conventions and notation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "conventions and notation"

Transcription

1 Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space H. Let z è and z è be eigenstates of the operator corresponding to component of spin along the z coordinate axis, S z z è z è, S z z è z è. In this basis, the operators corresponding to spin components projected along the z,y,x coordinate axes may be represented by the following matrices: S z z 0 0, S x x 0 0, S y y 0 i. i 0 We commonly use x è to denote eigenstates of S x, and similarly for S y. The dimensionless matrices x, y, z are known as the Pauli matrices, and satisfy the following commutation relations: x, y i z, y, z i x, z, x i y. 3 In addition, Tr i j ij, 4 and x y z. 5 The Pauli matrices are both Hermitian and unitary. An arbitrary state for an isolated spin- particle may be written è cos exp i z è sin exp i z è, 6 where and are real parameters that may be chosen in the ranges 0 â â and 0 â â. Note that there should really be four real degrees of freedom for a vector in a

2 two-dimensional complex Hilbert space, but one is removed by normalization and another because we don t care about the overall phase of the state of an isolated quantum system. Through the, representation, an arbitrary pure state may be represented as a point on the surface of a sphere, often referred to as the Bloch Sphere, with as polar angle (latitude) and as azimuthal angle (longitude). The vector pointing from the original (center) of the Bloch Sphere to the point representing a quantum state is known as the Bloch vector corresponding to that state. The north and south poles thus correspond to z è and z è, respectively, and x è Û, 0, x è Û,, y è Û,, y è Û, 3. 7 With the sign conventions we have chosen, directions on the Bloch Sphere correspond to directions in coordinate space. Hence the state corresponding to spin pointing along a unit vector û u x u y u z 8 (with u x u y u z ) has Bloch angles sin u x u y, tan u y u x. 9 Likewise, the operator corresponding to component of spin along the û-direction is S u S û sin cos S x sin sin S y cos S z Û cos sin exp i sin exp i cos. 0 The, representation defined above has the additional nice property that

3 ès x è cos exp i è z sin exp i è z 0 0 cos exp i z è sin exp i z è cos exp i è z sin exp i è z cos exp i z è sin exp i z è cos sin exp i sin cos exp i sin cos, ès y è cos exp i è z sin exp i è z 0 i i 0 cos exp i z è sin exp i z è cos exp i è z sin exp i è z icos exp i z è isin exp i z è icos sin exp i isin cos exp i sin sin, ès z è cos exp i è z sin exp i è z 0 0 cos exp i z è sin exp i z è cos exp i è z sin exp i è z cos exp i z è sin exp i z è cos sin cos. Hence we see that S â ès x è x ès y è y ès z è z, as a vector in coordinate space, coincides exactly with the Bloch vector. It is important to remember that orthogonal states in H are represented by antipodal points on the Bloch sphere that is, points with angular separation. In Hilbert space or in coordinate space, of course, orthogonal vectors have angular separation /. Hence the division by in equation (6), which defines,. The origin of this discrepancy has to do with the fact that the operators S u correspond to a spinor representation of the 3D rotation group on a D complex vector space (more on this next term). 3

4 Dynamics on the Bloch Sphere static fields As long as we are concerned only with the spin degree of freedom for a spin- particle (ignoring particle motion), Hamiltonian dynamics depend only on the particle s gyromagnetic ratio and the applied magnetic field B : H S B S x B x S y B y S z B z. When B is static (time-independent), we are free to choose a coordinate system in which the z axis corresponds to the direction of B. Then H S z B z L S z, 3 where L B z is known as the Larmor frequency, and the energy eigenstates simply correspond to the S z eigenstates, H z è z è, L, H z è z è, L. 4 The time evolution of an arbitrary initial state t 0 è cos 0 exp i 0 z è sin 0 exp i 0 is thus given by t è cos 0 exp i 0 exp i t/ z è sin 0 exp i 0 exp i t/ z è, cos 0 exp i t z è sin 0 exp i t z è, 5 z è, 6 where t 0 L t. 7 Hence, we find that the Bloch vector (from the center of the Bloch sphere to the point representing t è) simply precesses around the z axis with angular frequency L. To see this another way, we can write S â ès x è x ès y è y ès z è z sin 0 cos t x sin 0 sin t y cos 0 z, 8 which we may also use to denote that the instantaneous direction of the spin s precession corresponds to that of S B (note that is negative for a bare electron, but may be either positive or negative for a composite spin- particle such as an atom or nucleus). In fact, we may write d S S B, 9 in perfect agreement with the classical equations of motion for a magnetic moment in a static magnetic field! Since this basic dynamical picture should be independent of the coordinate system we 4

5 have chosen, we may conclude in general that the evolution of a spin- particle in an applied magnetic field B corresponds to Larmor precession of the spin around B with angular frequency L B. Moreover, this precession should proceed precisely as predicted by the vector equation (9). Hence, if 0 è z è and B x,b y,b z B 0,0,0, we can guess that (assuming 0) t è sin Lt/ z è icos Lt/ z è. 0 Here we have inferred the relative phase of exp i i from the geometric picture that t èshould proceed from z è to z è through y è. We may compute explicitly, 0 è z è x è x è, t è exp i Lt/ x è exp i Lt/ x è exp i Lt/ z è z è exp i Lt/ z è x è isin Lt/ z è cos Lt/ z è i sin Lt/ z è icos Lt/ z è, which agrees with our prediction (0), up to overall phase. The basic phenomenon of Larmor precession is quite useful in experiments where one needs to detect, e.g., the presence of spin- particles in a given volume of space. One standard detection method is to apply a large magnetic field B perpendicular to the expected direction of S. The spins will then precess at an appropriate Larmor frequency. Since the spins project a magnetic field pattern whose orientation is determined by S, Larmor precession also implies a period modulation in the magnetic field flux through any plane containing B. Using an inductive pickup coil, this periodic flux modulation can be detected via the induced EMF. According to Lenz s Law, this induced EMF should increase with the rate of change of the magnetic flux through the pickup coil, which in turn should increase with L. Hence, large B translates into high sensitivity in such detection methods. Note that in both of the Larmor precession examples above, t èis only periodic in L up to an overall minus sign. That is, when t / L, t è 0 è. This sign flip, which is sometimes known as the spinor property of spin- state vectors, is not just some artifact of our definitions of, on the Bloch Sphere it is real, and can be observed in experiments. To see how this is possible, consider a composite system involving both a spin- particle and an auxilliary two-dimensional quantum system. We ll denote the spin- Hilbert space by H A and the auxilliary Hilbert space by H B. What we need is to arrange a situation where the overall Hamiltonian is given by H AB B èè B å S z B z, where 0 B è, B è is an orthonormal basis for H B and S z acts on H A only. This type of Hamiltonian could be realized, for example, if H B corresponds to something like the position of the spin- particle being inside or outside of a region of applied magnetic field B z. Then if the initial state 5

6 AB 0 è 0 B è B è å x è 0 B è å x è B è å x è 3 is prepared, the state at a time t / L later should be AB t è 0 B è å x è B è å x è 0 B è B è å x è. 4 Hence è AB t AB 0 è 0, 5 purely by virtue of the spinor property of the spin degree of freedom! Before moving on to time-dependent magnetic fields, let us note the following fact. If we start out with a static applied field B B 0 z 6 and a spin- particle prepared in the state z è (or z è), there is no finite perturbation W S B (where B lies in the x y plane) we can add to H 0 S z B 0 such that the particle will eventually evolve into the state z è (or z è). Simply put, this is because for nonzero B 0 there is no finite B such that B tot B 0 z B is orthogonal to the z coordinate axis. Hence d S S B tot 7 will never map z è into z è (or vice-versa). Since one commonly utilizes large holding fields B 0 in order to achieve strong induction signals in spin-detection experiments (as described above), it would appear that more sophisticated control measures must be applied in order to do things like flip the spins in an experimental sample. This leads us now to time-dependent magnetic fields and the phenomenon of magnetic resonance. Time-dependent magnetic fields In the previous section we examined the phenomenon of Larmor precession, which for a static applied magnetic field B B 0 z leads to state evolutions of the form t è cos 0 t exp i z è sin 0 t exp i z è 8 with t 0 Lt 0 B 0 t. Formally, this state evolution corresponds to Hamiltonian evolution that can also be described as the effect of a unitary time-development operator: t è exp ih 0 t/ 0 è exp i L z t/ 0 è. 9 In what follows we shall assume the existence of a fixed holding field B B 0 z at all times. 6

7 Accordingly, it will be convenient to work in a rotating frame that formally eliminates the constant Larmor precession. Although it may not be obvious that this is worth the trouble, it is. Geometrically, we can think of defining time-dependent coordinate axes x t x cos t y sin t, y t x sin t y cos t, z t z, 30 such that if we set L we may expect S x t sin cos t cos L t sin sin t sin L t, S y t sin cos t sin L t sin sin t cos L t, S z t cos, 3 all to be constant. Indeed, since cos t cos 0 L t cos 0 cos L t sin 0 sin L t, sin t sin 0 L t sin 0 cos L t cos 0 sin L t, 3 we have S x t sin cos 0 cos L t sin 0 sin Lt cos Lt sin sin 0 cos Lt cos 0 sin Lt sin Lt sin cos 0, S y t sin cos 0 cos L t sin 0 sin L t sin L t sin sin 0 cos L t cos 0 sin L t cos L t sin sin In terms of the quantum state vector, however, it would appear that we should define t è exp i L z t/ t è â O z t è 34 (here we are defining the unitary operator O z ). Then t è 0 èas long as the Hamiltonian is given simply by H 0 L S z. 35 However, in order to continue using t èin the presence of perturbations, we need to derive its general equation of motion in the rotating frame. Let us also return to a general setting in which the frequency that defines the rotating frame via t è O z t è exp i z t/ t è 36 is independent of L. We can start from the Schrödinger Equation i d t è H t è HO z t è. 37 7

8 On the left-hand side, we may also apply the chain rule to yield i d t i d O è z t è i do z t è O d z t è. 38 Hence, combining the two expressions and multiplying through from the left by O z,we obtain i d t è O z HO do z io z z t è â H t è. 39 Recall that since O z is unitary, O z Oz. Hence do io z z i exp i d z t/ exp i z t/ i exp i d z t/ n! i z t/ n i exp i z t/ n i exp i z t/ n n0 n n! i z t/ n i z / n! i z t/ n i z / i exp i z t/ exp i z t/ i z / z. 40 Now we can finally make use of all this to solve for the effects of a time-dependent perturbation, W t b x cos t y sin t S b cos t x sin t y. 4 Here b is a magnetic field strength. At this point it is convenient to define new operators x i y, x i y, 4 in terms of which W t b exp i t exp i t. 43 Noting the commutation relations 8

9 , z x, z i y, z i y x,, z x, z i y, z i y x we have H, 44 O z HO do z io z z O z H 0 W O z z O z L z b exp i t exp i t O z z ' z b exp i z t/ exp i t exp i t exp i z t/, 45 where ' â L and we have used the fact that z,o z z,exp i z t/ 0. Next we need to compute exp i z t/ n0 n0 n0 n! i z t/ n n! i t/ n z n n! i t/ n n exp i t/, 46 where in going from the second to the third line we have used the fact that z x i y z Similarly, exp i z t/ exp i t/, exp i z t/ exp i t/, exp i z t/ exp i t/, 48 9

10 and we finally arrive at H ' z b ' z b x where S B eff, 49 B eff B 0 z b x. 50 Recall that L B 0, so if the z component of B eff vanishes. And in general, we have the simple result that if ' â L, the magnitude of the effective holding field is greatly reduced in the rotating frame. In particular, if '0then the Bloch vector corresponding to t èshould simply precess around a static field b x in the rotating frame. It thus follows that for an initial state such as 0 è z è, the application of a rotating field B t b x cos L t y sin L t 5 will lead to t è z è at time t / b. This technique enables perfect spin flips even in the presence of a large holding field B 0 z. Note however that if ' â 0, it is still impossible to achieve z è z è with finite b. Hence it is crucial to apply the rotating field B t exactly at the resonance frequency L. As long as this condition is met, z è z è will happen eventually, even for very small b (as long as we ignore dissipation!). In this sense we find that the frequency of the applied perturbation is much more important than its magnitude, at least for the purpose of perfectly flipping spins. This is generally referred to as the phenomenon of magnetic (or two-level) resonance. Dynamics in the rotating frame Having derived the form of the effective Hamiltonian H ' z b x 5 in the rotating frame, we are able to apply our earlier results about the general behavior of two-level systems under static perturbations. We may define as well as H 0 H 0 ' z, W b x, 53 E è, E ', H 0 E è, E ', 54 where è Û z è, è Û z è. 55 Then, e.g., the eigenvalues of H are given by 0

11 E E W E W E W E W 4 W. 56 With these exact expressions for the energy eigenvalues and eigenvectors, it is straightforward to compute the time-evolution of an arbitrary initial state in the rotating frame. We just have to be careful to transform back to the static (laboratory) frame at the end of the calculation, via t è O z t è. 57

i = cos 2 0i + ei sin 2 1i

i = cos 2 0i + ei sin 2 1i Chapter 10 Spin 10.1 Spin 1 as a Qubit In this chapter we will explore quantum spin, which exhibits behavior that is intrinsically quantum mechanical. For our purposes the most important particles are

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 PHYS 20602 Handout 1 Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 Handout Contents Examples Classes Examples for Lectures 1 to 4 (with hints at end) Definitions of groups and vector

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl.

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl. Physics 505 Homework No 8 s S8- Spinor rotations Somewhat based on a problem in Schwabl a) Suppose n is a unit vector We are interested in n σ Show that n σ) = I where I is the identity matrix We will

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Matrices and Deformation

Matrices and Deformation ES 111 Mathematical Methods in the Earth Sciences Matrices and Deformation Lecture Outline 13 - Thurs 9th Nov 2017 Strain Ellipse and Eigenvectors One way of thinking about a matrix is that it operates

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

The Stern-Gerlach experiment and spin

The Stern-Gerlach experiment and spin The Stern-Gerlach experiment and spin Experiments in the early 1920s discovered a new aspect of nature, and at the same time found the simplest quantum system in existence. In the Stern-Gerlach experiment,

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Density Matrices. Chapter Introduction

Density Matrices. Chapter Introduction Chapter 15 Density Matrices 15.1 Introduction Density matrices are employed in quantum mechanics to give a partial description of a quantum system, one from which certain details have been omitted. For

More information

4. Two-level systems. 4.1 Generalities

4. Two-level systems. 4.1 Generalities 4. Two-level systems 4.1 Generalities 4. Rotations and angular momentum 4..1 Classical rotations 4.. QM angular momentum as generator of rotations 4..3 Example of Two-Level System: Neutron Interferometry

More information

Physics 4022 Notes on Density Matrices

Physics 4022 Notes on Density Matrices Physics 40 Notes on Density Matrices Definition: For a system in a definite normalized state ψ > the density matrix ρ is ρ = ψ >< ψ 1) From Eq 1 it is obvious that in the basis defined by ψ > and other

More information

Symmetries, Groups, and Conservation Laws

Symmetries, Groups, and Conservation Laws Chapter Symmetries, Groups, and Conservation Laws The dynamical properties and interactions of a system of particles and fields are derived from the principle of least action, where the action is a 4-dimensional

More information

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03 Page 5 Lecture : Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 008/10/0 Date Given: 008/10/0 Inner Product Spaces: Definitions Section. Mathematical Preliminaries: Inner

More information

Hardy s Paradox. Chapter Introduction

Hardy s Paradox. Chapter Introduction Chapter 25 Hardy s Paradox 25.1 Introduction Hardy s paradox resembles the Bohm version of the Einstein-Podolsky-Rosen paradox, discussed in Chs. 23 and 24, in that it involves two correlated particles,

More information

Dirac Equation. Chapter 1

Dirac Equation. Chapter 1 Chapter Dirac Equation This course will be devoted principally to an exposition of the dynamics of Abelian and non-abelian gauge theories. These form the basis of the Standard Model, that is, the theory

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

MITOCW watch?v=ztnnigvy5iq

MITOCW watch?v=ztnnigvy5iq MITOCW watch?v=ztnnigvy5iq GILBERT STRANG: OK. So this is a "prepare the way" video about symmetric matrices and complex matrices. We'll see symmetric matrices in second order systems of differential equations.

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision) Particle Physics Michaelmas Term 2011 Prof. Mark Thomson + e - e + - + e - e + - + e - e + - + e - e + - Handout 2 : The Dirac Equation Prof. M.A. Thomson Michaelmas 2011 45 Non-Relativistic QM (Revision)

More information

1 Tensors and relativity

1 Tensors and relativity Physics 705 1 Tensors and relativity 1.1 History Physical laws should not depend on the reference frame used to describe them. This idea dates back to Galileo, who recognized projectile motion as free

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

The 1+1-dimensional Ising model

The 1+1-dimensional Ising model Chapter 4 The 1+1-dimensional Ising model The 1+1-dimensional Ising model is one of the most important models in statistical mechanics. It is an interacting system, and behaves accordingly. Yet for a variety

More information

Angular momentum and spin

Angular momentum and spin Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics

More information

OPERATORS AND MEASUREMENT

OPERATORS AND MEASUREMENT Chapter OPERATORS AND MEASUREMENT In Chapter we used the results of experiments to deduce a mathematical description of the spin-/ system. The Stern-Gerlach experiments demonstrated that spin component

More information

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry Spin Dynamics Basic Theory Operators Richard Green SBD Research Group Department of Chemistry Objective of this session Introduce you to operators used in quantum mechanics Achieve this by looking at:

More information

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H Finite Dimensional systems/ilbert space Finite dimensional systems form an important sub-class of degrees of freedom in the physical world To begin with, they describe angular momenta with fixed modulus

More information

Magnetized Material (contd.) and Electromagnetic Induction

Magnetized Material (contd.) and Electromagnetic Induction Magnetized Material (contd.) and Electromagnetic Induction Lecture 28: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the first half of this lecture we will continue

More information

Group representation theory and quantum physics

Group representation theory and quantum physics Group representation theory and quantum physics Olivier Pfister April 29, 2003 Abstract This is a basic tutorial on the use of group representation theory in quantum physics, in particular for such systems

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Berry s Phase. Erik Lötstedt November 16, 2004

Berry s Phase. Erik Lötstedt November 16, 2004 Berry s Phase Erik Lötstedt lotstedt@kth.se November 16, 2004 Abstract The purpose of this report is to introduce and discuss Berry s phase in quantum mechanics. The quantum adiabatic theorem is discussed

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field:

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: SPIN 1/2 PARTICLE Stern-Gerlach experiment The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: A silver atom

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions PHYS 657 - Fall PHYS 657 - Quantum Mechanics I - Fall Problem Set 7 Solutions Joe P Chen / joepchen@gmailcom For our reference, here are some useful identities invoked frequentl on this problem set: J

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

1.3 Translational Invariance

1.3 Translational Invariance 1.3. TRANSLATIONAL INVARIANCE 7 Version of January 28, 2005 Thus the required rotational invariance statement is verified: [J, H] = [L + 1 Σ, H] = iα p iα p = 0. (1.49) 2 1.3 Translational Invariance One

More information

18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang 18.06 Quiz 2 April 7, 2010 Professor Strang Your PRINTED name is: 1. Your recitation number or instructor is 2. 3. 1. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Nuclear magnetic resonance in condensed matter

Nuclear magnetic resonance in condensed matter University of Ljubljana Faculty of mathematics and physics Physics department SEMINAR Nuclear magnetic resonance in condensed matter Author: Miha Bratkovič Mentor: prof. dr. Janez Dolinšek Ljubljana, October

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 2: LONELY ATOMS - Systems of electrons - Spin-orbit interaction and LS coupling - Fine structure - Hund s rules - Magnetic susceptibilities Reference books: -

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian

E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian Lecture 9 Relevant sections in text: 2.6 Charged particle in an electromagnetic field We now turn to another extremely important example of quantum dynamics. Let us describe a non-relativistic particle

More information

Adiabatic Approximation

Adiabatic Approximation Adiabatic Approximation The reaction of a system to a time-dependent perturbation depends in detail on the time scale of the perturbation. Consider, for example, an ideal pendulum, with no friction or

More information

J = L + S. to this ket and normalize it. In this way we get expressions for all the kets

J = L + S. to this ket and normalize it. In this way we get expressions for all the kets Lecture 3 Relevant sections in text: 3.7, 3.9 Total Angular Momentum Eigenvectors How are the total angular momentum eigenvectors related to the original product eigenvectors (eigenvectors of L z and S

More information

Stochastic Processes

Stochastic Processes qmc082.tex. Version of 30 September 2010. Lecture Notes on Quantum Mechanics No. 8 R. B. Griffiths References: Stochastic Processes CQT = R. B. Griffiths, Consistent Quantum Theory (Cambridge, 2002) DeGroot

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

Rotations and Angular Momentum

Rotations and Angular Momentum qmd1 Rotations and Angular Momentum Robert B. Griffiths Version of 7 September 01 Contents 1 Unitary Transformations 1 Rotations in Space.1 Two dimensions............................................. Three

More information

Imaginary Numbers Are Real. Timothy F. Havel (Nuclear Engineering)

Imaginary Numbers Are Real. Timothy F. Havel (Nuclear Engineering) GEOMETRIC ALGEBRA: Imaginary Numbers Are Real Timothy F. Havel (Nuclear Engineering) On spin & spinors: LECTURE The operators for the x, y & z components of the angular momentum of a spin / particle (in

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 7 I. A SIMPLE EXAMPLE OF ANGULAR MOMENTUM ADDITION Given two spin-/ angular momenta, S and S, we define S S S The problem is to find the eigenstates of the

More information

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Physics 22A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Reading Assignment: Sakurai pp. 56 74, 87 95, Notes 0, Notes.. The axis ˆn of a rotation R is a vector that is left invariant by the action

More information

129 Lecture Notes Relativistic Quantum Mechanics

129 Lecture Notes Relativistic Quantum Mechanics 19 Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics The interaction of matter and radiation field based on the Hamitonian H = p e c A m Ze r + d x 1 8π E + B. 1 Coulomb

More information

Single Electron Atoms

Single Electron Atoms Single Electron Atoms In this section we study the spectrum and wave functions of single electron atoms. These are hydrogen, singly ionized He, doubly ionized Li, etc. We will write the formulae for hydrogen

More information

Chapter 8. Rigid transformations

Chapter 8. Rigid transformations Chapter 8. Rigid transformations We are about to start drawing figures in 3D. There are no built-in routines for this purpose in PostScript, and we shall have to start more or less from scratch in extending

More information

NOTES ON VECTORS, PLANES, AND LINES

NOTES ON VECTORS, PLANES, AND LINES NOTES ON VECTORS, PLANES, AND LINES DAVID BEN MCREYNOLDS 1. Vectors I assume that the reader is familiar with the basic notion of a vector. The important feature of the vector is that it has a magnitude

More information

Inner product spaces. Layers of structure:

Inner product spaces. Layers of structure: Inner product spaces Layers of structure: vector space normed linear space inner product space The abstract definition of an inner product, which we will see very shortly, is simple (and by itself is pretty

More information

Eigenvectors and Hermitian Operators

Eigenvectors and Hermitian Operators 7 71 Eigenvalues and Eigenvectors Basic Definitions Let L be a linear operator on some given vector space V A scalar λ and a nonzero vector v are referred to, respectively, as an eigenvalue and corresponding

More information

ROTATIONS OF THE RIEMANN SPHERE

ROTATIONS OF THE RIEMANN SPHERE ROTATIONS OF THE RIEMANN SPHERE A rotation of the sphere S is a map r = r p,α described by spinning the sphere (actually, spinning the ambient space R 3 ) about the line through the origin and the point

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Notes on multivariable calculus

Notes on multivariable calculus Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in

More information

Product Operator Formalism: A Brief Introduction

Product Operator Formalism: A Brief Introduction Product Operator Formalism: A Brief Introduction Micholas D. Smith Physics Department, Drexel University, Philadelphia, PA 19104 May 14, 2010 Abstract Multiple spin systems allow for the presence of quantum

More information

Chapter 10 Operators of the scalar Klein Gordon field. from my book: Understanding Relativistic Quantum Field Theory.

Chapter 10 Operators of the scalar Klein Gordon field. from my book: Understanding Relativistic Quantum Field Theory. Chapter 10 Operators of the scalar Klein Gordon field from my book: Understanding Relativistic Quantum Field Theory Hans de Vries November 11, 2008 2 Chapter Contents 10 Operators of the scalar Klein Gordon

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Quantum Mechanics C (130C) Winter 2014 Final exam

Quantum Mechanics C (130C) Winter 2014 Final exam University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C Winter 014 Final exam Please remember to put your name on your exam booklet. This is a closed-book

More information

Quantum Physics III (8.06) Spring 2005 Assignment 10

Quantum Physics III (8.06) Spring 2005 Assignment 10 Quantum Physics III (8.06) Spring 2005 Assignment 10 April 29, 2005 Due FRIDAY May 6, 2005 Please remember to put your name and section time at the top of your paper. Prof. Rajagopal will give a review

More information

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms 1. Introduction The Zeeman effect concerns the interaction of atomic systems with

More information

The Matrix Algebra of Sample Statistics

The Matrix Algebra of Sample Statistics The Matrix Algebra of Sample Statistics James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) The Matrix Algebra of Sample Statistics

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 The Bloch Sphere Ian Glendinning February 16, 2005 QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 Outline Introduction Definition of the Bloch sphere Derivation of the Bloch sphere Properties

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

INTERMOLECULAR INTERACTIONS

INTERMOLECULAR INTERACTIONS 5.61 Physical Chemistry Lecture #3 1 INTERMOLECULAR INTERACTIONS Consider the interaction between two stable molecules (e.g. water and ethanol) or equivalently between two noble atoms (e.g. helium and

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet NMR SPECTROSCOPY This section will discuss the basics of NMR (nuclear magnetic resonance) spectroscopy. Most of the section will discuss mainly 1H or proton spectroscopy but the most popular nuclei in

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Math 396. Quotient spaces

Math 396. Quotient spaces Math 396. Quotient spaces. Definition Let F be a field, V a vector space over F and W V a subspace of V. For v, v V, we say that v v mod W if and only if v v W. One can readily verify that with this definition

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information