Comparing Possibly Misspeci ed Forecasts

Size: px
Start display at page:

Download "Comparing Possibly Misspeci ed Forecasts"

Transcription

1 Supplemenl Appendx : Cmprng Pssbly Msspec ed Frecss Andrew J. Pn Duke Unversy 4 Augus Ts supplemenl ppendx cnns w prs. Appendx SA. cnns dervns used n e nlycl resuls presened n e pper. Appendx SA. cnns prfs f Prpsns 4 nd 6 presened n e mn pper. Appendx SA.: Dervns Te resuls belw drw n e fllwng lemm, wc summrzes sme useful resuls n mmens rse wen e d re Gussn nd e lss funcn s expnenl regmn. Lemm If X s N ; nd (; b) R, en () E [exp f + bxg] = exp + b + b () E [exp f + bxg X] = exp + b + b + b () E exp f + bxg X = exp + b + b + + b (v) E exp f + bxg X 3 = exp + b + b + b b Sme resuls belw re smpl ed f we cnsder e fllwng de nn: De nn A frecs ^Y s men unbsed f ^Y = E Y jf.s. y e lw f ered expecns, s mples E Y j ^Y = ^Y :s. Ne s des n requre F cnns ll relevn nfrmn fr frecsng Y ; nly ^Y pmlly uses ll nfrmn vlble n F : Appendx SA.: Dervns fr e AR(p) mdels n Secn. Te Gussn AR(5) spec cn n equn () mples: Y Y Y Y 3 Y 4 s N (5 ; ) (5)

2 were 5 s (5 ) vecr f nes, s e men f Y nd s e cvrnce mrx f e lef-nd sde vecr. Tese cn be bned usng sndrd meds frm me seres nlyss, see Hmln (994) fr exmple). Le [ ; ; :::; 5 ] (6) en = were F = ; nd vec () = (I 5 (F F )) vec (Q) I 4 4 5, Q = e e, e [; ; ; ; ] Ten ne e jn dsrbun f (Y ; Y ) s [Y ; Y ] s N ( ; ) (7) 3 were 4 5, nd j Cv [Y ; Y j ], fr j = ; ; ; ::: Dene j j = : Ten e cndnl dsrbun f Y jy s: Y jy s N ( ) + Y ; () nd s fr e prmeers used n e exmple we nd [ ; ] = [ ( ) ; ] = [:5; :5]. Smlr clculns fr e AR() mdel yeld: [Y ; Y ; Y ] s N ( 3 ; 3 ) (9) 3 were () 5 Y j (Y ; Y ) s N ( + Y + Y ; V AR ) = 4 ( ) 5, = ( ) 3 3 V AR = = + And fr e prmeers used n e exmple we nd [ ; ; ] = [:3; :76; :] : Nw we derve e expeced lss fr e AR(), AR() nd AR(5) frecss. Frs ne snce ll ree f ese frecss re men-unbsed, e expeced lss f ny regmn lss funcn ()

3 smpl es : E L Y ; ^Y ; = E [ (Y )] E ^Y E ^Y E Y j ^Y Fr expnenl regmn lss, were (Y ; ) = exp fy g, Lemm mples T bn E exp n ^Y n E [ (Y )] = E [exp fy g] = exp ( + ) ^Y = E [ (Y )] E ^Y : () (3) fr e AR(), AR() nd AR(5) frecss, we expl e fc fr s Gussn uregressn, ll f ese frecss re uncndnlly nrmlly dsrbued: ^Y ARk s N (; V ARk ), were [V AR ; V AR ; V AR5 ] = ; + + ; : Tus we nd E ^Y ARk = ARk E exp ^Y n = exp ( + V ARk) frm Lemm. Te expeced lss frm n AR (k) frecs s E L Y ; ARk ^Y ; n = exp ( + ) n exp ( + V ARk)! V ARk s! Ne we knw V AR V AR V AR5 nd s we mmedely see e rnkng under MSE (.e., expnenl regmn w! ) s E L Y ; ^Y AR E L Y ; ^Y AR E L Y ; : ^Y AR5 Appendx SA..: Dervns fr e ernull frecsers n Secn. Snce ^Y X nd ^Y W re b pml w respec er lmed nfrmn, ey re b exp fy g exp n ^Y : men unbsed nd s er expeced regmn lss smpl es E Fr s DGP we esly nd: E [exp fy g] = exp + ( L + C ) pq + exp + ( H + C ) ( p) q (4) + exp + ( L + M ) p ( q) + exp + ( H + M ) ( p) ( q) E exp ^Y X = exp f ( L + q C + ( q) M )g p + exp f ( H + q C + ( q) M )g ( p) E exp ^Y W = exp f (p L + ( p) H + C )g q + exp f (p L + ( p) H + M )g ( q) 3

4 Fgure nrmlzes e expeced lss frm frecs X nd W by e pml frecs, usng b sgnls: wc leds XW E exp ^Y ^Y XW = X L + ( X ) H + W C + ( W ) M (5) = exp f ( L + C )g pq + exp f ( H + C )g ( p) q (6) + exp f ( L + M )g p ( q) + exp f ( H + M )g ( p) ( q) Appendx SA..3: Dervns fr e lner mdel n Secn.3 Te rs-rder cndn fr e pml prmeer [; ] s: E [L (Y; m (X; ) ; = E (m (X; )) (E [Y jx] m (X; (X; = E exp f ( + X)g X X [; X] (7) S e w rs-rder cndns re: = E exp f ( + X)g X E [exp f ( + X)g] E [exp f ( + X)g X] () = E exp f ( + X)g X 3 E [exp f ( + X)g X] E exp f ( + X)g X (9) Usng Lemm bve we ve ec f e fur unque erms bve n clsed frm. Subsung ese n nd slvng fr slvng fr [; ] yelds e expressns gven n equn (5). 4

5 Appendx SA.: Addnl prfs Te prfs belw use e fllwng resuls n unfrm rndm vrble, nd rngulr rndm vrble w mde L nd PDF declnes lnerly zer U > L. X s Unf (L; U) Z s T r (L; U) () ; z < L ; z < L >< >< F x (x) = x L (U L) U L ; z [L; U] F z (z) = (U z) ; z [L; U] () (U L) >: ; z > U >: ; z > U < U L ; z [L; U] < (U x) ; z [L; U] (U L) f x (x) = f z (z) = (3) : else : else F x () = L + (U L), fr [; ] F z () = U (U L) p, fr [; ] (4) E [X] = (U + L) E [Z] = 3 (L + U) (5) E X = 3 L + U + LU E Z = 6 3L + LU + U (6) E X 3 = 4 L3 + U 3 + L U + LU E Z 3 = 4L3 + 3L U + LU + U 3 (7) M x Medn [X] = (U + L) M z Medn [Z] = U U L p () E [ fx < bg X] = b L (U L), fr b [L; U] E [ fz bg Z] = 3b U b 3 L (3U L) 3(U L), fr b [L; U] (9) E fx < bg X = b3 L 3 3(U L) E fz bg Z = 4b3 U 3b 4 L 3 (4U 3L) 6(U L) () E fx < bg X 3 = b4 L 4 4(U L) E fz bg Z 3 = 5b4 U 4b 5 L 4 (5U 4L) () (U L) E [ fx < M x g X] = 3L+U E [ fz M z g Z] = U(p p )+L(4 ) 6 () E fx < M x g X = 7L +4LU+U 4 E fz M z g Z = 9L +LU(7 4 E fx < M x g X 3 = (3L+U)(5L +LU+U ) 64 E fz M z g Z 3 = L3 ( p )+U ( p ) 4 (3) p )+3L U( p ) 4 (4) + LU (9 3 p )+U 3 ( p 3) 4 5

6 Te resuls n pr () belw use e dsrbun f Y = X + Z; were X s Unf (L; ) nd Z s Unf (; U) ; were L < < jlj < U: Ts vrble s e fllwng prperes: ; y < L y L (L y) LU ; y [L; ] >< LU y [L; ] >< F y (y) = y L U ; y [; L + U] U y [; L + U] nd f z (z) = U y LU (U y) LU y [L + U; U] LU y [L + U; U] >: >: ; else ; y > U L + p jlj U; L ; >< U Fz () = L + U; L U ; L+U U And en >: U p ( ) jlj U; L+U U ; (3) (3) E [Y ] = (L + U) (3) E Y = 6 L + 3LU + U (33) E Y 3 = 4 L3 + L U + LU + U 3 M y Medn [Y ] = (L + U) (34) E [ fy M y g Y ] = 6L L 4 U + 3U (35) E fy M y g Y = (L + U)3 L 3 4U E fy M y g Y 3 = 5 (L + U)4 6L 4 3U (36) (37) Anlgus e men cse, de ne n -qunle unbsed frecs s ne wc ss es: Ne fr n -qunle unbsed frecs we ve: E L Y; ^Y ; g E Y ^Y g ^Y n = E g ^Y Y ^Y = E g ^Y E Y ^Y j ^Y = E [g (Y )] E Y ^Y E Y ^Y j ^Y = (3) g (Y ) g (Y ) E Y ^Y E n Y ^Y g (Y ) g (Y ) + E [g (Y )] (39) 6

7 Hlzmnn nd Euler (4) presen d eren prf f pr () f Prpsn 4 belw. We presen e fllwng fr cmprbly w e cndnl men cse presened n Prpsn f e pper. Prf f Prpsn 4. () We wll sw under Assumpns () (3), LnLn LnLn A ) F F A ) E L Y ; ^Y E L Y ; ^Y A L L GP L ; were LnLn j E LnLn Y ; ^Y j fr j fa; g nd LnLn s e Ln-Ln lss funcn n equn (7). Frs: we re gven LnLn LnLn A ; nd ssume F A F : Ts mples E LnLn Y ; ^Y A jf E LnLn Y ; ^Y jf :s: ; snce ^Y A F A F, nd E LnLn Y ; ^Y A E LnLn Y ; ^Y by e LIE. Te nly wy s ls ssfy e ssumpn LnLn LnLn A LnLn s f E Y ; ^Y A jf = E LnLn Y ; ^Y jf :s:. Le Y c n^y = : = F ^Y, fr fa; g : Ts ccmmdes e fc we d n ssume F ; fr fa; g ; s srcly ncresng, nd s e -qunle s n necessrly unque. Te necessy nd su cency f GPL lss (wccludes LnLn lss) fr qunle esmn, mples s se cn lernvely be de ned s Y c = rg mn^y Y b E LnLn (Y ; ^y)j F : Tus E LnLn Y ; ^Y A jf = E LnLn Y ; ^Y jf :s: mples ^Y A Y c nd s c Y A \ c Y 6=? : Ts vles Assumpn, ledng cnrdcn. Tus LnLn LnLn A ) F F A : Nex: Le L j E L GP L Y ; ^Y j ; ; g, j fa; g were L GP L (; ; ; g) s GPL lss funcn de ned by g; nndecresng funcn. Under Assumpns ()-(3) we knw ^Y j s e slun mn^y E L GP L Y ; ^Y j ; ; g jf j : I s srgfrwrd sw ^Y j en ss es = E Y ^Y j jf j : Ts lds fr ll pssble (cndnl) dsrbuns f Y ; nd frm Serens () nd Gneng (b) we knw s mples (by e necessy f GPL lss fr pml qunle frecss) ^Y j ^Y j = rg mn ^y E ( fy ^yg ) (g (^y) g (Y )) jf j en mrever ss es fr ny nndecresng funcn g: If F F A en by e LIE we ve L (g) L A (g) fr ny nndecresng funcn g: (b)() We rs cnsder e cse f nn-nesed nfrmn ses (vlng Assumpn ). Cn- 7

8 sder e fllwng smple exmple: Y = X + Z (4) were X s Unf (; ), Z s T r (; ) ; X?Z Le = ; nd ssume frecs A cndns n X nd frecs cndns n Z: Ten: ^Y = X + Medn [Z] = X + :45, snce Medn [Z] = 6 p 3:5 (4) ^Y b = Z + Medn [X] = Z + :5, snce Medn [X] = 5 (4) Nex cnsder e GPL lss funcns genered by g (y) = y nd g (y) = y 3 : Nce b ^Y nd ^Y b re medn-unbsed frecss, wc smpl es e clculn f er expeced lss. L A (g ) E Y ^Y = ^Y = n E [Y ] E Y ^Y Y Y (43) were E [Y ] = E [X] + E [Z] (44) nd E Y ^Y Y = E [ fx + Z X + M z g (X + Z)] (45) = E [ fz M z g] E [X] + E [ fz M z g Z], snce X?Z = E [X] + E [ fz M zg Z], snce E [ fz M z g] = = We nd n nlgus expressn fr e er frecser: L (g ) = n E [Y ] E Y ^Y b Y = E [Y ] E [Z] + E [ fx M xg X] (46) Nex cnsder e lss GPL funcn bned wen g (y) = y 3 : n L A (g ) E Y ^Y 3 = ^Y = E Y 3 E Y 3 (47) ny ^Y Y 3 (X + Z) 3 = E X 3 + 3E X E [Z] + 3E [X] E Z + E Z 3 (4) E Y 3 = E E Y ^Y Y 3 = E [ fz M z g] E X 3 + 3E [ fz M z g Z] E X (49) +3E fz M z g Z E [X] + E fz M z g Z 3

9 Pullng ese erms geer nd usng e expressns fr ese mmens gven bve, we nd: L A (g ) = :7 < :5 = L (g ) (5) L A (g ) = 35:45 > 349:3 = L (g ) (5) Tus e rnkng s reversed dependng n e cce f funcn g. Ne wle e d erences n ese vlues my pper smll, ese re nlycl ppuln vlues, nd s ere s n smplng r smuln vrbly. () Nex we cnsder e cse b frecsers use crrecly spec ed mdels, gven er (nesed) nfrmn ses, bu ey re subjec esmn errr. Assume Y = X + Z (5) X s Unf ( ; ), Z s Unf (; ), X?Z Assume frecser A uses n cndnng nfrmn, nd s reprs er pml frecs s: ^Y = Medn [Y ] = (53) Frecser uses nfrmn n Z; bu expl mus esme Medn [X] : He res s n unknwn prmeer nd ssume e esmes usng n = bservn f X. Frecser s predcn wll en be ^Y b = X ~ + Z (54) were X ~ s relzn frm Unf (L; ) dsrbun, ndependen f (X; Z) : Ts desgn llws fr sgnl/nse rde- : In s desgn we nd : L A (g ) E Y ^Y = ^Y Y (55) = E [( fy M y g =) (M y Y )] = M y E [ fy M y g] E [ fy M y g Y ] = (M y E [Y ]) 9

10 Fr frecser we nd: L (g ) E Y ^Y b = ^Y b = E X + Z X ~ + Z = E X X ~ ~X X ~X Y ~X + Z X Z = = E ~X + Z = E X X ~ E X X ~ X = E E X X ~ j X ~ ~X E E X X ~ = E F x ~X ~X E [( F x (X)) X] Y, ne E ~X + Z jx X Y = (56) = E [F x (X) X] E [X], snce ~ X d = X And fr e secnd lss funcn we bn: n L A (g ) E Y ^Y 3 = ^Y = E ( fy M y g =) M 3 y Y 3 Y 3 = M 3 y E [ fy M y g] E fy M y g Y 3 = M 3 y E Y 3 (57) nd n L (g ) E Y ^Y b 3 = ^Y b n = E X + Z X ~ + Z n = E X X ~ 3 ~X + Z Y 3 3 = ~X + Z (X + Z) 3 = (X + Z) 3 3 E ~X + Z = E X X ~ ~X X ~ Z + 3 XZ ~ X 3 3X Z 3XZ = E X X ~ ~X 3 E X X ~ X 3 +3E [Z] E X X ~ ~X E X X ~ X +3E Z E X X ~ ~X E X X ~ X (5) E (X + Z) 3 Ten we use, fr p = ; ; 3 : E X X ~ ~X p = E E X X ~ j X ~ ~X p = E [F x (X) X p ], snce X ~ = d X (59) E X X ~ X p = E E X X ~ jx X p = E [( F x (X)) X p ] = E [X p ] E [F x (X) X p ] (6)

11 And s L (g ) = E F x (X) X 3 E X 3 (6) +3E [Z] E F x (X) X E X +3E Z (E [F x (X) X] E [X]) Fr X s Unf (L; U) we ve: E [F x (X) X] = L + U 6 E F x (X) X = L + LU + 3U E F x (X) X 3 = L3 + L U + 3LU + 4U 3 (6) (63) (64) Pullng ese erms geer, we nd L A (g ) = :5 > :67 = L (g ) (65) L A (g ) = 7:65 < 9 = L (g ) (66) Tus e rnkng s reversed dependng n e cce f funcn g. () Fnlly, we cnsder vln ssumpn 3, nd cnsder mdels re msspec ed. We wll smplfy e DGP, nd ssume Y = X s Unf (; ) (67) We wll ssume e w frecsers use msspec ed mdels, n ey use lner mdel w prmeers d er frm (; ): ^Y = + X (6) ^Y b = + X (69) Of curse ere we cnn use e smplfcn lds wen e frecss re medn unbsed. In s exmple, f we se ( ; ) = (:33; :67) nd ( ; ) = ( :5; :5) en b frecss use e sme nfrmn se, neer s esmn errr, bu b re bsed n msspec ed mdels.

12 In s cse we nd: L A (g ) E Y ^Y = ^Y Y (7) E [ f( ) X g] = E [ f( ) X g X p ] = = E [( fx + Xg =) ( + X X)] = E [ f( ) X g] + ( ) E [ f( ) X g X] F x >< ; < F x ; > >: >< >: f g ; = E X E E [X p ] E [X] X p ; < n X X p ; > f g E [X p ] ; = (7) (7) Te sme expressns cn be used fr L (g ) pluggng n ( ; ) fr ( ; ) : We use p = fr e rs GPL lss funcn bve, nd p = ; ; 3 fr e secnd, belw. Nex cnsder n L A (g ) E Y ^Y 3 = ^Y Y 3 = E f( ) X g ( + X) 3 X 3 =E ( + X) 3 X 3 (73) = 3 E [ f( ) X g] + 3 E [ f( ) X g X] +3 E f( ) X g X + 3 E f( ) X g X 3 = E [X] + 3 E X + 3 E X 3 Te sme expressns cn be used fr L (g ) pluggng n ( ; ) fr ( ; ) : Pullng ese erms geer, we nd L A (g ) = :6 > :5 = L (g ) (74) L A (g ) = 79:44 < :9 = L (g ) (75) Tus e rnkng s reversed dependng n e cce f funcn g. We ve us demnsred nlyclly e presence f ny f nn-nesed nfrmn ses, esmn errr, r mdel msspec cn cn led sensvy n e rnkng f w qunle frecss e cce f cnssen (GPL) lss funcn.

13 Prf f Prpsn 6. () We gn prve s resul by swng E L F A ; Y E L F ; Y fr sme L LPrper ) F F A ) E L F A ; Y E L F ; Y L L Prper : Frs: we re gven E L F A ; Y E L F ; Y ; nd ssume F A F : Under Assumpns ()-(3), s mples we cn ke F s e d generng prcess fr Y : Ten E L F ; Y jf = EF L F ; Y jf EF L F A ; Y jf e prprey f L: y e LIE s mples E L F ; Y E L F A ; Y ; wc cn nly ld f E L F ; Y jf = E L F A ; Y jf :s: ; bu snce L s srcly prper scrng rule s mples F A = F :s: wc vles Assumpn, ledng cnrdcn. Tus E L F A ; Y E L F ; Y fr sme L L Prper ) F F A : Nex, usng smlr lgc bve, gven F F A we ve E L F A ; Y E L F ; Y fr ny L LPrper ; cmpleng e prf. (b)() We rs cnsder e cse f nn-nesed nfrmn ses (vlng Assumpn ). Cnsder e fllwng exmple: Y = A ( A) + + ( ) (76) A s ernull (p) s ernull (q),?a > > Te ndcr, A revels weer e lef l wll be lng r sr, nd revels weer e rg l wll be lng r sr. Frecser A bserves e sgnl A nd frecser bserves sgnl ;.e., ec frecser nly ges nfrmn bu sngle l (lef r rg). Ten we nd: Z E [wcrp S (F A ; Y;!)] = pq ( q)! (z) dz + q ( p) ( q) E [wcrp S (F ; Y;!)] = pq ( p) Z! (z) dz + p ( p) ( q) Z Z! (z) dz (77)! (z) dz Te w prper scrng rules we cnsder (equn 33) plce d eren wegs n e lef vs. rg ls usng e lgsc funcn:! (z; ) = + exp f zg Wen > mre weg s plced n e rg l, nd wen < mre weg s plced n e (7) 3

14 lef l. We en cmpue e negrls, seng! R (z) =! (z; +) nd! L (z) =! (z; ) Z! R (z) dz = Z! R (z) dz = Z Z! L (z) dz = + lg lg (exp f g + exp f g) (79)! L (z) dz = lg ( + exp f g) W ese n nd, f we se (p; q; ; ) = (:5; :75; ; 5) we nd: E [wcrp S (F A ; Y ;! R )] = :5 > :5 = E [wcrp S (F ; Y ;! R )] () E [wcrp S (F A ; Y ;! L )] = :5 < :5 = E [wcrp S (F ; Y ;! L )] () And s e rnkng f ese w dsrbun frecss cn be reversed dependng n e cce f (prper) scrng rule. () Nex, we cnsder vln ssumpn 3, nd cnsder mdels re msspec ed. In s cse, cnsder e cse were frecser A uses e uncndnl dsrbun f e rge vrble, wle frecser cnnues use er sgnl, bu bsed n ~p 6= p: If we se (p; q; ; ; ~p) = (:5; :75; ; 5; :5) we nd E wcrp S F A ; Y ;! R E wcrp S F A ; Y ;! L = :6 > :33 = E wcrp S ~F ; Y ;! R = :6 < :67 = E wcrp S ~F ; Y ;! L () (3) And s e rnkng f ese w dsrbun frecss cn be reversed dependng n e cce f (prper) scrng rule. (Ne E wcrp S F A ; Y ;! R = E wcrp S FA ; Y ;! L s e dsrbun frecs FA s symmerc rund zer, nd e wegng funcns ssfy!r (z) =! L ( z).) () Fnlly, we cnsder e cse b frecsers use crrecly spec ed mdels, gven er (nesed) nfrmn ses, bu re subjec esmn errr. Cnsder e cse frecser A gn uses e uncndnl dsrbun f e rge vrble, wle frecser uses er sgnl, bu d s mus esme e prmeer p: Assume se des s bsed n n bservns f e sgnl A: (Ne snce frecser bserves e sgnl ; e vlue fr A cn be bcked u, ex ps, frm e relzed vlue f e rge vrble.) Ten n^p = nx A s nml (n; p) (4) = 4

15 In s cse, we ve: E wcrp S ^F (^p) ; Y ;! = X ~p E wcrp S ~F (~p) ; Y ;! Pr [^p = ~p] (5) nd we cn use e expressns frm pr () elp slve s prblem. Cnsder e cse n = 4; nd s ^p cn ke ne f ve vlues f; =4; =; 3=4; g : In s cse we nd E wcrp S E wcrp S F A ; Y ;! R F A ; Y ;! L = :6 > :3 = E wcrp S ^F (^p) ; Y ;! R = :6 < :6 = E wcrp S ^F (^p) ; Y ;! L (6) (7) And s e rnkng f ese w dsrbun frecss cn be reversed dependng n e cce f (prper) scrng rule. 5

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 10 Solutions Chi-Square Tests; Simple Linear Regression

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 10 Solutions Chi-Square Tests; Simple Linear Regression ENGI 441 Prbbly nd Sscs Fculy f Engneerng nd Appled Scence Prblem Se 10 Sluns Ch-Squre Tess; Smple Lner Regressn 1. Is he fllwng se f bservns f bjecs n egh dfferen drecns cnssen wh unfrm dsrbun? Drecn

More information

The Perceptron. Nuno Vasconcelos ECE Department, UCSD

The Perceptron. Nuno Vasconcelos ECE Department, UCSD he Perceprn Nun Vscncels ECE Deprmen, UCSD Clssfcn clssfcn prblem hs pes f vrbles e.g. X - vecr f bservns feures n he rld Y - se clss f he rld X R = fever, bld pressure Y = {dsese, n dsese} X, Y reled

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Distribution of Mass and Energy in Five General Cosmic Models

Distribution of Mass and Energy in Five General Cosmic Models Inerninl Jurnl f Asrnmy nd Asrpysics 05 5 0-7 Publised Online Mrc 05 in SciRes p://wwwscirprg/jurnl/ij p://dxdirg/0436/ij055004 Disribuin f Mss nd Energy in Five Generl Csmic Mdels Fdel A Bukri Deprmen

More information

K The slowest step in a mechanism has this

K The slowest step in a mechanism has this CM 6 Generl Chemisry II Nme SLUTINS Exm, Spring 009 Dr. Seel. (0 pins) Selec he nswer frm he clumn n he righ h bes mches ech descripin frm he clumn n he lef. Ech nswer cn be used, ms, nly nce. E G This

More information

Dishonest casino as an HMM

Dishonest casino as an HMM Dshnes casn as an HMM N = 2, ={F,L} M=2, O = {h,} A = F B= [. F L F L 0.95 0.0 0] h 0.5 0. L 0.05 0.90 0.5 0.9 c Deva ubramanan, 2009 63 A generave mdel fr CpG slands There are w hdden saes: CpG and nn-cpg.

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES wwwrresscom/volmes/vol7isse/ijrras_7 df UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOIAL OPERATOR ON DOAINS IN COPLEX PROJECTIVE SPACES D Feng & L Ynl * Scool of emcs nd Pyscs Scence

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

Use 10 m/s 2 for the acceleration due to gravity.

Use 10 m/s 2 for the acceleration due to gravity. ANSWERS Prjecle mn s he ecrl sum w ndependen elces, hrznl cmpnen nd ercl cmpnen. The hrznl cmpnen elcy s cnsn hrughu he mn whle he ercl cmpnen elcy s dencl ree ll. The cul r nsnneus elcy ny pn lng he prblc

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

Hoeffding, Azuma, McDiarmid

Hoeffding, Azuma, McDiarmid Hoeffding, Azum, McDirmid Krl Strtos 1 Hoeffding (sum of independent RVs) Hoeffding s lemm. If X [, ] nd E[X] 0, then for ll t > 0: E[e tx ] e t2 ( ) 2 / Proof. Since e t is conve, for ll [, ]: This mens:

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

SMARANDACHE GROUPOIDS

SMARANDACHE GROUPOIDS SMARANDACHE GROUPOIDS W. B. Vsnth Kndsmy Deprtment f Mthemtics Indin Institute f Technlgy Mdrs Chenni - 6 6 Indi. E-mil: vsntk@md.vsnl.net.in Astrct: In this pper we study the cncept f Smrndche Grupids

More information

Multivariate Time Series Analysis

Multivariate Time Series Analysis Mulvre me Sere Anl Le { : } be Mulvre me ere. Denon: () = men vlue uncon o { : } = E[ ] or. (,) = Lgged covrnce mr o { : } = E{[ - ()][ - ()]'} or, Denon: e me ere { : } onr e jon drbuon o,,, e me e jon

More information

Rheological Models. In this section, a number of one-dimensional linear viscoelastic models are discussed.

Rheological Models. In this section, a number of one-dimensional linear viscoelastic models are discussed. helgcal Mdels In hs secn, a number f ne-dmensnal lnear vscelasc mdels are dscussed..3. Mechancal (rhelgcal) mdels The wrd vscelasc s derved frm he wrds "vscus" + "elasc"; a vscelasc maeral exhbs bh vscus

More information

Electrostatic/magnetostatic forces

Electrostatic/magnetostatic forces Eecsc/gnesc ces spes ppc: eneg e ec eneg ce (vec) ve (vec) en ( eneg ) ( snce) ne s cn gve e O ce (n pessue) u cn en snge sp cne s pe e ce spe epe: pe pes eecsc: ppe vge gnesc: cuen I Den. Nekk 00, s upe

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Midterm Exam. Thursday, April hour, 15 minutes

Midterm Exam. Thursday, April hour, 15 minutes Economcs of Grow, ECO560 San Francsco Sae Unvers Mcael Bar Sprng 04 Mderm Exam Tursda, prl 0 our, 5 mnues ame: Insrucons. Ts s closed boo, closed noes exam.. o calculaors of an nd are allowed. 3. Sow all

More information

Brace-Gatarek-Musiela model

Brace-Gatarek-Musiela model Chaper 34 Brace-Gaarek-Musiela mdel 34. Review f HJM under risk-neural IP where f ( T Frward rae a ime fr brrwing a ime T df ( T ( T ( T d + ( T dw ( ( T The ineres rae is r( f (. The bnd prices saisfy

More information

Three fundamental questions with Hidden Markov Models

Three fundamental questions with Hidden Markov Models hree fundmenl uesns wh Hdden Mrv Mdels One defned he sruurl elemens f HMM we my wn s hree dfferen nds f uesns:. Gven he mdel λ A B π wh s he prly f servng O.. h s O λ? 2 2. Gven he seuene f servns O..

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting Technte 6 prl 990 Resed /22/02 Op mp Dentns Tm J. Sberng SDE Cnsultng sdecnsultng@pbx.cm 990 Tm J. Sberng. ll rghts resered. Op mp Dentns Pge 2 Op mp Dentns Ths Technte summrzes the bsc pertnl mpler dentns

More information

Comparing Possibly Misspeci ed Forecasts

Comparing Possibly Misspeci ed Forecasts Comparng Possbly Msspec ed Forecass ndrew J. Paon Duke Unversy Ts verson: 26 Sepember 214 Frs Draf - Commens Welcome bsrac Ts paper consders e evaluaon of forecass of a gven sascal funconal, suc as a mean,

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

Cosmological Distances in Closed Model of the Universe

Cosmological Distances in Closed Model of the Universe Inerninl Jurnl f srnmy n srpysics 3 3 99-3 p://xirg/436/ij333 Publise Online June 3 (p://wwwscirprg/jurnl/ij) Csmlgicl Disnces in Clse el f e Universe Fel Bukri Deprmen f srnmy Fculy f Science King bulziz

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor guirregabiria SOLUTION TO FINL EXM Monday, pril 14, 2014. From 9:00am-12:00pm (3 hours) INSTRUCTIONS:

More information

SOLUTIONS SET 1 MATHEMATICS CLASS X

SOLUTIONS SET 1 MATHEMATICS CLASS X Tp Careers & Yu SOLUTIONS SET MTHEMTICS CLSS X. 84 7 Prime factrs f 84 are, and 7.. Sum f zeres 5 + 4 Prduct f zeres 5 4 0 Required plynmial x ( )x + ( 0) x + x 0. Given equatin is x + y 0 Fr x, y L.H.S

More information

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4 OVRVIW Using Similrity nd Prving Tringle Therems G.SRT.4 G.SRT.4 Prve therems ut tringles. Therems include: line prllel t ne side f tringle divides the ther tw prprtinlly, nd cnversely; the Pythgren Therem

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination Second Semester (072) STAT 271.

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination Second Semester (072) STAT 271. PRINCE SULTAN UNIVERSITY Deparmen f Mahemaical Sciences Final Examinain Secnd Semeser 007 008 (07) STAT 7 Suden Name Suden Number Secin Number Teacher Name Aendance Number Time allwed is ½ hurs. Wrie dwn

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

T Promotion. Residential. February 15 May 31 LUTRON. NEW for 2019

T Promotion. Residential. February 15 May 31 LUTRON. NEW for 2019 M NEW fr 2019 A e yer brigs fres skig ruiy fr Lur L reverse- dimmers sé sluis, iludig e rdus. Ple rder, e ll el drive sles rug i-sre merdisig rr smlig, el yu mee yur 2019 gls. Mesr L PRO dimmer Our s flexible

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008 Çaaya Üiversiesi Fe-Edebiya Faülesi, Jural Ars ad Scieces Say : 9 / May s 008 A Ne e Cai Rule ime Scales abe Abdeljawad Absrac I is w, i eeral, a e cai rule eeral ime scale derivaives des beave well as

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

1 of 11. Adding Signed Numbers. MAT001 Chapter 9 Signed Numbers. Section 9.1. The Number Line. Ordering Numbers. CQ9-01. Replace? with < or >.

1 of 11. Adding Signed Numbers. MAT001 Chapter 9 Signed Numbers. Section 9.1. The Number Line. Ordering Numbers. CQ9-01. Replace? with < or >. Sectin 9 Adding Signed Numbers The Number Line A number line is a line n which each pint is assciated with a number 0 Negative numbers Psitive numbers f The set f psitive numbers, negative numbers, and

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

Evaluating and Comparing Possibly Misspeci ed Forecasts

Evaluating and Comparing Possibly Misspeci ed Forecasts Evaluang and Comparng Possbly Msspec ed Forecass ndrew J. Paon Duke Unversy Frs verson: 27 Sepember 214. Ts verson: 27 Marc 215 bsrac Ts paper consders e evaluaon of forecass of a gven sascal funconal,

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27%

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27% /A/ mttrt?c,&l6m5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA Exercses, nuts! A cmpany clams that each batch f ttse&n ta-ns 5 2%-cas-hews, 27% almnds, 13% macadama nuts, and 8% brazl nuts. T test ths

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Variable Forgetting Factor Recursive Total Least Squares Algorithm for FIR Adaptive filtering

Variable Forgetting Factor Recursive Total Least Squares Algorithm for FIR Adaptive filtering 01 Inernanal Cnference n Elecrncs Engneerng and Infrmacs (ICEEI 01) IPCSI vl 49 (01) (01) IACSI Press Sngapre DOI: 107763/IPCSI01V4931 Varable Frgeng Facr Recursve al Leas Squares Algrhm fr FIR Adapve

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Infrmatik Arbeitsbereich SAV/BV (KOGS) Image Prcessing 1 (IP1) Bildverarbeitung 1 Lecture 15 Pa;ern Recgni=n Winter Semester 2014/15 Dr. Benjamin Seppke Prf. Siegfried S=ehl What

More information

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J. Waeshappg Crcuts and Data Cnerters Lessn #7 Cmparatrs and Schmtt Trggers Sectn. BME 7 Electrncs II 0 Waeshappg Crcuts and Data Cnerters Cmparatrs and Schmtt Trggers Astable Multbratrs and Tmers ectfers,

More information

Temperature Controller E5CB (48 48 mm)

Temperature Controller E5CB (48 48 mm) C ECB ( ) B f f b w v f y f y qk by f b y (,) ww z y v f fw Sy f S y w f y B y ' q PD f Sfy P / F ECB D Dy Dy S P y : ±% f PV P : ±% f PV S P C y V (f v SS) Nb S Nb L ECB@@@ C : y : VC, Q: V (f v SS):

More information

Kinematics Review Outline

Kinematics Review Outline Kinemaics Review Ouline 1.1.0 Vecrs and Scalars 1.1 One Dimensinal Kinemaics Vecrs have magniude and direcin lacemen; velciy; accelerain sign indicaes direcin + is nrh; eas; up; he righ - is suh; wes;

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.7J Fall 13 Lecure 15 1/3/13 I inegral fr simple prcesses Cnen. 1. Simple prcesses. I ismery. Firs 3 seps in cnsrucing I inegral fr general prcesses 1 I inegral

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

The stress transfer calculations presented in the main text reports only our preferred

The stress transfer calculations presented in the main text reports only our preferred GS R ITEM 214377 L.S. Wlh e l. GS T REPOSITORY COULOM STRESS CHNGE PRMETER INPUT TESTS The re rfer lul preee he e repr ly ur preferre el. lhugh he geerl per ue re rbu, he el f he reul ul hge f el preer

More information

F Fou n even has domain o. Domain. TE t. Fire Co I. integer. Logarithmic Ty. Exponential Functions. Things. range. Trigonometric Functions.

F Fou n even has domain o. Domain. TE t. Fire Co I. integer. Logarithmic Ty. Exponential Functions. Things. range. Trigonometric Functions. Cve Functins Midterm 1 Review Plnmils Rtinl Functins Pwer Functins rignmetric Functins nverse rignmetric Functins Expnentil Functins Functins Dmin Lgrithmic Review Definitins nd bsic prperties Dmin f f

More information

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table: SELECTED PROOFS DeMorgan s formulas: The frst one s clear from Venn dagram, or the followng truth table: A B A B A B Ā B Ā B T T T F F F F T F T F F T F F T T F T F F F F F T T T T The second one can be

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F E F E + Q! 0

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

STA6E NO, LR. Council DeIegote Iouncit Seol. Dqte / / Re-centif. IounciI Delegote Iouncil Seol. Dqie. Sl-oging. This is noi o sionpd subdivision

STA6E NO, LR. Council DeIegote Iouncit Seol. Dqte / / Re-centif. IounciI Delegote Iouncil Seol. Dqie. Sl-oging. This is noi o sionpd subdivision S6, LR PL SBDVS ue ny D Pn umber PS5 4627 Lcqn Ln Pr PHLLP SLD 0WS wnp Secn rwn [[men 15(P, 16 & 17 rwn P e Reerence L Pn Reerence L PS524867K P re c me ubvn MG e n nnnv n n n n pn v01.1028 0L.85 SLM RD

More information

() t ( ) ( ) ( ) ( ) ( ) ( ) ω ω. SURVIVAL Memorize + + x x. m = = =

() t ( ) ( ) ( ) ( ) ( ) ( ) ω ω. SURVIVAL Memorize + + x x. m = = = SURVIVL ' uu λ -Λ : > l + S e e e S ω ο ω ω Ufrm DeMvre S X e Vr X ω λ Eel S X e e λ ω ω ww S + S f ο S + S e where e S S S S S Prcles T X s rm vrble fr remg me ul eh f sus ge f + survvl fuc fr T X f,

More information

For a continuous function f : [a; b]! R we wish to define the Riemann integral

For a continuous function f : [a; b]! R we wish to define the Riemann integral Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and ~ A NOTE ON THE EQUVAmCE OF SOME TEST CRTERA by v. P. Bhapkar University f Hrth Carlina University f Pna nstitute f Statistics Mime Series N. 421 February 1965 This research was supprted by the Mathematics

More information