ANOTHER DEFINITION FOR TIME DELAY* H. Narnhofer. Institut für Theoretische Physik Universität Wien

Size: px
Start display at page:

Download "ANOTHER DEFINITION FOR TIME DELAY* H. Narnhofer. Institut für Theoretische Physik Universität Wien"

Transcription

1 RTS1OO6O0 UWThPh-80-6 ANOTHER DEFINITION FOR TIME DELAY* H. Narnhofer Institut für Theoretische Physik Universität Wien Abstract Time delay is defined by geometrical considerations which work in classical as well as in quantum mechanics, and its connection with the S-matrix and the virial is proven for potentials with V(x) and xv(x) vanishing as r for r ) Work supported in part by Fonds zur Förderung der wissenschaftlichen Forschung in Österreich, Project Nr

2 1 The idea of time delay as a characteristic!» of a scattering process was given a precise definition by Jauch et al. [l]. It is closely related to the existence of resonances and to the tin«of sojourn, for which upper bounds are found e.g. in [2] (though here generalized to long range potentials). The notion of time delay appears already in classical scattering. Here it can be defined easily by essentially geometrical considerations. Its connection with the virial and with the scattering matrix can be shown in the same way in classical and in quantum mechanics. He will not worry about domain problems though we are dealing with unbounded operators. The existence of the relevant quantities follows from estimates in [3] and references therein, if the potential V(x) and jxvv(x)j decreases faster than 1/r and therefore its square root H - and H smooth, so that o the relevant quantities in the virial are integrabel in time. Geometrical Considerations The existence of scattering theory implies the existence of lim t-*±» p(t) p lim [x(t) - p(t)t] = lim x(t) - x ± t-+± t-^i"* Then x x - x_ is space delay in comparison to free time evolution. This operator has the disadvantage that it depends not only on the path but changes under time translation {x(0),p(o)} + {x(z),p(z)> X ± * X ± + P i Z ' X R * X R + ( P + * P -, Z * This ambiguity can be removed if we take only the part of x parallel to p +. Then we lose the vector property and it is more natural to speak of time delay (we put m * 1)

3 »»._ $. T *+ P + *- P - This time delay still does not only depend on the path of the particle but also on the choice of the origin in space and changes accordingly to P + " *-> a ( x-*x + a, T -» T + But since neither the interaction hamiltonian nor the S-matrix is invariant under space translation this ambiguity is to be expected. He can compare our definition of time delay with the one given in [1]. Consider a sequence of balls S with radius R and center at x «0. Take T. to be the difference between the time a particle spends in the ball S, if it starts at t» - with the same initial condition and moves either freely or accordingly to the interaction hamiltonian. Then the limit T_ exists and coincides with the one of our definition. Suppose V 0 for x > R. If the orbit enters the ball at t - T. and leaves it at T. we have x_ - x(-tj) + Tjp_, x + - x(t 2 ) - T ^, from which we obtain, as can be seen in fig. 1, the time the particle really spends in the ball equals / R 2_ b 2 _ x + p + /R2-S 2 + x_p_ [> + T- I 1 + -I 1 " fpj pj A free particle would spend 2 /R 2 -a 2 /p and the difference becomes in the limit R -v v* - x - p - p * We can already see the connection with the S-matrix which transforms x_ into x + [4]: For a central force S(,L) becomes for r + the matrix S(p 2 /2,L) exp(2i«(p r/ L) that <r,6> * (r - 2 f!", 6-2 f)

4 is a canonical transformation with 86/3p the change in r. Connection of T With the Scattering Matrix It was shown in [5] that for potentials vanishing sufficiently at -4-e infinity (as r ) x_ converges and becomes K w lim T - - is _ 1 /de 6(H -E). K ' 0 «E The proof is rather involved and the restriction for the potential is too strong. We will define the time delay by 1... "ih t ih t, _..,.. ^.i iht 0-0 -ihti.^ T * -T [lim <$ e e De e ^> - t-*» ' t^ -i f l t -ih t._. ± I -iht 0 - O iht I ±, - lim <$ e e De e $>] with D» j {aqp + px}, D-~{j-D + D^->andB- (x(t)p(t) + p(t)x(t)}. u 0 O Then T = \ [lim <(j) - S + D* - 1*> - lim <$ - D + D* - 1*>] - t-*» p 2 (t) p2 ( t ) t^_ p2 ( t ) p 2 ( t ) - ~ <* ß + 5 es - n_ 5 &\+> - { ^Js' 1 5 s - 5 <> in > - " 4 < *ij S ~ 1 H" td ' S] + S " 1 [D ' Sl i^v 0 0 taking into account that [H,S] = 0. Now we write o S - / de 5(H -E) S(E), ' 0 with S(E) being a function of the angles only such that [S(E),D] 0. Therefore [D,S] «-i jj /db 3(o" 2 H o -E)S(E)[ < i /db H fl «(H^E) -2 pl

5 4 and T - i f 1 / « * ^ 3E It should be noted that we have to choose 4 c p»»h» a > O, so that,. E P.H. Then we replace 1/p in (a,«) 2 by l/(p 2 +e) and take finally the m (a,») limit E -* 0. Connection With the Virlal The connection between time delay and the virial was already observed in [6] though here restricted to a central field and expressing the relevant terms by the phase shift and not by the S-matrix. He'want to prove the equivalence in our context. With D as before +T. r _ 1 iht ft3 _, -iht 1, iht _ -iht -iht _ iht. L / dt e [H,D] e» (e De - e De ) = H H _1> = ~(p 2 (T)T + p 2 (-T)T + D(T) - D(-T)). n On the other hand it equals +T +T - ~ d J \ dt. - 1 e iht e iol He -iod e -iht»/dt \ ** *# (p* 2 - ^o.«xvv) e " i H t an ' H ' n -T -T = +T = 4T - / dt i e iht (2V + xvv) e~ i H t. H -T If we take into account that 1/p 2-1/p 2 1/2H and further, that our V is tntegrabel in time aid its derivative with respect to time is bounded, so that p 2 (+T) and p 2 (-T) converge to 2H faster than 1/T, we can conclude +T T = - lim \ J e i H t [~(2V + x V) + (2V + x V) ] e" i H t dt. T-w T Through this expression we see that T exists for potentials such that V ar.d xvv fall off like r" 1 " 6.

6 5 Furthermore one can make conclusions about the sign of the time delay. Consider e.g. a purely repulsive potential: Due to repulsion the path of the particle will become shorter, due to energy conservation the velocity of the particle will become smaller and the virial tells us which effect -v dominates. Take V(r) = c r. Then '-T/*'l«"5l For v = 2, t = 0, the phase shift is independent of the energy. For v < 2, i < 0, so the change in the velocity is the dominant effect, whereas for v > 2 (where scattering theory exists for repulsive potentials) the length of the path is the relevant one. We also see that for these potentials the phase shift is araonotonicfunction of the energy. Time Delay for n Particles Based on the definition of [1] the idea cf time delay was generalized to n particle scattering theory in [10], We will sketch how this generalization can be done for our definition and leads to the same result. We ignore our insufficient knowledge about the existence and completeness of wave operators. As usual let H be the channel Hamiltonians, x, p the coordinates and momenta between the clusters and K the corresponding kinetic energy. Assure we start with a <J>. state. With Q ^ = projection ß i n a iht -ih t on the range of st lim e e a P we write t-*±.. -ih t - a" -iht n 1 r,. ^.i_ iht a D e e Q - T = > lim <* Q, e e a ct+ ~ i H t *V = " i H 3 t iht n u - Q & _ e e w D g e e Qg_l* > where D = -r {x p +px} and D = { D + D }. Then, using a 2 a a a a a K a a K a a i s" s p = p aß ctg ß ß T = V <$ s :! [5 S - S D lit > B 2 L ß in 1 aß 1 a aß aß ß J > ß in a

7 6 Writing S = /db 6(K -E+E ) S Q(E) =/des JE) 6(K - E + E.), aß ' a ot aß ' a ß ß ß E, E the energies of the clusters, we obtain again by partial integration a 6 5 a S aß " S aß 5 ß " " 4 i ' de 6 { \ ' E ) ät" and the whole time delay becomes 3S (E) x --2il8«JdB6(H a -B)-^-. a»s (E) ' The connection with the virial can be found by writing T o r i.n fj^ ih t,_ -, -iht. (.. iht,_ -, -iht, T = I lim <*[i /dt e l 1^ 0 e ^ + i Jdt e l 1 «' 0 «' e ' " a T-x» o -T - D (0) + D.(O)!*>. a ß Unfortunately results on H - and H-smoothness are missing. Also nothing can be said about ".he sign of time delay essentially due to the fact that also in the one particle case results are only available for central forces and for many body theory this has no meaning.

8 » _ "»" Ack now1edgeme n t I want to thank Dr. M. Breitenecker and Dr. P. Gesztesy for making me aware of ref. [6] and [7] and Prof. W. Thirring and Dr. M. Combescure for encouragement and stirnulttting discussions. References [1] J.M. Jauch, B. Misra, K.B. Sinha: Helv. Phys. Acta 45_, 393 (1972) [2] R.B. Lavine: Constructive Estimates in Quantum Scattering, Preprint (1076) [3] M. Reed, B. Simon: Methods of Mathematical Phyrics III, Academic Press, New York (1978) [4] w. Thirring: Lehrbuch der Mathematischen Physik III, p.156, Springer, Wien (1979) [5] Ph.A. Martin, CMP 4J_, 221 (1976) [6] Y.N. Demkov: Soviet Phys.-Dok, 393 (1961) [7 J.O. Hirschfelder: Phys. Rev. A, J2' H979) [8J T.A. Osborne, D. Bolle: J. M. P. JU3, 437 (1977) [9] E. Wigner: Phys. Rev. 98, 145 (1955) [lo] T.A. Osborne, D. Bolle: J.M.P. 20, 1121 (1979) i

9 Acknowledgement I want to thank Dr. M. Breitenecker and Dr. P. Gesztesy for making me aware of ref. [6] and [7] and Prof. W. Thirring for encouragement and stimulating discussions. References [1] J.M. Jauch, B. Misra, K.B. Sinha: Helv. Phys. Acta 45_, 398 (1972) [2] R.B. Lavine: Constructive Estimates in Quantum Scattering, Preprint (1976) [3] M. Reed, B. Simon: Methods of Mathematical Physics III, Academic Press, New York (1978) [4] W. Thirring: Lehrbuch der Mathematischen Physik III, p.155, Springer, Wien (1979) [5] Ph.A. Martin, CMP 41_, 221 (1976) [6] Y.N. Demkov: Soviet Phys.-Dok 6_, 393 (1961) [7] J.O. Hirschfelder: Phys. Rev. A, \$_, 2463 (1979) [8] T.A. Osborne, D. 3olle: J. M. P. ^i» 4 3? (1977) [9] E. Wigner: Phys. Rev. 98, 145 (1955)

10 FIG.1

arxiv: v1 [hep-ph] 22 Jun 2012

arxiv: v1 [hep-ph] 22 Jun 2012 Electroweak hadron structure in point-form dynamics heavy-light systems arxiv:1206.5150v1 [hep-ph] 22 Jun 2012 and Wolfgang Schweiger Institut für Physik, Universität Graz, A-8010 Graz, Austria E-mail:

More information

Moller Operators for Scattering on Singular Potentials

Moller Operators for Scattering on Singular Potentials Commun. math. Pliys. 2, 147 154 (1966) Moller Operators for Scattering on Singular Potentials J. KUPSCH and W. SANDHAS Physikalisches Institut der Universitat Bonn Received August 15, 1965 Abstract. The

More information

Symmetry and degeneracy

Symmetry and degeneracy Symmetry and degeneracy Let m= degeneracy (=number of basis functions) of irrep i: From ( irrep) 1 one can obtain all the m irrep j by acting with off-diagonal R and orthogonalization. For instance in

More information

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Pasteurgasse 6/7 Institute for Mathematical Physics A-090 Wien, Austria Why Schrodinger's Cat is Most Likely to be Either Alive or Dead H. Narnhofer W. Thirring

More information

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. Letters in Math. Phys. 28 (1993), 251 255 A QUANTUM GROUP LIKE STRUCTURE ON NON COMMUTATIVE 2 TORI Andreas Cap Peter W. Michor Hermann Schichl Institut für Mathematik, Universität Wien, Strudlhofgasse

More information

Matrices of Dirac Characters within an irrep

Matrices of Dirac Characters within an irrep Matrices of Dirac Characters within an irrep irrep E : 1 0 c s 2 c s D( E) D( C ) D( C ) 3 3 0 1 s c s c 1 0 c s c s D( ) D( ) D( ) a c b 0 1 s c s c 2 1 2 3 c cos( ), s sin( ) 3 2 3 2 E C C 2 3 3 2 3

More information

Mathematical PhySΪCS by Springer-Verlag 1978

Mathematical PhySΪCS by Springer-Verlag 1978 Commun. math. Phys. 58, 205 210 (1978) Communications in Mathematical PhySΪCS by Springer-Verlag 1978 N Body Scattering in the Two-Cluster Region^ Barry Simon**" Department of Mathematics, Weizmann Institute

More information

Time delay for an abstract quantum scattering process

Time delay for an abstract quantum scattering process Time delay for an abstract quantum scattering process S. Richard Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, E-mail: richard@math.univ-lyon1.fr

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Remark on quantum mechanics with conformal Galilean symmetry

Remark on quantum mechanics with conformal Galilean symmetry LMP-TPU 9/08 Remark on quantum mechanics with conformal Galilean symmetry arxiv:0808.1553v3 [hep-th] 26 Sep 2008 A.V. Galajinsky Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050

More information

arxiv:quant-ph/ v2 21 May 1998

arxiv:quant-ph/ v2 21 May 1998 Minimum Inaccuracy for Traversal-Time J. Oppenheim (a), B. Reznik (b), and W. G. Unruh (a) (a) Department of Physics, University of British Columbia, 6224 Agricultural Rd. Vancouver, B.C., Canada V6T1Z1

More information

arxiv: v2 [nucl-th] 11 Jun 2018

arxiv: v2 [nucl-th] 11 Jun 2018 Nuclear spin dependence of time reversal invariance violating effects in neutron scattering Vladimir Gudkov Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 908,

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Lyapunov Stability - I Hanz Richter Mechanical Engineering Department Cleveland State University Definition of Stability - Lyapunov Sense Lyapunov

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

Microjoule mode-locked oscillators: issues of stability and noise

Microjoule mode-locked oscillators: issues of stability and noise Microjoule mode-locked oscillators: issues of stability and noise Vladimir L. Kalashnikov Institut für Photonik, TU Wien, Gusshausstr. 7/387, A-14 Vienna, Austria Alexander Apolonski Department für Physik

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

Multiple Time Analyticity of a Statistical Satisfying the Boundary Condition

Multiple Time Analyticity of a Statistical Satisfying the Boundary Condition Publ. RIMS, Kyoto Univ. Ser. A Vol. 4 (1968), pp. 361-371 Multiple Time Analyticity of a Statistical Satisfying the Boundary Condition By Huzihiro ARAKI Abstract A multiple time expectation ^(ABjC^)---^^))

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE BRANKO CURGUS and BRANKO NAJMAN Denitizable operators in Krein spaces have spectral properties similar to those of selfadjoint operators in Hilbert spaces.

More information

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Physics 28. Quantum Field Theory. Professor Dine Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Field Theory in a Box Consider a real scalar field, with lagrangian L = 2 ( µφ)

More information

MITOCW watch?v=7q32wnm4dew

MITOCW watch?v=7q32wnm4dew MITOCW watch?v=7q32wnm4dew BARTON ZWIEBACH: Hydrogen atom is the beginning of our analysis. It still won't solve differential equations, but we will now two particles, a proton, whose coordinates are going

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Upper quantum Lyapunov exponent and parametric oscillators

Upper quantum Lyapunov exponent and parametric oscillators JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER NOVEMBER 2004 Upper quantum Lyapunov exponent and parametric oscillators H. R. Jauslin, O. Sapin, and S. Guérin Laboraoire de Physique CNRS - UMR 5027,

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

Dimensional analysis, regularization and extra dimensions in electrostatics

Dimensional analysis, regularization and extra dimensions in electrostatics Dimensional analysis, regularization and extra dimensions in electrostatics Daniel Erni (BA 34, daniel.erni@uni-due.de) Allgemeine und Theoretische Elektrotechnik (ATE) Abteilung für Elektrotechnik und

More information

arxiv:hep-th/ v1 17 Jun 2003

arxiv:hep-th/ v1 17 Jun 2003 HD-THEP-03-28 Dirac s Constrained Hamiltonian Dynamics from an Unconstrained Dynamics arxiv:hep-th/030655v 7 Jun 2003 Heinz J. Rothe Institut für Theoretische Physik Universität Heidelberg, Philosophenweg

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

view that the mathematics of quantum mechanics (in particular a positive denite scalar product) emerges only at an approximate level in a semiclassica

view that the mathematics of quantum mechanics (in particular a positive denite scalar product) emerges only at an approximate level in a semiclassica Mode decomposition and unitarity in quantum cosmology Franz Embacher Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5, A-090 Wien E-mail: fe@pap.univie.ac.at UWThPh-996-67 gr-qc/96055

More information

Non-Differentiable Embedding of Lagrangian structures

Non-Differentiable Embedding of Lagrangian structures Non-Differentiable Embedding of Lagrangian structures Isabelle Greff Joint work with J. Cresson Université de Pau et des Pays de l Adour CNAM, Paris, April, 22nd 2010 Position of the problem 1. Example

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Oct 2006

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Oct 2006 arxiv:cond-mat/8v [cond-mat.stat-mech] 5 Oct Coherent dynamics on hierarchical systems Alexander Blumen, Veronika Bierbaum, and Oliver Mülken Theoretische Polymerphysik, Universität Freiburg, Hermann-Herder-Straße,

More information

CHAPTER 4. Cluster expansions

CHAPTER 4. Cluster expansions CHAPTER 4 Cluster expansions The method of cluster expansions allows to write the grand-canonical thermodynamic potential as a convergent perturbation series, where the small parameter is related to the

More information

Lecture 13: Pole/Zero Diagrams and All Pass Systems

Lecture 13: Pole/Zero Diagrams and All Pass Systems EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 13: Pole/Zero Diagrams and All Pass Systems No4, 2001 Prof: J. Bilmes

More information

The Helically Reduced Wave Equation as a Symmetric Positive System

The Helically Reduced Wave Equation as a Symmetric Positive System Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 The Helically Reduced Wave Equation as a Symmetric Positive System Charles G. Torre Utah State University Follow this

More information

Exponential stability of families of linear delay systems

Exponential stability of families of linear delay systems Exponential stability of families of linear delay systems F. Wirth Zentrum für Technomathematik Universität Bremen 28334 Bremen, Germany fabian@math.uni-bremen.de Keywords: Abstract Stability, delay systems,

More information

Imprints of Classical Mechanics in the Quantum World

Imprints of Classical Mechanics in the Quantum World Imprints of Classical Mechanics in the Quantum World Schrödinger Equation and Uncertainty Principle Maurice de Gosson University of Vienna Faculty of Mathematics, NuHAG October 2010 (Institute) Slides

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim. 0.1. Stratified spaces. References are [7], [6], [3]. Singular spaces are naturally associated to many important mathematical objects (for example in representation theory). We are essentially interested

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

QUANTUM BOUND STATES WITH ZERO BINDING ENERGY

QUANTUM BOUND STATES WITH ZERO BINDING ENERGY ψ hepth@xxx/940554 LA-UR-94-374 QUANTUM BOUND STATES WITH ZERO BINDING ENERGY Jamil Daboul Physics Department, Ben Gurion University of the Negev Beer Sheva, Israel and Michael Martin Nieto 2 Theoretical

More information

Time in Quantum Physics: from an extrinsic parameter to an in

Time in Quantum Physics: from an extrinsic parameter to an in Time in Quantum Physics: from an extrinsic parameter to an intrinsic observable 60th Anniversary of Abhay Ashtekar II. Institut für Theoretische Physik, Hamburg (based on joint work with Romeo Brunetti

More information

7 Lecture 7: Rational domains, Tate rings and analytic points

7 Lecture 7: Rational domains, Tate rings and analytic points 7 Lecture 7: Rational domains, Tate rings and analytic points 7.1 Introduction The aim of this lecture is to topologize localizations of Huber rings, and prove some of their properties. We will discuss

More information

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004 Microcanonical scaling in small systems arxiv:cond-mat/0406080v1 [cond-mat.stat-mech] 3 Jun 2004 M. Pleimling a,1, H. Behringer a and A. Hüller a a Institut für Theoretische Physik 1, Universität Erlangen-Nürnberg,

More information

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Limitations in the Tunability of the Spin Resonance of 2D Electrons

More information

Ro-vibrational coupling in high temperature thermochemistry of the BBr molecule.

Ro-vibrational coupling in high temperature thermochemistry of the BBr molecule. Ro-vibrational coupling in high temperature thermochemistry of the BBr molecule. Marcin Buchowiecki Institute of Physics, University of Szczecin, Poland AMOC2018 Table of contents 1 2 Summation of ro-vibrational

More information

Mathematical Constraint on Functions with Continuous Second Partial Derivatives

Mathematical Constraint on Functions with Continuous Second Partial Derivatives 1 Mathematical Constraint on Functions with Continuous Second Partial Derivatives J.D. Franson Physics Department, University of Maryland, Baltimore County, Baltimore, MD 15 Abstract A new integral identity

More information

arxiv:hep-th/ v2 5 May 1993

arxiv:hep-th/ v2 5 May 1993 WIS-9/1/Dec-PH arxiv:hep-th/9348v 5 May 1993 NORMALIZATION OF SCATTERING STATES SCATTERING PHASE SHIFTS AND LEVINSON S THEOREM Nathan Poliatzky Department of Physics, The Weizmann Institute of Science,

More information

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM International Mathematical Forum, 2, 2007, no. 67, 3331-3338 On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM Dariush Latifi and Asadollah Razavi Faculty of Mathematics

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DESY 77/7 May 1977 p Recurrences in J/~ + 3~ by II. Z. z., Aydin. Abstract:.. We study the recurre~~~~ decay of the J/~ and show that for this decay gives the following

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

Feynman s path integral approach to quantum physics and its relativistic generalization

Feynman s path integral approach to quantum physics and its relativistic generalization Feynman s path integral approach to quantum physics and its relativistic generalization Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn 405 A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* BY ATHANASIOS PAPOULIS Polytechnic Institute of Brooklyn Introduction. In determining a function r(t) from its Laplace transform R(p) R(p) = [ e"'r(t)

More information

Horizon Entropy and LQG

Horizon Entropy and LQG Horizon Entropy and LQG Carlo Rovelli - Major steps ahead in LQG, recently (see in particular the talks of Pranzetti, Perez and Bianchi) - Here: introduction to the problem, some general considerations,

More information

Thermodynamic Functions at Isobaric Process of van der Waals Gases

Thermodynamic Functions at Isobaric Process of van der Waals Gases Thermodynamic Functions at Isobaric Process of van der Waals Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts Sciences, Osaka Prefecture University, Sakai, Osaka, 599-853,

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

On angular momentum balance for particle systems with periodic boundary conditions

On angular momentum balance for particle systems with periodic boundary conditions On angular momentum balance for particle systems with periodic boundary conditions Vitaly A. Kuzkin 1 Institute for Problems in Mechanical Engineering RAS Saint Petersburg State Polytechnical University

More information

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form:

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form: Physics 3550, Fall 2011 Two Body, Central-Force Problem Relevant Sections in Text: 8.1 8.7 Two Body, Central-Force Problem Introduction. I have already mentioned the two body central force problem several

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for athematical Physics A-1090 Wien, Austria Regularity of the nodal sets of solutions to Schrödinger equations. Hoffmann-Ostenhof T.

More information

Derivation of Mean-Field Dynamics for Fermions

Derivation of Mean-Field Dynamics for Fermions IST Austria Mathematical Many Body Theory and its Applications Bilbao, June 17, 2016 Derivation = show that solution of microscopic eq. is close to solution of effective eq. (with fewer degrees of freedom)

More information

Selective quasienergies from short time cross-correlation probability amplitudes by the filter-diagonalization method

Selective quasienergies from short time cross-correlation probability amplitudes by the filter-diagonalization method PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998 Selective quasienergies from short time cross-correlation probability amplitudes by the filter-diagonalization method Markus Glück, 1 H. Jürgen Korsch, 1

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Geometric control for atomic systems

Geometric control for atomic systems Geometric control for atomic systems S. G. Schirmer Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk Abstract The problem of explicit generation

More information

First results from dynamical chirally improved fermions

First results from dynamical chirally improved fermions First results from dynamical chirally improved fermions arxiv:hep-lat/595v1 1 Sep 25 C. B.Lang Karl-Franzens-Universität Graz, Austria E-mail: christian.lang@uni-graz.at Karl-Franzens-Universität Graz,

More information

arxiv:hep-ph/ v2 6 Oct 1998

arxiv:hep-ph/ v2 6 Oct 1998 hep-ph/983426 HEPHY PUB 686 UWThPh 1998 8 arxiv:hep-ph/983426v2 6 Oct 1998 CP Violation in e + e t t: Energy Asymmetries and Optimal Observables of b and b Quarks A. Bartl Institut für Theoretische Physik,

More information

B. Differential Equations A differential equation is an equation of the form

B. Differential Equations A differential equation is an equation of the form B Differential Equations A differential equation is an equation of the form ( n) F[ t; x(, xʹ (, x ʹ ʹ (, x ( ; α] = 0 dx d x ( n) d x where x ʹ ( =, x ʹ ʹ ( =,, x ( = n A differential equation describes

More information

Existence of global solutions of some ordinary differential equations

Existence of global solutions of some ordinary differential equations J. Math. Anal. Appl. 340 (2008) 739 745 www.elsevier.com/locate/jmaa Existence of global solutions of some ordinary differential equations U. Elias Department of Mathematics, Technion IIT, Haifa 32000,

More information

The Second Virial Coefficient & van der Waals Equation

The Second Virial Coefficient & van der Waals Equation V.C The Second Virial Coefficient & van der Waals Equation Let us study the second virial coefficient B, for a typical gas using eq.v.33). As discussed before, the two-body potential is characterized by

More information

Time as a dynamical variable

Time as a dynamical variable Physics Letters A 37 003) 359 364 wwwelseviercom/locate/pla Time as a dynamical variable G Bhamathi, ECG Sudarshan Center for Particle Theory, Department of Physics, University of Texas, Austin, TX 787-08,

More information

Section 10: Many Particle Quantum Mechanics Solutions

Section 10: Many Particle Quantum Mechanics Solutions Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

More information

THE NUMBER OF ORTHOGONAL CONJUGATIONS

THE NUMBER OF ORTHOGONAL CONJUGATIONS THE NUMBER OF ORTHOGONAL CONJUGATIONS Armin Uhlmann University of Leipzig, Institute for Theoretical Physics After a short introduction to anti-linearity, bounds for the number of orthogonal (skew) conjugations

More information

[7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108

[7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108 [5] G. Parisi, Statistical Field Theory, Addisson Wesley 1992. [6] U. Wol, Phys. Lett. 228B 3(1989) [7] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Phys. Lett. B 108 (1982) 331.

More information

arxiv: v3 [math.dg] 19 Jun 2017

arxiv: v3 [math.dg] 19 Jun 2017 THE GEOMETRY OF THE WIGNER CAUSTIC AND AFFINE EQUIDISTANTS OF PLANAR CURVES arxiv:160505361v3 [mathdg] 19 Jun 017 WOJCIECH DOMITRZ, MICHA L ZWIERZYŃSKI Abstract In this paper we study global properties

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau

An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau Laboratoire Jean Leray UMR CNRS-UN 6629 Département de Mathématiques 2, rue de la Houssinière

More information

The first order formalism and the transition to the

The first order formalism and the transition to the Problem 1. Hamiltonian The first order formalism and the transition to the This problem uses the notion of Lagrange multipliers and Legendre transforms to understand the action in the Hamiltonian formalism.

More information

Synthesis of passband filters with asymmetric transmission zeros

Synthesis of passband filters with asymmetric transmission zeros Synthesis of passband filters with asymmetric transmission zeros Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Passband filters with asymmetric zeros Placing asymmetric

More information

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase)

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Morrison and Boyd, Organic Chemistry, 1973 Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Electron wave function with n, l, m l => orbitals Molecular orbital theory 1) molecule

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

Intent. a little geometry of eigenvectors, two-dimensional example. classical analog of QM, briefly

Intent. a little geometry of eigenvectors, two-dimensional example. classical analog of QM, briefly Intent a little geometry of eigenvectors, two-dimensional example classical analog of QM, briefly review of the underpinnings of QM, emphasizing Hilbert space operators with some simplifying assumptions???

More information

Physical justification for using the tensor product to describe two quantum systems as one joint system

Physical justification for using the tensor product to describe two quantum systems as one joint system Physical justification for using the tensor product to describe two quantum systems as one joint system Diederik Aerts and Ingrid Daubechies Theoretical Physics Brussels Free University Pleinlaan 2, 1050

More information

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t))

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t)) Notations In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics Each particle is characterized by its position an velocity x i t, v i t R d R d at time

More information

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University. Lecture 4 Chapter 4: Lyapunov Stability Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 4 p. 1/86 Autonomous Systems Consider the autonomous system ẋ

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

arxiv:nucl-th/ v1 26 Apr 2000

arxiv:nucl-th/ v1 26 Apr 2000 Van der Waals Excluded Volume Model for Lorentz Contracted Rigid Spheres K.A. Bugaev,2, M.I. Gorenstein,2, H. Stöcker and W. Greiner arxiv:nucl-th/000406v 26 Apr 2000 Institut für heoretische Physik, Universität

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

20. The pole diagram and the Laplace transform

20. The pole diagram and the Laplace transform 95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

A NOTE ON FUNCTION SPACES GENERATED BY RADEMACHER SERIES

A NOTE ON FUNCTION SPACES GENERATED BY RADEMACHER SERIES Proceedings of the Edinburgh Mathematical Society (1997) 40, 119-126 A NOTE ON FUNCTION SPACES GENERATED BY RADEMACHER SERIES by GUILLERMO P. CURBERA* (Received 29th March 1995) Let X be a rearrangement

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

The Twisting Trick for Double Well Hamiltonians

The Twisting Trick for Double Well Hamiltonians Commun. Math. Phys. 85, 471-479 (1982) Communications in Mathematical Physics Springer-Verlag 1982 The Twisting Trick for Double Well Hamiltonians E. B. Davies Department of Mathematics, King's College,

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

More information