MATH 125 Unit 2 1. B a

Size: px
Start display at page:

Download "MATH 125 Unit 2 1. B a"

Transcription

1 MATH 15 Unit 1 Unit Law of Sines and Law of osines 1 Derive and identify the Law of Sines and the Law of osines 1 Derive and identify the Law of Sines. NOTE: See the objective overview for the derivation. sin A sin B Example: Solve each of the following, given = a b b= A= Try This: Solve each of the following, given sin sin B = c b c= B= Derive and identify the Law of osines. NOTE: See the objective overview for the derivation. Example: Solve each of the following, given the Law of osines b = a + c accos B a c = b = a + c + b bccos A abcos b= A= Try This: Solve each of the following, given the Law of osines b = a + c ac cos B a c = b = a + c + b bc cos A ab cos c= B= Dr. Paul Kennedy 8/17/015

2 MATH 15 Unit Apply the Law of Sines I: Two Angles 1 Solve triangles given two angles (AAS). A=5 B=37 = A=15 B= =100 a=4 b= c= a= b= c= 3 A= B=56 =75 A= B=5 =10 a= b= 6 c= a= b= c= 4 Solve triangles given two angles (ASA). A=0 B=55 = A=35 B= =80 a= b= c=10 a= b=14 c= A= B=56 =75 A= B=60 =105 a=15 b= c= a=17 b= c= Dr. Paul Kennedy 8/17/015

3 MATH 15 Unit 3 A 3 Solve applications with Law of Sines. Example: The height of an object above the ground can be determined by knowing the distance B and the angles of inclination from both B and. Determine h for each of the following. B=75ft. B=45, =0 B c h a b B=500 m. B=19, =9 Try This: B=3.5 mi. B=50, =13 B=4 km. B=9, =4 Dr. Paul Kennedy 8/17/015

4 MATH 15 Unit 4 3 Apply the Law of Sines II: Two Sides: The Ambiguous ase Two Sides: The Ambiguous ase 3.1 Solve the ambiguous case with two solutions. A=36 B= = A= B=55 = a=8 b=10 c= a=5 b= 3 c= A= 0 B= = A=50 B= = a=7 b= 10 c= a=13 b=15 c= 3. Solve the ambiguous case with one solution. A=65 B= = A= B=55 = a=7 b=5 c= a=4 b= 7 c= A= B=60 = A=50 B= = a= b= 6 c= a=13 b=11 c= Dr. Paul Kennedy 8/17/015

5 MATH 15 Unit Solve the ambiguous case with no solution. A= B=45 = A= B= =10 a=30 b=15 c= a= b= 30 c= 6 A= 50 B= = A= B= =100 a=0 b= 60 c= a=13 b= c= 5 4 Apply the Law of osines I 4.1 Solve for a missing side (SAS). A= B=4 = A= B= =10 a=30 b= c=10 a=4 b= 37 c= A= B= =78 A= B=3 = a=0 b= 60 c= a=1 b= c= 5 Dr. Paul Kennedy 8/17/015

6 MATH 15 Unit 6 4. Solve for a missing angle. (SSS) A= B= = A= B= = a=30 b=15 c=1 a=8 b= 30 c= 6 A= B= = A= B= = a=43 b= 6 c=5 a=17 b=19 c= Solve applications with Law of osines. Example: The distance, a=b, across a lake can be determined by knowing A, c, and b. Determine a for each of the following. A=85, c=45m, b=15 m A=15, c=5 mi, b=5 mi Try This: A=93, c=00 yd, b=350 yd A=115, c=3 km, b=5.5 km Dr. Paul Kennedy 8/17/015

7 MATH 15 Unit 7 5 Solve problems involving vectors 5.1 Given vectors compute its magnitude, direction, and resultant vectors. Example: For each of the following determine the magnitude, and direction in both degrees and radians of u and v. u= 3,6 v= -1,-4 3. Find the resultant vector for u and v, w = u + v, its magnitude and direction. Try This: For each of the following determine the magnitude, and direction in both degrees and radians. 1 u= 3,6 v= -1,-4 3. Find the resultant vector for u and v, w = u + v, its magnitude and direction. 5. Solve applications of vectors in the i j form. Example: Solve each problem An object of mass 00 kg is launched straight up into the air, and the magnitude of the force due to gravity acting on the object is 9.81 N. At the time of launch, wind blows from west to east, and the magnitude of the force acting on the object is 00 N. ompute the resultant force and the direction of the resultant force acting on the object, in radians, 0 θ < π, round to three decimal places. Two positive charges, charge 1 and charge, are separated by a certain distance. harge 1 is at the origin, and charge is at (,0). At the midpoint (1,0), the electric field due to charge 1 is: E 1 = N i, and the electric field due to charge is E = N j. What is the net electric field, E, at the midpoint? Try this: Solve each problem 1 An object of mass 5.00 kg is launched straight up into the air, and the magnitude of the force due to gravity acting on the object is 9.81 N. At the time of launch, wind blows from west to east, as well as up, and the magnitude of the force acting on the object is 3.00 N east, and 00 N straight up in the air. ompute the resultant force and the direction of the resultant force acting on the object, in radians, 0 θ < π, round to three decimal places. Two positive charges, charge 1 and charge, are separated by a certain distance. harge 1 is at the origin, and charge is at (5,0). At the midpoint (5,0), the electric field due to charge 1 is: E 1 = N i, and the electric field due to charge is E = N j. What is the net electric field, E, at the midpoint? i. ompute the dot product and angle between two vectors. Dr. Paul Kennedy 8/17/015

8 MATH 15 Unit 8 Example: Find the angle between the vectors u = 1,4 and v = 3, u = 1,4 and v = 3, Try This: Find the angle between the vectors u = 10, 1 and v = 3,5 u =,4 and v = 1, Dot Product Examples With a force of 30 N, a person pushes a box across the floor of 4.00m in the positive x direction at an angle of 45 below the horizontal. What is the work done on the box? Round to three decimal places if necessary. If the magnetic flux through a square loop of area 3.656m is equal to 0.518, and the magnetic field has a magnitude of T, what is the angle, in radians, between the magnetic field and the normal to the surface? Round to three decimal places if necessary. Dr. Paul Kennedy 8/17/015

Chapter 6 Additional Topics in Trigonometry

Chapter 6 Additional Topics in Trigonometry Chapter 6 Additional Topics in Trigonometry Overview: 6.1 Law of Sines 6.2 Law of Cosines 6.3 Vectors in the Plan 6.4 Vectors and Dot Products 6.1 Law of Sines What You ll Learn: #115 - Use the Law of

More information

SECTION 6.2: THE LAW OF COSINES

SECTION 6.2: THE LAW OF COSINES (Section 6.2: The Law of Cosines) 6.09 SECTION 6.2: THE LAW OF COSINES PART A: THE SETUP AND THE LAW Remember our example of a conventional setup for a triangle: Observe that Side a faces Angle A, b faces

More information

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1 Introduction Law of Sines Precalculus 6.1 In this section, we will solve oblique triangles triangles that have no right angles. As standard notation, the angles of a triangle are labeled A, B, and C, and

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 1.1 Pythagorean Theorem and its Converse 1. 194. 6. 5 4. c = 10 5. 4 10 6. 6 5 7. Yes 8. No 9. No 10. Yes 11. No 1. No 1 1 1. ( b+ a)( a+ b) ( a + ab+ b ) 1 1 1 14. ab + c ( ab + c ) 15. Students must

More information

Chapter 7. Applications of Trigonometry and Vectors. Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307)

Chapter 7. Applications of Trigonometry and Vectors. Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307) Chapter 7 Applications of Trigonometry and Vectors Section 7.1: Oblique Triangles and the Law of Sines Connections (page 307) ( a h) x ( a h) ycos θ X =, Y = f secθ ysinθ f secθ ysinθ 1. house: X H 1131.8

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

MATH Week 8. Ferenc Balogh Winter. Concordia University. Based on the textbook

MATH Week 8. Ferenc Balogh Winter. Concordia University. Based on the textbook MATH 201 - Week 8 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson Solving Triangles Law

More information

Math 5 Trigonometry Review Sheet for Chapter 5

Math 5 Trigonometry Review Sheet for Chapter 5 Math 5 Trigonometry Review Sheet for Chapter 5 Key Ideas: Def: Radian measure of an angle is the ratio of arclength subtended s by that central angle to the radius of the circle: θ s= rθ r 180 = π radians.

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

A. Incorrect. Solve for a variable on the bottom by first moving it to the top. D. Incorrect. This answer has too many significant figures.

A. Incorrect. Solve for a variable on the bottom by first moving it to the top. D. Incorrect. This answer has too many significant figures. MCAT Physics - Problem Drill 03: Math for Physics Question No. 1 of 10 1. Solve the following equation for time, with the correct number of significant figures: Question #01 m 15.0 m 2.5 = s time (A) 0.17

More information

Newton's First law of Motion

Newton's First law of Motion Newton's First law of Motion Newton's first law of motion is known as the Law of Inertia "Every object continues in a state of rest, or of uniform motion in a straight line at constant speed, unless it

More information

Math 1720 Final Exam REVIEW Show All work!

Math 1720 Final Exam REVIEW Show All work! Math 1720 Final Exam REVIEW Show All work! The Final Exam will contain problems/questions that fit into these Course Outcomes (stated on the course syllabus): Upon completion of this course, students will:

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

PHYSICS - CLUTCH CH 01: UNITS & VECTORS.

PHYSICS - CLUTCH CH 01: UNITS & VECTORS. !! www.clutchprep.com Physics is the study of natural phenomena, including LOTS of measurements and equations. Physics = math + rules. UNITS IN PHYSICS We measure in nature. Measurements must have. - For

More information

1) SSS 2) SAS 3) ASA 4) AAS Never: SSA and AAA Triangles with no right angles.

1) SSS 2) SAS 3) ASA 4) AAS Never: SSA and AAA Triangles with no right angles. NOTES 6 & 7: TRIGONOMETRIC FUNCTIONS OF ANGLES AND OF REAL NUMBERS Name: Date: Mrs. Nguyen s Initial: LESSON 6.4 THE LAW OF SINES Review: Shortcuts to prove triangles congruent Definition of Oblique Triangles

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Physics I (Navitas) EXAM #2 Spring 2015

Physics I (Navitas) EXAM #2 Spring 2015 95.141 Physics I (Navitas) EXAM #2 Spring 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning each

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.)

PART 1: USING SCIENTIFIC CALCULATORS (50 PTS.) Math 141 Name: MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 SPRING 2018 KUNIYUKI 150 POINTS TOTAL: 50 FOR PART 1, AND 100 FOR PART 2 Show all work, simplify as appropriate,

More information

Unit 1: Math Toolbox Math Review Guiding Light #1

Unit 1: Math Toolbox Math Review Guiding Light #1 Unit 1: Math Toolbox Math Review Guiding Light #1 Academic Physics Unit 1: Math Toolbox Math Review Guiding Light #1 Table of Contents Topic Slides Algebra Review 2 8 Trigonometry Review 9 16 Scalar &

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

MATH 1316 REVIEW FOR FINAL EXAM

MATH 1316 REVIEW FOR FINAL EXAM MATH 116 REVIEW FOR FINAL EXAM Problem Answer 1. Find the complete solution (to the nearest tenth) if 4.5, 4.9 sinθ-.9854497 and 0 θ < π.. Solve sin θ 0, if 0 θ < π. π π,. How many solutions does cos θ

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

Ch6prac 1.Find the degree measure of the angle with the given radian measure. (Round your answer to the nearest whole number.) -2

Ch6prac 1.Find the degree measure of the angle with the given radian measure. (Round your answer to the nearest whole number.) -2 Ch6prac 1.Find the degree measure of the angle with the given radian measure. (Round your answer to the nearest whole number.) -2 2. Find the degree measure of the angle with the given radian measure.

More information

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc. 7 Applications of Trigonometry and Vectors Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 7.4 Geometrically Defined Vectors and Applications Basic Terminology The Equilibrant Incline Applications

More information

Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW

Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW Prof. Israel N Nwaguru MATH 1316 CHAPTER 3 - REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given,, and, use the Law of Sines to solve the triangle

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

2. Pythagorean Theorem:

2. Pythagorean Theorem: Chapter 4 Applications of Trigonometric Functions 4.1 Right triangle trigonometry; Applications 1. A triangle in which one angle is a right angle (90 0 ) is called a. The side opposite the right angle

More information

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side. Vectors EXAM review Problem 1 = 8 and = 1 a) Find the net force, assume that points North, and points East b) Find the equilibrant force 2 = 15, = 7, and the angle between and is 60 What is the magnitude

More information

Angle TDA = Angle DTA = = 145 o = 10 o. Sin o o D. 35 o. 25 o 15 m

Angle TDA = Angle DTA = = 145 o = 10 o. Sin o o D. 35 o. 25 o 15 m T 10 o 36.5 The angle of elevation of the top of a building measured from point A is 25 o. At point D which is 15m closer to the building, the angle of elevation is 35 o Calculate the height of the building.

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

2. Factor and find all the zeros: b. p 6 + 7p 3 30 = Identify the domain: 4. Simplify:

2. Factor and find all the zeros: b. p 6 + 7p 3 30 = Identify the domain: 4. Simplify: 1. Divide: 5x 5 3x 3 + 2x 2 8x + 1 by x + 3 2. Fator and find all the zeros: a. x 3 + 5x 2 3x 15 = 0 b. p 6 + 7p 3 30 = 0 3. Identify the domain: a. f x = 3x 5x 2x 15 4. Simplify: a. 3x2 +6x+3 3x+3 b.

More information

MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 2018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART

MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 2018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART Math 141 Name: MIDTERM 4 PART 1 (CHAPTERS 5 AND 6: ANALYTIC & MISC. TRIGONOMETRY) MATH 141 FALL 018 KUNIYUKI 150 POINTS TOTAL: 47 FOR PART 1, AND 103 FOR PART Show all work, simplify as appropriate, and

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 )

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) *Before we get into solving for oblique triangles, let's have a quick refresher on solving for right triangles' problems: Solving a Right Triangle

More information

Algebra II Standard Term 4 Review packet Test will be 60 Minutes 50 Questions

Algebra II Standard Term 4 Review packet Test will be 60 Minutes 50 Questions Algebra II Standard Term Review packet 2017 NAME Test will be 0 Minutes 0 Questions DIRECTIONS: Solve each problem, choose the correct answer, and then fill in the corresponding oval on your answer document.

More information

Chapter Review USING KEY TERMS UNDERSTANDING KEY IDEAS. Skills Worksheet. Multiple Choice

Chapter Review USING KEY TERMS UNDERSTANDING KEY IDEAS. Skills Worksheet. Multiple Choice Skills Worksheet Chapter Review USING KEY TERMS Complete each of the following sentences by choosing the correct term from the word bank. mass gravity friction weight speed velocity net force newton 1.

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

CHAPTER 6: ADDITIONAL TOPICS IN TRIG

CHAPTER 6: ADDITIONAL TOPICS IN TRIG (Section 6.1: The Law of Sines) 6.01 CHAPTER 6: ADDITIONAL TOPICS IN TRIG SECTION 6.1: THE LAW OF SINES PART A: THE SETUP AND THE LAW The Law of Sines and the Law of Cosines will allow us to analyze and

More information

Use a calculator to find the value of the expression in radian measure rounded to 2 decimal places. 1 8) cos-1 6

Use a calculator to find the value of the expression in radian measure rounded to 2 decimal places. 1 8) cos-1 6 Math 180 - chapter 7 and 8.1-8. - New Edition - Spring 09 Name Find the value of the expression. 1) sin-1 0.5 ) tan-1-1 ) cos-1 (- ) 4) sin-1 Find the exact value of the expression. 5) sin [sin-1 (0.7)]

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers

Assignment 1 and 2: Complete practice worksheet: Simplifying Radicals and check your answers Geometry 0-03 Summary Notes Right Triangles and Trigonometry These notes are intended to be a guide and a help as you work through Chapter 8. These are not the only thing you need to read, however. Rely

More information

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , ,

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , , Name: Date: Practice Midterm Exam Sections 1., 1.3,.1-.7, 6.1-6.5, 8.1-8.7 a108 Please develop your one page formula sheet as you try these problems. If you need to look something up, write it down on

More information

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places.

Find the length of an arc that subtends a central angle of 45 in a circle of radius 8 m. Round your answer to 3 decimal places. Chapter 6 Practice Test Find the radian measure of the angle with the given degree measure. (Round your answer to three decimal places.) 80 Find the degree measure of the angle with the given radian measure:

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

8-2 Trigonometric Ratios

8-2 Trigonometric Ratios 8-2 Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Write each fraction as a decimal rounded to the nearest hundredth. 1. 2. 0.67 0.29 Solve each equation. 3. 4. x = 7.25

More information

Math 1316 t4rsu14. Name: 06/24/2014

Math 1316 t4rsu14. Name: 06/24/2014 Name: 06/24/2014 Math 1316 t4rsu14 1. Given A=52, B= 74, and c=8, use the Law of Sines to solve the triangle for the value of a. Round 2. Given C=116, a=12.9, and c=8.3, use the Law of Sines to solve the

More information

PART I: NO CALCULATOR (144 points)

PART I: NO CALCULATOR (144 points) Math 10 Practice Final Trigonometry 11 th edition Lial, Hornsby, Schneider, and Daniels (Ch. 1-8) PART I: NO CALCULATOR (1 points) (.1,.,.,.) For the following functions: a) Find the amplitude, the period,

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

Chapter 10. Additional Topics in Trigonometry

Chapter 10. Additional Topics in Trigonometry Chapter 10 Additional Topics in Trigonometry 1 Right Triangle applications Law of Sines and Cosines Parametric equations Polar coordinates Curves in polar coordinates Summary 2 Chapter 10.1 Right Triangle

More information

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue. Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.

More information

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives Pre-Calculus MATH 119 Fall 2013 Learning Objectives Section 1.1 1. Use the Distance Formula 2. Use the Midpoint Formula 4. Graph Equations Using a Graphing Utility 5. Use a Graphing Utility to Create Tables

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. Find the measure of angle θ. Round to the nearest degree, if necessary. 1. An acute angle measure and the length of the hypotenuse are given,

More information

Name: Teacher: GRADE 11 EXAMINATION NOVEMBER 2016 MATHEMATICS PAPER 2 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

Name: Teacher: GRADE 11 EXAMINATION NOVEMBER 2016 MATHEMATICS PAPER 2 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY GRADE 11 EXAMINATION NOVEMBER 2016 MATHEMATICS PAPER 2 Time: 3 hours Examiners: Miss Eastes; Mrs Rixon 150 marks Moderator: Mrs. Thorne, Mrs. Dwyer PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. Read

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines Section 8.1 Non-Right Triangles: Laws of Sines and Cosines 497 Chapter 8: Further Applications of Trigonometry In this chapter, we will explore additional applications of trigonometry. We will begin with

More information

Shape Booster 6 Similar Shapes

Shape Booster 6 Similar Shapes Shape Booster 6 Similar Shapes Check: 85T) The two triangles are similar. 5cm y x 37.8cm 8cm 43.2cm a) Work out the size of x. b) Work out the size of y. a) x = 27cm b) y = 7cm Learn: Maths Watch Reference

More information

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x AFM Midterm Review I Fall 06. Determine if the relation is a function.,6,,, 5,. Determine the domain of the function 7 h ( ). 4. Sketch the graph of f 4. Sketch the graph of f 5. Sketch the graph of f

More information

Old Math 120 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 120 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 10 Exams David M. McClendon Department of Mathematics Ferris State University 1 Contents Contents Contents 1 General comments on these exams 3 Exams from Fall 016 4.1 Fall 016 Exam 1...............................

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

Section 8.3 The Law of Cosines

Section 8.3 The Law of Cosines 147 Section 8.3 The Law of Cosines In this section, we will be solving SAS, SSS triangles. To help us do this, we will derive the Laws of Cosines. Objective 1: Derive the Laws of Cosines. To derive the

More information

Physics 8 Monday, October 9, 2017

Physics 8 Monday, October 9, 2017 Physics 8 Monday, October 9, 2017 Pick up a HW #5 handout if you didn t already get one on Wednesday. It s due this Friday, 10/13. It contains some Ch9 (work) problems, some Ch10 (motion in a plane) problems,

More information

Math 370 Exam 2 Review Name

Math 370 Exam 2 Review Name Math 70 Exam 2 Review Name Be sure to complete these problems before the review session. 10 of these questions will count as a quiz in Learning Catalytics. Round 1 will be individual. Round 2 will be in

More information

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3 Math 36 Exam 3 Multiple Choice Identify the choice that best completes the statement or answers the question.. Find the component form of v if ÄÄ= v 0 and the angle it makes with the x-axis is 50. 0,0

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 39 Outline 1 Applications

More information

Newton s first and second laws

Newton s first and second laws Lecture 2 Newton s first and second laws Pre-reading: KJF 4.1 to 4.7 Please log in to Socrative, room HMJPHYS1002 Recall Forces are either contact Pushes / Pulls Tension in rope Friction Normal force (virtually

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

Geometry. of Right Triangles. Pythagorean Theorem. Pythagorean Theorem. Angles of Elevation and Depression Law of Sines and Law of Cosines

Geometry. of Right Triangles. Pythagorean Theorem. Pythagorean Theorem. Angles of Elevation and Depression Law of Sines and Law of Cosines Geometry Pythagorean Theorem of Right Triangles Angles of Elevation and epression Law of Sines and Law of osines Pythagorean Theorem Recall that a right triangle is a triangle with a right angle. In a

More information

Chapter 7 Test. 2. In triangle ABC, A = 60, and side c = 20 ft. How many triangles can be formed if side a = 16 ft? A) 0 B) 1 C) 2 D) 3

Chapter 7 Test. 2. In triangle ABC, A = 60, and side c = 20 ft. How many triangles can be formed if side a = 16 ft? A) 0 B) 1 C) 2 D) 3 Name Chapter 7 Test 1. Solve the triangle using the law of sines. Round to the nearest tenth. side a = 12 m A = 19 B = 79 What are the lengths of sides b and c? A) b = 35.5 m, c = 35.9 m C) b = 36.2 m,

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION NON-CALCULATOR PORTION Find four solutions to each of the following; write your answer in 1. 2. 3. 4. 5. 6. radians: Find the value of each of the following: 7. ( ) 8. 9. ( ) 10. 11. 12. 13. ( ) Find four

More information

Math 140 Study Guide. Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1)

Math 140 Study Guide. Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) Math 40 Study Guide Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. ) 0 4) If csc q =, find cot q. A) C) B) 8 Find sin A and cos A. A) sin A = 3 ; cos A

More information

Chapter 8 Test Wednesday 3/28

Chapter 8 Test Wednesday 3/28 Chapter 8 Test Wednesday 3/28 Warmup Pg. 487 #1-4 in the Geo book 5 minutes to finish 1 x = 4.648 x = 40.970 x = 6149.090 x = -5 What are we learning today? Pythagoras The Rule of Pythagoras Using Pythagoras

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Unit 2 Forces. Fundamental Forces

Unit 2 Forces. Fundamental Forces Lesson14.notebook July 10, 2013 Unit 2 Forces Fundamental Forces Today's goal: I can identify/name applied forces and draw appropriate free body diagrams (FBD's). There are 4 fundamental forces Gravity

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

Beauchamp College Year 11/12 - A- Level Transition Work. Physics.

Beauchamp College Year 11/12 - A- Level Transition Work. Physics. Beauchamp College Year 11/1 - A- Level Transition Work Physics Gareth.butcher@beauchamp.org.uk Using S.I. units Specification references.1. a) b) c) d) M0.1 Recognise and make use of appropriate units

More information

NATIONAL QUALIFICATIONS

NATIONAL QUALIFICATIONS Mathematics Higher Prelim Eamination 04/05 Paper Assessing Units & + Vectors NATIONAL QUALIFICATIONS Time allowed - hour 0 minutes Read carefully Calculators may NOT be used in this paper. Section A -

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

University of Guelph. Department of Physics

University of Guelph. Department of Physics Surname Given Names Student Number University of Guelph Department of Physics PHYS*1020DE Introductory Physics Instructor: R.L. Brooks Midterm Examination 26 February 2003 90 Minutes INSTRUCTIONS: This

More information

Find: sinθ. Name: Date:

Find: sinθ. Name: Date: Name: Date: 1. Find the exact value of the given trigonometric function of the angle θ shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle.) Find: sinθ c a θ a a =

More information

$ B 2 & ) = T

$ B 2 & ) = T Solutions PHYS 251 Final Exam Practice Test 1D If we find the resultant velocity, v, its vector is 13 m/s. This can be plugged into the equation for magnetic force: F = qvb = 1.04 x 10-17 N, where q is

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information