ENGINEERING FOR RURAL DEVELOPMENT Jelgava, MECHANISM MOTION STUDIES WITH COLLISIONS AT SEVERAL POINTS

Size: px
Start display at page:

Download "ENGINEERING FOR RURAL DEVELOPMENT Jelgava, MECHANISM MOTION STUDIES WITH COLLISIONS AT SEVERAL POINTS"

Transcription

1 EGIEERIG FOR RURAL DEVELOPMET Jelgava, MECHAISM MOTIO STUDIES WITH COLLISIOS AT SEVERAL POITS Edgars Kovals 1, Janis Viba 1, Lauris Sals 1, Svelana Sokolova 1, Vialy Krupenin 1 Riga Technical Universiy, Lavia; Russian Academy o Sciences IMASH edgars.kovals@gmail.com, janis.viba@ru.lv, lauris.sals@gmail.com, svelana.sokolova@ru.lv, krupeninser@gmail.com Absrac. The paper analyses he moion o mechanical sysems, which causes simulaneous collisions (shocks) in heir elemens a more han wo conac poins. The main hypohesis, which is used in he heoreical calculaions, is ha he menioned impacs begin and end a he same ime a all impac conac poins. Impac ineracion o conac poins includes normal reacion and dry ricion orce wih correlaions under sopping areas. Descripion o he relaionship impacs a he same ime a wo, hree or more poins is given. For he descripion o he plane moion or mechanical sysems he mass cener moion heorem and he heorem o kineic momenum changes are used. Acquired correlaions are used in he mechanical sysems plane moion analysis o ransiion and saionary moion regimes under a number o collision poins. The modelling wih MahCAD program is carried ou or sysems wih one, wo and hree degrees o reedom, which akes place in collisions in wo and more poins. The inspecion o heory has been perormed by he Working Model D Program or mechanical sysems wih one, wo, hree degrees o reedom wih collisions a hree or more poins. Validaion o sudies is signiican. In addiion he demonsraion resuls or experimenal sudies or vibro drive sysem are given. Accordingly, he vibro engine is creaed by disbalance moors o he pendulum plaorm in plane moion. Impacs are generaed in wo la springs aer roaion abrupion rom undamen. The resuls o he work may be used in calculaions o equipmen in he mechanical posiioning sysem, as well as in he design o new mechanisms or machines, such as vibro conveyors or vibro engines. Keywords: shocks, impacs in mechanical sysem, simulaneous collision modelling. Inroducion Example o collision ineracion in one poin can be described by normal reacion and dry ricion orce ±F (Fig. 1). Graphics o normal reacion and one dry ricion orce (or ull slip F) in ime domain is shown in Fig.. K ±F y v c ω, ω 1, ω C (xc;yc) () F() SI SFI 1 τ SII SFII Fig. 1. Model o collisions in poin K: normal reacion; ±F dry ricion orce wih variable direcion (±) along angen in conac poin K, ω, ω 1, ω angular velciy o body in hree ime momens (iniial, in he middle, a he end) Here F( ) = ( ); Fig.. Graphics o normal reacion and dry ricion orce (or ull slip F) in ime domain: ime inerval o he irs phase o collision; τ ime inerval o he second phase o collision SI = ( ) d; SII = τ ( ) d; where dry ricion coeicien; SI, SII impulses o normal reacion (); SFI = F( ) d; τ SFII = F( ) d, (1) 114

2 EGIEERIG FOR RURAL DEVELOPMET Jelgava, SFI, SFII impulses o dry ricion orce F() in he irs and second impac phase. According o he heory o body plane collisions wih obsacle in one poin, here or collisions a several poins he exisence o one o seven dieren impac ineracion cases can be checked as ollows [1-4]. 1. Full slips depending on he iniial conac poin K suicien angenial velociy componen.. Full slip in one direcion depending o special body geomery and wih special moion iniial condiion (when he conac poin K has zero angenial velociy componen). 3. Parial slip wih end a he irs phase o impac ( ). 4. Parial slip wih end a he second phase o impac ( τ). 5. Full slip in wo direcions wih dry ricion orce reverse in he irs phase o impac ( ). 6. Full slip in wo direcions wih dry ricion orce reverse in he second phase o impac ( τ). 7. o slip in he conac poin. Four o hese seven ineracion cases are shown in Fig. -4. These seven dieren impac ineracion cases [5] can be used or he invesigaion o collisions a several poins [4]. SI 1 SI SI SII 1 SII SII SFI 1 F 1 1 SFI τ SFII F SFI 1 τ SFII 1 SFII τ1 Fig. 3. Graphic o normal reacion and dry ricion orce (ull slip in wo direcions) in a case 5: SFI 1 dry ricion orce impulse beore reverse in he irs phase o impac (1 ); SFI negaive dry ricion orce impulse aer reverse ill ; SI 1, SI pars o normal reacion impulse in he irs phase o impac Fig. 4. Graphic o normal reacion and dry ricion orce (ull slip in wo direcions) in a case 6: SFII 1 dry ricion orce impulse beore reverse in he second phase o impac ( τ1 τ); SFII negaive dry ricion orce impulse aer reverse ill τ; SII 1, SII pars o normal reacion impulse in he second phase o impac Simulaneous collisions o roaing body in wo poins Collisions in wo poins in he body wih one degree o reedom will be observed. Assume ha he roaing body collides wih a rigid obsacle in he poin K (Fig. 5). According o he collision heory he weigh and oher large disance ineracions can be negleced [1-6]. Then impac orces will be: in he axis O orces wih componens XO, YO; reacions in he conac poin K like normal reacion and dry ricion orce F. The idea o calculaion includes a possibiliy o wrie equaions o mechanics in special ime inervals: in he ime momen when he conac poin K velociy normal componen is zero; he ime momen when he conac poin K angenial velociy componen is changing direcion (e.g., dry ricion orce changes direcion, oo). In a case o ull slipping a he conac poin K (when aer collisions he body springs a an obsacle) normal reacion () and dry ricion orce F() in ime domain are shown in Fig

3 EGIEERIG FOR RURAL DEVELOPMET Jelgava, For he given model using classical mechanics equaions abou exchange o linear momenum or cener mass C and angular momenum agains he roaion axis O in ime momens and τ can be wrien ormulas (-4), [3; 6; 7]: d SI K ±F y YO v c C(xc;yc) h x () F() 1 SII SFI SFII O XO τ ω, ω 1, ω Fig. 5. Model o collision o roaing body Fig. 6. Diagrams o normal reacion () and dry ricion orces F() in ime domain ( m ω yc) = SXI SI; m ω xc= SYI SFI; JO ω= SI h SFI d; m ω = SXII SII; m ω xc = SYII SFII; JO ω = SII h SFII d; () (3) SII = R SI; SFI = SI; SFII = SII, (4) where m mass o he body; JO momen ineria body agains perpendicular axis in poin O; xc, yc coordinaes o cener mass; ω iniial angular velociy o he body; R coeicien o normal impulse resiuion; dry ricion coeicien; SI, SII, SFI, SFII impulses o normal reacion and dry ricion orce in he irs and second impac inervals and τ; SXI, SXII, SYI, SYII impulses o reacion orce componens XO and YO a poin O (Fig. 5). Eigh unknowns can be ound rom equaions () (4): R ω ( d h) JO ω ω= ; SI = ; h h JO ω R JO ω SFI = ; SFII = ; h h R JO ω SII = ; h (5) ( h SXI = m ω JO ω ( h ; SXII = R h m ω JO ω ; h ( h SYI = m ω xc h JO ω ; (6) ( h SYII = R m ω xc h JO ω. Generally known resul abou jamming in dry ricion mechanisms ollows rom he irs ormula (3), e.g.: 116

4 EGIEERIG FOR RURAL DEVELOPMET Jelgava, i h > d, hen ω < and he body springs back rom he obsacle. Oherwise, i h < d jamming will be and he body will sick o he obsacle. I addiionally he ime o collision τ is given, middle values o impac orces, F, XO, YO (Fig., 5, 6.) can be calculaed rom ormulas (-4). For opimizaions o he sysem parameers h, d, xc, yc, m and JO when a crierion is given (or example, minimum o impac impulses in roaing axe) ormula (6) can be used. Simulaneous collisions o roaing body in our poins The model o collision is shown in Fig. 7, where such collision coniguraion is invesigaed, in which all impac poins are placed in one line O, K1, K and K3. In hese poins here are no dry ricion ineracions, because velociies o all conac poins are perpendicular o he obsacle. v c y C (xc;yc) YO K3,3, L3 K,, L K1,1,L ω, ω 1, ω Fig. 7. Model o simulaneous collisions o roaing body in our poins For a roaing body when collisions ake place simulaneously in our poins (hree poins K1, K, K3 o he obsacle and one in he axis O) he above described heory and recommendaions are used. For roaing moion a he end o he irs impac phase and a he end o ull impac can be ound [4,6]: JO ω= S1I L1 SI L S3I L3; (7) JO ω = R1 S1I L1 R SI L R3 S3I L3, where R1, R and R3 coeiciens o resiuions in dieren poins K1, K and K3; L1, L and L3 disances rom he axe O ill poins K1, K and K3; S1I, SI, S3I normal impulses a he end o he irs phase. For moion o cener C mass can be calculaed: m ω m ω yc= SXO; m ω xc m ω xc= (1 R1) S1I (1 R) SI (1 R3) S3I SYO, where SXO, SYO reacion impulse componens in he axis O; xc, yc coordinaes o cener mass C. According o equaions o consrain proporionaliy can be used: L1 L S1I = S3I ; SI = S3I. (9) L3 L3 From equaions (7-9) all six unknowns ω, SXO, SYO, S1I, SI, and S3I can be ound. For example: R1 ω L1 R ω L R3 ω L3 ω =. L1 L L3 O XO x (8) 117

5 EGIEERIG FOR RURAL DEVELOPMET Jelgava, For opimizaion o he sysem parameers ormulas (7-9) can be used when a crierion and limis are given. Simulaneous collisions in vibro driver sysem The vibro impac driver model or horizonal moion is shown in Fig. 8. The sysem is excied by he roaing eccenric 5 when he acuaor 4 sars o draw away rom he main collision elemen. This ime momen impacs in conac poins K1-K4 occur. Using he heory above, he sysem parameers or moion o he righ side was ound. This complicaed mechanism was invesigaed by Working Model D program. An example o plaorm velociy obained rom modelling is shown in Fig. 9. According o he given resuls a real driver was made (Fig. 1) Fig. 8. Horizonal vibro driver sysem: 1 undamen; moving plaorm; 3 main collision elemen; 4 vibro impac acuaor; 5 eccenric, which is driven by elecro moor; K1; K; K3 and K4 impacs poins; O roaion axis o he eccenric Fig. 9. Horizonal velociy graphics or moving plaorm Fig. 1. Experimenal model wih eccenric 118

6 EGIEERIG FOR RURAL DEVELOPMET Jelgava, Resuls and discussion 1. I is possible o calculae simulaneous impacs a several poins using coeiciens o resiuions and dry ricion coeiciens.. Given calculaion mehod allows o ind analyical ormulas or simulaneous collisions a several poins. 3. Analyical ormulas mus be used or he sysem parameer opimizaion. 4. Resuls o modelling wih Working Model were used or design o he experimenal model. Conclusions 1. Here given mehod or calculaion o impacs a several poins is applicable o shock calculaions, mosly or one solid body: in plane or roaion moions by means o he classical mechanics relaionships.. For calculaions o sysems wih impacs a more han hree poins compuer programs can be used [7]. 3. The analysis o impacs in complicaed sysems by compuer programs needs checking o addiional resuls, which akes ino accoun seven dieren impac cases [7]. Reerences 1. Plavnieks V. The calculaion o oblique impac agains an obsacle. Problems o dynamics and srengh. Proceeding 18: Рига: Зинатне pp (in Russian).. Kepe O., Viba J. Theoreical Mechanics. Riga: Zvaigzne, Lavian. 578 p. 3. Viba J. Opimizaion and synhesis o vibro impac sysems. Riga: Zinane, Russian. 53 p. 4. Lavendelis, E.; Viba, J.; Grasmanis, B Collision o he rigid body wih obsacle a more han one poin, in nd Inernaional Conerence o Mechanical Engineering Mechanics 97 Proceedings, 3 5 Sepember, 1997, Vilnius, Par 1: Machine Dynamics and Diagnosics MDD. Machine Design, Compuaion and Opimizaion MDCO, pp Anhony Bedord and Wallace Fowler. Engineering Mechanics; Saics & Dynamics. 4h ed. Pearson Educaion, Inc. USA p. 6. Goldsein H., Poole C., Sako J. Classical Mechanics, hird ediion, Addison-Wesley,, 647 p. 7. MSC. Soware Corporaion. Working Model Tuorial, 4,. [online] [ ] Available a: hp:// 119

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Scientific Research of the Institute of Mathematics and Computer Science DIFFERENT VARIANTS OF THE BOUNDARY ELEMENT METHOD FOR PARABOLIC EQUATIONS

Scientific Research of the Institute of Mathematics and Computer Science DIFFERENT VARIANTS OF THE BOUNDARY ELEMENT METHOD FOR PARABOLIC EQUATIONS Scieniic Research o he Insiue o Mahemaics and Compuer Science DIERENT VARIANTS O THE BOUNDARY ELEMENT METHOD OR PARABOLIC EQUATIONS Ewa Majchrzak,, Ewa Ładyga Jerzy Mendakiewicz, Alicja Piasecka Belkhaya

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields Lecure 16 (Momenum and Impulse, Collisions and Conservaion o Momenum) Physics 160-02 Spring 2017 Douglas Fields Newon s Laws & Energy The work-energy heorem is relaed o Newon s 2 nd Law W KE 1 2 1 2 F

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at Q2.1 This is he x graph of he moion of a paricle. Of he four poins P, Q, R, and S, he velociy is greaes (mos posiive) a A. poin P. B. poin Q. C. poin R. D. poin S. E. no enough informaion in he graph o

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Physics 2107 Moments of Inertia Experiment 1

Physics 2107 Moments of Inertia Experiment 1 Physics 107 Momens o Ineria Experimen 1 Prelab 1 Read he ollowing background/seup and ensure you are amiliar wih he heory required or he experimen. Please also ill in he missing equaions 5, 7 and 9. Background/Seup

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Method

Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Method , ISSN 0974-570X (Online), ISSN 0974-578 (Prin), Vol. 6; Issue No. 3; Year 05, Copyrigh 05 by CESER PUBLICATIONS Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Mehod M.C. Agarana and

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

NOVEL PROCEDURE TO COMPUTE A CONTACT ZONE MAGNITUDE OF VIBRATIONS OF TWO-LAYERED UNCOUPLED PLATES

NOVEL PROCEDURE TO COMPUTE A CONTACT ZONE MAGNITUDE OF VIBRATIONS OF TWO-LAYERED UNCOUPLED PLATES NOVEL PROCEDURE TO COMPUTE A CONTACT ZONE MAGNITUDE OF VIBRATION OF TO-LAYERED UNCOUPLED PLATE J. AREJCEICZ, V. A. KRYKO, AND O. OVIANNIKOVA Received February A novel ieraion procedure for dynamical problems,

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Optimal trajectory generation for wheeled mobile robot

Optimal trajectory generation for wheeled mobile robot Opimal rajecory generaion or wheeled mobile robo Bin Qin Yeng Chai Soh Ming Xie Danwei Wang Nanyang echnological Universiy, Nangyang Avenue, Singapore mbqin@nu.edu.sg, eycsoh@nu.edu.sg Absrac. he problem

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for Impulse & Momenum Objecies To deelop he principle of linear impulse and momenum for a paricle. To sudy he conseraion of linear momenum for paricles. To analyze he mechanics of impac. To inroduce he concep

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

Dynamic Analysis On Vertical Vibratory Conveyor Yuejing Zhao, Fengshan Huang, Zhilin Zhao

Dynamic Analysis On Vertical Vibratory Conveyor Yuejing Zhao, Fengshan Huang, Zhilin Zhao Advanced Maerials Research Online: 13-5-14 ISSN: 166-8985, Vols. 694-697, pp 3-6 doi:1.48/.scienific.ne/amr.694-697.3 13 Trans Tech Publicaions, Sizerland Dynamic Analysis On Verical Vibraory Conveyor

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Kinetics of a Particle: Impulse and Momentum

Kinetics of a Particle: Impulse and Momentum Kineics of a Paricle: Impulse and Momenum Linear momenum L mv d Fma ( mv) d dl d Newon s nd law: The resulan of all forces acing on a paricle is equal o is ime rae of change of linear momenum. F d L L

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

A Note on Fractional Electrodynamics. Abstract

A Note on Fractional Electrodynamics. Abstract Commun Nonlinear Sci Numer Simula 8 (3 589 593 A Noe on Fracional lecrodynamics Hosein Nasrolahpour Absrac We invesigae he ime evoluion o he racional elecromagneic waves by using he ime racional Maxwell's

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1 Paricle Moion Soluions We have inenionally included more maerial han can be covered in mos Suden Sudy Sessions o accoun for groups ha are able o answer he quesions a a faser rae. Use your own judgmen,

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 Tuorial Shee #2 discree vs. coninuous uncions, periodiciy, sampling We will encouner wo classes o signals in his class, coninuous-signals and discree-signals. The disinc mahemaical properies o each,

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

The Paradox of Twins Described in a Three-dimensional Space-time Frame

The Paradox of Twins Described in a Three-dimensional Space-time Frame The Paradox of Twins Described in a Three-dimensional Space-ime Frame Tower Chen E_mail: chen@uguam.uog.edu Division of Mahemaical Sciences Universiy of Guam, USA Zeon Chen E_mail: zeon_chen@yahoo.com

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems Paricle Swarm Opimizaion Combining Diversificaion and Inensificaion for Nonlinear Ineger Programming Problems Takeshi Masui, Masaoshi Sakawa, Kosuke Kao and Koichi Masumoo Hiroshima Universiy 1-4-1, Kagamiyama,

More information

Elements of Computer Graphics

Elements of Computer Graphics CS580: Compuer Graphics Min H. Kim KAIST School of Compuing Elemens of Compuer Graphics Geomery Maerial model Ligh Rendering Virual phoography 2 Foundaions of Compuer Graphics A PINHOLE CAMERA IN 3D 3

More information

arxiv:cond-mat/ May 2002

arxiv:cond-mat/ May 2002 -- uadrupolar Glass Sae in para-hydrogen and orho-deuerium under pressure. T.I.Schelkacheva. arxiv:cond-ma/5538 6 May Insiue for High Pressure Physics, Russian Academy of Sciences, Troisk 49, Moscow Region,

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chaper Moion along a sraigh line Kinemaics & Dynamics Kinemaics: Descripion of Moion wihou regard o is cause. Dynamics: Sudy of principles ha relae moion o is cause. Basic physical ariables in kinemaics

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015) Inernaional Indusrial Informaics and Compuer Engineering Conference (IIICEC 015) Effec of impeller blades on waer resisance coefficien and efficiency of mied-flow pump Du Yuanyinga, Shang Changchunb, Zhang

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

MATHEMATICAL MODELING OF THE TRACTOR-GRADER AGRICULTURAL SYSTEM CINEMATIC DURING LAND IMPROVING WORKS

MATHEMATICAL MODELING OF THE TRACTOR-GRADER AGRICULTURAL SYSTEM CINEMATIC DURING LAND IMPROVING WORKS Bullein of he Transilvania Universiy of Braşov Series II: Foresry Wood Indusry Agriculural Food Engineering Vol. 5 (54) No. 1-2012 MATHEMATICA MODEING OF THE TRACTOR-GRADER AGRICUTURA SYSTEM CINEMATIC

More information

A High-Speed Machining Algorithm For Continuous Corners

A High-Speed Machining Algorithm For Continuous Corners IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 15, Issue 5 Ver. III (Sep. - Oc. 018), PP 64-69 www.iosrjournals.org A High-Speed Machining Algorihm

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

Trajectory planning in Cartesian space

Trajectory planning in Cartesian space Roboics 1 Trajecory planning in Caresian space Prof. Alessandro De Luca Roboics 1 1 Trajecories in Caresian space in general, he rajecory planning mehods proposed in he join space can be applied also in

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

The physics most important to 20th Century. The most useful interactions - Electricity & PHYSICS. » Physics on the atomic scale.

The physics most important to 20th Century. The most useful interactions - Electricity & PHYSICS. » Physics on the atomic scale. Physic301 Where o in Tomorrow s Assignmen Class Web Page hp://www.physics.umn.edu» Class normaion» 1301.100 Syllabus can be downloaded rom web» Schedule» Grading Lecure noes Te problem soluion oulines

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

Physics 218 Exam 1 with Solutions Spring 2011, Sections ,526,528

Physics 218 Exam 1 with Solutions Spring 2011, Sections ,526,528 Physics 18 Exam 1 wih Soluions Sprin 11, Secions 513-515,56,58 Fill ou he informaion below bu do no open he exam unil insruced o do so Name Sinaure Suden ID E- mail Secion # Rules of he exam: 1. You have

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 =

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 = Name Secion Phsics 1210 Final Exam Ma 2011 v1.0 This es is closed-noe and closed-book. No wrien, prined, or recorded maerial is permied. Calculaors are permied bu compuers are no. No collaboraion, consulaion,

More information

MEASUREMENTS AND THEORETICAL CALCULATIONS OF DIFFUSED RADIATION AND ATMOSPHERE LUCIDITY

MEASUREMENTS AND THEORETICAL CALCULATIONS OF DIFFUSED RADIATION AND ATMOSPHERE LUCIDITY ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 8.-9.5.9. MEASUREMENTS AND THEORETICAL CALCULATIONS OF DIFFUSED RADIATION AND ATMOSPHERE LUCIDITY Ilze Pelēce, Uldis Iljins, Imans Ziemelis Lavia Universiy of

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information