } new test of lepton universality. SM prediction R SM e/µ = ( ± ) 10 4 Marciano and Sirline (1993) = ( ± ) 10 4 Decker and Finkemeier (1994) World average (TRIUMF and PSI) R EXP T e/µ = (1.230 ± 0.004) 10 4 Future improvement: TRIUMF: < 1X10 3 ; PSI: < 5X10 4 S. Su 33

60 Re/µ : SUSY contributions RamseyMusolf, SS, Tulin (2007) ing the future expected experimental precision [18], assu SUSY loop µ) = +. It is clear that R SUSY e/µ is largest in 10 x 10!3 ns where either (1) µ is small, m ul is large, and st contributions to Re/µ SUSY are from V + L, 8 with Qweak is large, m ul is small, and the largest contri 6 Re/µ SUSY is from B. If both µ and m ul are n R SUSY 4 future e/µ can still be very small due to can, even though both V + L and B contrire large individually. More precisely, to satisfy 2 0 need either µ 150 GeV and m ul 175 GeV, current 50 GeV and m ul 200 GeV (for our particue of fixed parameters, which have been chosen!2 SUSY RPV toward large Re/µ SUSY ).! ! " 11k x 10! m e m Μ CONTRIBUTIONS FROM RPARITY FIG. 11: Present 95% C.L. constraints on RPV param VIOLATING PROCESSES j1k, j = 1, 2 that enter R e/µ obtained from a fit to cision electroweak observables. Interior of the blue con S. Su corresponds to the fit using the current value of R 34 e/µ / [15, 16], while the red (light) contour corresponds to the fi SUSY R e Μ R e Μ e L, µ L! " 21k

61 Pion β decay rate for pion βdecay G V β Vud (theoretical error: ±0.0005) Γ(π β ) = (Gβ V )2 m 5 π f π +(0) 2 I(λ π +) 64π 3 PIBETA Pocanic B πβ(γ) = [ et. al. (2004) ± 0.004(stat) ± 0.004(sys) ± 0.003(π ] e2(γ)) 10 8 ten times larger than the theoretical error fifteen times larger than combined exp+theory uncertainty in superallowed β decay ft value S. Su 35

62 Pion β decay rate for pion βdecay G V β Vud (theoretical error: ±0.0005) Γ(π β ) = (Gβ V )2 m 5 π f π +(0) 2 I(λ π +) 64π 3 PIBETA Pocanic B πβ(γ) = [ et. al. (2004) ± 0.004(stat) ± 0.004(sys) ± 0.003(π ] e2(γ)) 10 8 ten times larger than the theoretical error fifteen times larger than combined exp+theory uncertainty in superallowed β decay ft value need considerable improvement in both the exp and theory side S. Su 35

63 Kaon decays and Vus CKM unitarity V ud 2 + V us 2 + V ub 2 = 1 SM V ud = (11)(15)(19) V ub = ± superallowed β decay too small to affect the unitarity test Vus: critically important (value and its uncertainty) determination of V us: branching ratio for Kl3 decays K πlν dγ(k + l3 ) = G2 µ m5 K 128π 3 S EWC(t) V us 2 f K + (0) 2 [ 1 + λk + t m 2 π ] 2 [ K SU(2) + 2 Kl EM ] S. Su 36

64 Kaon decays and Vus CKM unitarity V ud 2 + V us 2 + V ub 2 = 1 SM V ud = (11)(15)(19) V ub = ± superallowed β decay too small to affect the unitarity test Vus: critically important (value and its uncertainty) determination of V us: branching ratio for Kl3 decays K πlν dγ(k + l3 ) = G2 µ m5 K 128π 3 S EWC(t) V us 2 f K + (0) 2 [ 1 + λk + t m 2 π Ktoπ transition form factor ] 2 [ K SU(2) + 2 Kl EM ] S. Su 36

65 Kaon decays and Vus CKM unitarity V ud 2 + V us 2 + V ub 2 = 1 SM V ud = (11)(15)(19) V ub = ± superallowed β decay too small to affect the unitarity test Vus: critically important (value and its uncertainty) determination of V us: branching ratio for Kl3 decays K πlν dγ(k + l3 ) = G2 µ m5 K 128π 3 S EWC(t) V us 2 f K + (0) 2 [ 1 + λk + t m 2 π ] 2 [ K SU(2) + 2 Kl EM corrections generated by the breaking of flavor SU(2) and long distance EM corrections ] S. Su 36

66 Kaon decays and Vus CKM unitarity V ud 2 + V us 2 + V ub 2 = 1 SM V ud = (11)(15)(19) V ub = ± superallowed β decay too small to affect the unitarity test Vus: critically important (value and its uncertainty) determination of V us: branching ratio for Kl3 decays K πlν dγ(k + l3 ) = G2 µ m5 K 128π 3 S EWC(t) V us 2 f K + (0) 2 [ 1 + λk + t m 2 π ] 2 [ K SU(2) + 2 Kl EM ] S. Su 36

67 Kaon decays and Vus CKM unitarity V ud 2 + V us 2 + V ub 2 = 1 SM V ud = (11)(15)(19) V ub = ± superallowed β decay too small to affect the unitarity test Vus: critically important (value and its uncertainty) determination of V us: branching ratio for Kl3 decays K πlν dγ(k + l3 ) = G2 µ m5 K 128π 3 S EWC(t) V us 2 f K + (0) 2 [ 1 + λk + t m 2 π ] 2 [ K SU(2) + 2 Kl EM to test CKM unitarity at 0.1% level, must include Δ SU(2) K and ΔEM K l determine f + K (0) with 1% uncertainty or better ] S. Su 36

68 Vus new determination of K l3 Br + exp values for λ+ K and C(t) KTeV, KLOE, NA48 V us [ f K + (0)/0.961 ] = (9) Leutwyler and Roos (1984) f K + (0) large NC = ± Cirigliano et. al. (2005) f+ K (0) lattice = first row CKM V ud 2 + V us 2 + V ub 2 = ± stat ± sys quenched, Wilson[119] 0.962(6)(9) unquenched, staggered[120] 0.952(6) unquenched, Wilson[121] 0.955(12) unquenched, doman wall[122] { ± , large N C [118] ± , unquenched lattice, domain wall[122] can be used to test new physics e.g. SUSY, see Kurylov and RamseyMusolf (2002) S. Su 37

69 Conclusion Precision measurements played an important role in developing and testing SM They will be a crucial tool in probing new physics beyond the SM Low energy precision measurement can probe new physics not mix with (comparing with pole precision observables) precision frontier Complementary to what we may learn from LHC Opportunities and challenges (0.1%) for both experimentalists and theorists S. Su 38

70 back up slides S. Su 39

71 Neutron and nuclear β decay superallowed β decay: state, transition matrix element independent of nuclear structure initial/final state with nonzero spin: depend strongly on the details of hadronic and nuclear structure need both decay rate and one or more decay correlation coefficients K ft = (G β V )2 MF 2 + (Gβ A )2 MGT 2 K = (2π 3 ln 2)( c) 6 /(m e c 2 ) 5 dγ N (E e ) + σ { 1 + a p e p ν E e E ν + b Γm [ e + J E A p e + B p ν + D p e p ν e E e E ν E e E ν ] } dω e dω ν de e, [ N J + G p e E e + Q ˆp eˆp e J + R J p e E e ] S. Su 40

72 Superallowed nuclear decays M GT=0, ft only depends on M F G V β V ud Determination of half lives requires total decay half time branching ratio of decay to the 0+ ground state of the daughter nucleus energy release in the decay, or the Qvalue S. Su 41

73 β decay correlations beta spectral shape, angular distribution, polarization non (VA) (VA) interactions, Vud S. Su 42

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Neutron Lifetime Workshop, September 2014! 1 Outline I. CKM unitarity:

More information

Low Energy Precision Tests of Supersymmetry

Low Energy Precision Tests of Supersymmetry Low Energy Precision Tests of Supersymmetry M.J. Ramsey-Musolf Caltech Wisconsin-Madison M.R-M & S. Su, hep-ph/0612057 J. Erler & M.R-M, PPNP 54, 351 (2005) Outline I. Motivation: Why New Symmetries? Why

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Electroweak Physics: Lecture V

Electroweak Physics: Lecture V Electroweak Physics Lecture V: Survey of Low Energy Electroweak Physics (other than neutral current interactions) Acknowledgements: Slides from D. DeMille, G. Gratta, D. Hertzog, B. Kayser, D. Kawall,

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL) 1 V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL) The Cabibbo-Kobayashi-Maskawa (CKM) [1,2] threegeneration quark mixing matrix

More information

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1 Conference Summary K.K. Gan The Ohio State University K.K. Gan Tau2000 1 many interesting results can only summarize some highlights include a few interesting results not presented here apologize to those

More information

Measurement Using Polarized e + /e Beams

Measurement Using Polarized e + /e Beams C 3q Measurement Using Polarized e + /e Beams Xiaochao Zheng Univ. of Virginia March 7, 009 Introduction Standard Model of Electroweak Interaction Neutral Weak Coupling Constants Test of the Standard Model

More information

Standard Model Theory of Neutron Beta Decay

Standard Model Theory of Neutron Beta Decay Standard Model Theory of Neutron Beta Decay The Utility of a Δτ n/ τ n measurement to ±0.01%! (Electroweak Radiative Corrections) William J. Marciano November 9, 2012 Santa Fe, NM Neutron Decay Master

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

Current Status of the NuTeV Experiment

Current Status of the NuTeV Experiment Current Status of the NuTeV Experiment Beyond the Standard Model?? QCD Effects?? NuTeV charged, neutral currents induced by neutrinos New measurement of Weinberg angle Possible New Physics beyond the Standard

More information

P.M. King Ohio University for the MOLLER Collaboration

P.M. King Ohio University for the MOLLER Collaboration Parity violating electron scattering at JLab: the MOLLER experiment P.M. King Ohio University for the MOLLER Collaboration SESAPS, 10 November 2016; University of Virginia, Charlottesville, VA The Standard

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

Beyond the Standard Model Phenomenology. DOE Review 2008 Progress Report. Shufang Su U. of Arizona

Beyond the Standard Model Phenomenology. DOE Review 2008 Progress Report. Shufang Su U. of Arizona Beyond the Standard Model Phenomenology DOE Review 2008 Progress Report Shufang Su U. of Arizona S. Su DOE Review, 2008 Low energy Precision measurement LEP Experiments Tevatron (now) LC LHC (2008( 2008)

More information

Kaon Decays in the Standard Model

Kaon Decays in the Standard Model Kaon Decays in the Standard Model Helmut Neufeld University of Vienna 13 December 2012, Wien Review: Kaon Decays in the Standard Model V. Cirigliano, G. Ecker, H. N., A. Pich, J. Portoles, Rev. Mod. Phys.

More information

Precision EW measurements at Run 2 and beyond

Precision EW measurements at Run 2 and beyond Precision EW measurements at Run 2 and beyond 52 nd Rencontres de Moriond 2017 Session on Electroweak Interactions and Unified Theories Jens Erler (IF-UNAM) La Thuile Aosta Valley Italy March 18 25, 2017

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge Measure: Parity-violating asymmetry in e + p elastic scattering at Q 2 ~ 0.03 GeV 2 to ~4% relative

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca Moriond QCD La Thuile, March 14 21, 2009 Flavour physics in the LHC era An introduction Clara Matteuzzi INFN and Universita Milano-Bicocca 1 Contents 1. The flavor structure of the Standard Model 2. Tests

More information

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering Paul E. Reimer Argonne National Laboratory 10 January 2003 Introduction: Weinberg-Salam Model and sin 2

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 1 Outline Parity Violating Electron Scattering (PVES) overview Testing the Standard Model (SM) with PVES

More information

Searches for Physics Beyond the Standard Model. Electroweak Tests of the Standard Model. Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010

Searches for Physics Beyond the Standard Model. Electroweak Tests of the Standard Model. Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010 Searches for Physics Beyond the Standard Model Electroweak Tests of the Standard Model Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010 Outline Introduction The Qweak Experiment The MOLLER Experiment

More information

Effective Field Theories Beyond the Standard Model

Effective Field Theories Beyond the Standard Model NNPSS-TSI 2010, Vancouver, July 1 2010 Effective Field Theories Beyond the Standard Model Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lecture Introduction: Search for physics BSM! direct

More information

Radiative Corrections in Free Neutron Decays

Radiative Corrections in Free Neutron Decays Radiative Corrections in Free Neutron Decays Chien-Yeah Seng Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn Beta Decay as a Probe of New Physics

More information

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein MSSM Radiative Corrections to Neutrino-nucleon Deep-inelastic Scattering Oliver Brein Institute of Particle Physics Phenomenology, University of Durham in collaboration with olfgang Hollik and Benjamin

More information

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside Electroweak Data Fits & the Higgs Boson Mass Robert Clare UC Riverside Robert Clare UC Riverside LoopFest III Apr 1, 2004 2 Outline Electroweak corrections: definitions and strategies Experimental inputs

More information

Electroweak Physics and Searches for New Physics at HERA

Electroweak Physics and Searches for New Physics at HERA Electroweak Physics and Searches for New Physics at HERA Uwe Schneekloth DESY On behalf of the H1 and ZEUS Collaborations 14th Lomonosov Conference on Elementary Particle Physics 5.08.009 Outline Introduction

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London BLV 2017 Case Western Reserve U. 15-18 May 2017 Origin of neutrino masses beyond the Standard Model Two possibilities to define neutrino mass

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Results on top physics by CMS

Results on top physics by CMS EPJ Web of Conferences 95, 04069 (2015) DOI: 10.1051/ epjconf/ 20159504069 C Owned by the authors, published by EDP Sciences, 2015 Results on top physics by CMS Silvano Tosi 1,2,a, on behalf of the CMS

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008 Test of the Standard Model with Kaon decays Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008 1 FlaviaNet: WG on precise SM tests in K decays B. Sciascia PhiPsi08, LNF,

More information

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics Lecture 7 Experimental Nuclear Physics PHYS 741 Text heeger@wisc.edu References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics 98 Scattering Topics

More information

Weak Decays, CKM, Anders Ryd Cornell University

Weak Decays, CKM, Anders Ryd Cornell University Weak Decays, CKM, CP Violation Anders Ryd Cornell University Presented at the International Conference on Weak Interactions and Neutrinos Delphi, Greece, June 6-11, 2005 Page: 1 Flavor Physics The study

More information

Polarized muon decay asymmetry measurement: status and challenges

Polarized muon decay asymmetry measurement: status and challenges Polarized muon decay asymmetry measurement: status and challenges Glen Marshall, for the TWIST Collaboration Muon Physics in the LHC Era Symposium at the Institute of Nuclear Theory Seattle, October 008

More information

R. D. McKeown. Jefferson Lab College of William and Mary

R. D. McKeown. Jefferson Lab College of William and Mary R. D. McKeown Jefferson Lab College of William and Mary Jlab User Meeting, June 2010 1 The Standard Model Renormalizable Gauge Theory Spontaneous Symmetry Breaking n 1 n 2 n 3 Massless g,g Higgs Particle

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

CKM Matrix and CP Violation in Standard Model

CKM Matrix and CP Violation in Standard Model CKM Matrix and CP Violation in Standard Model CP&Viola,on&in&Standard&Model&& Lecture&15& Shahram&Rahatlou& Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815& http://www.roma1.infn.it/people/rahatlou/particelle/

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Lecture 12 Weak Decays of Hadrons

Lecture 12 Weak Decays of Hadrons Lecture 12 Weak Decays of Hadrons π + and K + decays Semileptonic decays Hyperon decays Heavy quark decays Rare decays The Cabibbo-Kobayashi-Maskawa Matrix 1 Charged Pion Decay π + decay by annihilation

More information

Ricerca di nuova fisica a HERA

Ricerca di nuova fisica a HERA Ricerca di nuova fisica a HERA Incontro sulla Fisica delle Alte Energie, Lecce 23-26 aprile 2003 S.Dusini, INFN Padova 1 Overview Introduction to Hera Results from HERA I Contact Interaction: Compositness,

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Intense Slow Muon Physics

Intense Slow Muon Physics 1 Intense Slow Muon Physics Yoshitaka Kuno a a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan Physics programs with slow muons at a neutrino factory are described. Emphasis is

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W Interactions... L W-l = g [ νγµ (1 γ 5 )ew µ + +ēγ µ (1 γ 5 )νwµ ] + similar terms for µ and τ Feynman rule: e λ ig γ λ(1 γ 5 ) ν gauge-boson propagator: W = i(g µν k µ k ν /M W ) k M W. Chris Quigg Electroweak

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

CP Violation Beyond the Standard Model

CP Violation Beyond the Standard Model CP Violation Beyond the Standard Model 5th Recontres du Vietnam Hanoi August 7, 2004 Yossi Nir (Weizmann Institute of Science) Thanks to: Sandrine Laplace, Zoltan Ligeti CPV BSM 1/21 Motivation Why do

More information

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen DESY, 12. September 2006 Precision Electroweak Measurements Stefan Roth RWTH Aachen Outline 1. Theory of electroweak interaction 2. Precision measurements of electroweak processes 3. Global electroweak

More information

Beyond the Standard Model Phenomenology. DOE Review 2007 Progress Report. Shufang Su U. of Arizona

Beyond the Standard Model Phenomenology. DOE Review 2007 Progress Report. Shufang Su U. of Arizona Beyond the Standard Model Phenomenology DOE Review 2007 Progress Report Shufang Su U. of Arizona S. Su DOE Review, 2007 Students and Postdoc Postdoc HockSeng Goh ( Berkeley in Sep. 2007) Brooks Thomas

More information

the role of atom and ion traps

the role of atom and ion traps Beyond Standard Model physics with nuclei V ud from mirror transitions and the role of atom and ion traps Oscar Naviliat-Cuncic LPC-Caen, ENSI CNRS/IN2P3 and Université de Caen Basse-Normandie Caen, France

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology Andreas Crivellin ITP Bern Rare decays and MSSM phenomenology Outline: The SUSY flavor and CP problem Constraints from flavour observables Where are large effects still possible? SUSY_FLAVOUR v2.0 07.03.12

More information

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc.

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc. MOLLER Experiment D.S. Armstrong Nov. 9 2010 Precision Tests of the Standard Model ECT* Workshop Moller scattering: intro Previous measurement: SLAC E158 MOLLER: new physics reach Experimental Concept

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Low Energy Tests of the Weak Interaction

Low Energy Tests of the Weak Interaction FT 2004 02 Low Energy Tests of the Weak Interaction arxiv:hep-ph/0404291v2 4 May 2005 J. Erler 1 and M.J. Ramsey-Musolf 2,3 1 Instituto de Física, Universidad Nacional Autónoma de México, México 2 Kellogg

More information

PoS(KAON)052. π eν. Prospects for Measurements of the Branching Ratio. Douglas Bryman

PoS(KAON)052. π eν. Prospects for Measurements of the Branching Ratio. Douglas Bryman Prospects for Measurements of the Branching Ratio π eν Douglas Bryman University of British Columbia Vancouver, Canada V6TA3 E-mail: doug@triumf.ca The π eν / π μν branching ratio provides unique access

More information

The Standard Model and Beyond

The Standard Model and Beyond Paul Langacker The Standard Model and Beyond CRC PRESS Boca Raton Ann Arbor London Tokyo Contents Preface xi 1 Notation and Conventions 1 1.1 Problems............................. 5 2 Review of Perturbative

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

A survey of the rare pion and muon decays.

A survey of the rare pion and muon decays. A survey of the rare pion and muon decays. M. Bychkov for the PIBETA Collaboration University of Virginia November 15, 2006 Abstract Our collaboration has used a detector system based on a non-magnetic

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Physics Highlights from 12 Years at LEP

Physics Highlights from 12 Years at LEP Physics Highlights from 12 Years at LEP Colloquium Frascati,, 8.2.2001 Dieter Schlatter CERN / Geneva 1 Standard Model In 1989 ingredients of Standard Model were known: Matter particles: u,d,s,c,b,t quarks

More information

arxiv: v1 [hep-ex] 10 Aug 2011

arxiv: v1 [hep-ex] 10 Aug 2011 The Physics Potential of SuperB F. F. Wilson 1 on behalf of the SuperB Collaboration STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK arxiv:1108.2178v1 [hep-ex] 10 Aug 2011 SuperB

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Shahram Rahatlou University of Rome

Shahram Rahatlou University of Rome Cabibbo-Kobayashi-Maskawa Matrix and CP Violation in Standard Model Shahram Rahatlou University of Rome Lecture 1 Lezioni di Fisica delle Particelle Elementari Many thanks to Vivek Sharma (UCSD) And Achille

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Low Energy Tests of the Standard Model and Beyond

Low Energy Tests of the Standard Model and Beyond Low Energy Tests of the Standard Model and Beyond Jens Erler Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México (IF-UNAM) MAMI and Beyond Schloß Waldthausen March

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Charged Lepton Flavor Violation: an EFT perspective

Charged Lepton Flavor Violation: an EFT perspective 2010 Amherst Phenomenology Workshop, Amherst, Oct 22 2010 Charged Lepton Flavor Violation: an EFT perspective Vincenzo Cirigliano Los Alamos National Laboratory Outline Charged LFV: general considerations,

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

The Mystery of Vus from Tau decays. Swagato Banerjee

The Mystery of Vus from Tau decays. Swagato Banerjee The Mystery of Vus from Tau decays Swagato Banerjee Flavor generations in the Standard Model Vij: Mixing between Weak and Mass Eigenstates 2 Unitarity of the CKM matrix 1!! 3! 1! 2! 3! 2 1 V ud = 0.97408

More information

Discussion on (Heavy) Flavor Physics

Discussion on (Heavy) Flavor Physics Discussion on (Heavy) Flavor Physics J. Brod, A. Buras, A. El-Khadra, P. Gambino, C. Monahan, A. Petrov Symposium on Effective Field Theories and Lattice Gauge Theory TUM IAS, May 19, 2016 Joachim Brod

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Measurements of Leptonic B Decays from BaBar

Measurements of Leptonic B Decays from BaBar Measurements of Leptonic B Decays from BaBar Gregory Dubois-Felsmann Caltech for the BaBar collaboration ICHEP 2004 Heavy Quark Mesons and Baryons session Overview Motivations for studying leptonic B decays

More information

Strange Sea Contribution to the Nucleon Spin

Strange Sea Contribution to the Nucleon Spin Strange Sea Contribution to the Nucleon Spin Fatiha Benmokhtar Carnegie ellon University USA with A. l Alaoui Alaoui (LPC renoble France H. Avakian (JlabUSA K. Hafidi (ANL USA F. Benmokhtar RICH workshop

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d)

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Neutrino magnetic moment and Majorana vs. Dirac neutrinos

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Flavour physics in the LHC era

Flavour physics in the LHC era Maria Laach school, september 2012 An introduction to Flavour physics in the LHC era and quest for New Physics (an experimentalist s point of view) Clara Matteuzzi INFN and Universita Milano-Bicocca 1

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Anything but... Leptogenesis. Sacha Davidson IPN de Lyon/CNRS, France

Anything but... Leptogenesis. Sacha Davidson IPN de Lyon/CNRS, France Anything but... Leptogenesis Sacha Davidson IPN de Lyon/CNRS, France CP Violation in µ e Conversion Sacha Davidson IPN de Lyon/CNRS, France 1. Why is CP in muon physics interesting? in general leptogenesis

More information

Theory overview on rare eta decays

Theory overview on rare eta decays Theory overview on rare eta decays WASA Jose L. Goity Hampton/JLab BES III KLOE Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014!UMass Amherst Motivation Main

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

arxiv: v1 [hep-ph] 29 Jun 2016

arxiv: v1 [hep-ph] 29 Jun 2016 arxiv:1606.0968v1 [hep-ph] 9 Jun 016 R Bucoveanu PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: rabucove@uni-mainz.de M Gorchtein PRISMA

More information