Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties.

Size: px
Start display at page:

Download "Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties."

Transcription

1 Polynomial functions Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. In order to master the techniques eplained here it is vital that you undertake plenty of practice eercises so that they become second nature. Afterreadingthistet,and/orviewingthevideotutorialonthistopic,youshouldbeableto: recognisewhenaruledescribesapolynomialfunction,andwritedownthedegreeofthe polynomial, recognizethetypicalshapesofthegraphsofpolynomials,ofdegreeupto4, understandwhatismeantbythemultiplicityofarootofapolynomial, sketchthegraphofapolynomial,givenitsepressionasaproductoflinearfactors. Contents 1. Introduction 2 2. What is a polynomial? 2 3. Graphs of polynomial functions 3 4. Turning points of polynomial functions 6 5. Roots of polynomial functions 7 1 mc-ty-polynomial c mathcentre June 25, 2009

2 1. Introduction Apolynomialfunctionisafunctionsuchasaquadratic,acubic,aquartic,andsoon,involving onlynon-negativeintegerpowersof. Wecangiveageneraldefintionofapolynomial,and define its degree. 2. What is a polynomial? Apolynomialofdegree nisafunctionoftheform f() = a n n + a n 1 n a a 1 + a 0 where the a s are real numbers(sometimes called the coefficients of the polynomial). Although this general formula might look quite complicated, particular eamples are much simpler. For eample, f() = isapolynomialofdegree3,as3isthehighestpowerof intheformula.thisiscalledacubic polynomial, or just a cubic. And f() = isapolynomialofdegree7,as7isthehighestpowerof.noticeherethatwedon tneedevery powerof upto7: weneedtoknowonlythehighestpowerof tofindoutthedegree. An eampleofakindyoumaybefamiliarwithis f() = whichisapolynomialofdegree2,as2isthehighestpowerof.thisiscalledaquadratic. Functions containing other operations, such as square roots, are not polynomials. For eample, f() = isnotapolynomialasitcontainsasquareroot.and f() = / isnotapolynomialasitcontainsa divideby. Apolynomialisafunctionoftheform Key Point f() = a n n + a n 1 n a a 1 + a 0. The degree of a polynomial is the highest power of in its epression. Constant(non-zero) polynomials, linear polynomials, quadratics, cubics and quartics are polynomials of degree 0, 1, 2,3and4respectively.Thefunction f() = 0isalsoapolynomial,butwesaythatitsdegree is undefined. c mathcentre June 25, mc-ty-polynomial

3 3. Graphs of polynomial functions Wehavemetsomeofthebasicpolynomialsalready.Foreample, f() = 2isaconstantfunction and f() = 2 + 1isalinearfunction. f () f () = f () = 2 1 It is important to notice that the graphs of constant functions and linear functions are always straight lines. Wehavealreadysaidthataquadraticfunctionisapolynomialofdegree2. Herearesome eamples of quadratic functions: f() = 2, f() = 2 2, f() = 5 2. Whatistheimpactofchangingthecoefficientof 2 aswehavedoneintheseeamples? One waytofindoutistosketchthegraphsofthefunctions. f () f () = 5 2 f () = 2 2 f () = 2 Youcanseefromthegraphthat,asthecoefficientof 2 isincreased,thegraphisstretched vertically(that is, in the y direction). Whatwillhappenifthecoefficientisnegative?Thiswillmeanthatallofthepositive f()values willnowbecomenegative.sowhatwillthegraphsofthefunctionslooklike?thefunctionsare now f() = 2, f() = 2 2, f() = mc-ty-polynomial c mathcentre June 25, 2009

4 f () f () = 2 f () = 2 2 f () = 5 2 Noticeherethatallofthesegraphshaveactuallybeenreflectedinthe -ais. Thiswillalways happenforfunctionsofanydegreeiftheyaremultipliedby 1. Nowletuslookatsomeotherquadratic functions toseewhathappens whenwevarythe coefficientof,ratherthanthecoefficientof 2.Weshalluseatableofvaluesinordertoplot thegraphs,butweshallfillinonlythosevaluesneartheturningpointsofthefunctions Youcanseethesymmetryineachrowofthetable,demonstratingthatwehaveconcentrated ontheregionaroundtheturningpointofeachfunction. Wecannowusethesevaluestoplot the graphs. f () f () = 2 + f () = f () = As you can see, increasing the positive coefficient of in this polynomial moves the graph down andtotheleft. c mathcentre June 25, mc-ty-polynomial

5 What happens if the coefficient of is negative? Againwecanusethesetablesofvaluestoplotthegraphsofthefunctions. f () f () = 2 f () = 2 4 f () = 2 6 Asyoucansee,increasingthenegativecoefficientof (inabsoluteterms)movesthegraph downandtotheright. Sonowweknowwhathappenswhenwevarythe 2 coefficient,andwhathappenswhenwe varythe coefficient. Butwhathappenswhenwevarytheconstanttermattheendofour polynomial? Wealreadyknowwhatthegraphofthefunction f() = 2 + lookslike,sohow doesthisdifferfromthegraphofthefunctions f() = ,or f() = ,or f() = 2 + 4?Asusual,atableofvaluesisagoodplacetostart Ourtableofvaluesisparticularlyeasytocompletesincewecanuseouranswersfromthe 2 + columntofindeverythingelse. Wecanusethesetablesofvaluestoplotthegraphsofthe functions. 5 mc-ty-polynomial c mathcentre June 25, 2009

6 f () f () = f () = f () = 2 + f () = Aswecanseestraightaway,varyingtheconstanttermtranslatesthe 2 + curvevertically. Furthermore,thevalueoftheconstantisthepointatwhichthegraphcrossesthe f()ais. 4. Turning points of polynomial functions Aturningpointofafunctionisapointwherethegraphofthefunctionchangesfromsloping downwards to sloping upwards, or vice versa. So the gradient changes from negative to positive, orfrompositivetonegative. Generallyspeaking,curvesofdegree ncanhaveupto (n 1) turning points. For instance, a quadratic has only one turning point. Acubiccouldhaveuptotwoturningpoints,and so would look something like this. However, some cubics have fewer turning points: for eample f() = 3. Butnocubichasmorethantwo turning points. c mathcentre June 25, mc-ty-polynomial

7 Inthesameway,aquarticcouldhaveuptothree turning turning points, and so would look something like this. Again, some quartics have fewer turning points, but none has more. Key Point Apolynomialofdegree ncanhaveupto (n 1)turningpoints. 5. Roots of polynomial functions Youmayrecallthatwhen ( a)( b) = 0,weknowthat aand barerootsofthefunction f() = ( a)( b). Nowwecanusetheconverseofthis,andsaythatif aand bareroots, thenthepolynomialfunctionwiththeserootsmustbe f() = ( a)( b),oramultipleof this. Foreample,ifaquadratichasroots = 3and = 2,thenthefunctionmustbe f() = ( 3)(+2),oraconstantmultipleofthis.Thiscanbeetendedtopolynomialsofanydegree. Foreample,iftherootsofapolynomialare = 1, = 2, = 3, = 4,thenthefunctionmust be f() = ( 1)( 2)( 3)( 4), or a constant multiple of this. Letusalsothinkaboutthefunction f() = ( 2) 2.Wecanseestraightawaythat 2 = 0, sothat = 2. Forthisfunctionwehaveonlyoneroot. Thisiswhatwecallarepeatedroot, andarootcanberepeatedanynumberoftimes. Foreample, f() = ( 2) 3 ( + 4) 4 has arepeatedroot = 2,andanotherrepeatedroot = 4. Wesaythattheroot = 2has multiplicity3,andthattheroot = 4hasmultiplicity4. Theusefulthingaboutknowingthemultiplicityofarootisthatithelpsuswithsketchingthe graphofthefunction.ifthemultiplicityofarootisoddthenthegraphcutsthroughthe -ais atthepoint (, 0). Butifthemultiplicityiseventhenthegraphjusttouchesthe -aisatthe point (, 0). For eample, take the function f() = ( 3) 2 ( + 1) 5 ( 2) 3 ( + 2) 4. Theroot = 3hasmultiplicity2,sothegraphtouchesthe -aisat (3, 0). 7 mc-ty-polynomial c mathcentre June 25, 2009

8 Theroot = 1hasmultiplicity5,sothegraphcrossesthe -aisat ( 1, 0). Theroot = 2hasmultiplicity3,sothegraphcrossesthe -aisat (2, 0). Theroot = 2hasmultiplicity4,sothegraphtouchesthe -aisat ( 2, 0). Totakeanothereample,supposewehavethefunction f() = ( 2) 2 ( + 1). Wecansee thatthelargestpowerof is3,andsothefunctionisacubic. Weknowthepossiblegeneral shapesofacubic,andasthecoefficientof 3 ispositivethecurvemustgenerallyincreaseto therightanddecreasetotheleft.wecanalsoseethattherootsofthefunctionare = 2and = 1. Theroot = 2hasevenmultiplicityandsothecurvejusttouchesthe -aishere, whilst = 1hasoddmultiplicityandsoherethecurvecrossesthe -ais.thismeanswecan sketch the graph as follows. f () 1 2 Key Point Thenumber aisarootofthepolynomialfunction f()if f(a) = 0,andthisoccurswhen ( a) isafactorof f(). If aisarootof f(),andif ( a) m isafactorof f()but ( a) m+1 isnotafactor,thenwe say that the root has multiplicity m. Atarootofoddmultiplicitythegraphofthefunctioncrossesthe -ais,whereasatarootof even multiplicity the graph touches the -ais. Eercises 1. What is a polynomial function? 2. Which of the following functions are polynomial functions? (a) f() = (b) f() = (c) f() = (d) f() = sin + 1 (e) f() = / (f) f() = c mathcentre June 25, mc-ty-polynomial

9 3. Write down one eample of each of the following types of polynomial function: (a) cubic (b) linear (c) quartic (d) quadratic 4.Sketchthegraphsofthefollowingfunctionsonthesameaes: (a) f() = 2 (b) f() = 4 2 (c) f() = 2 (d) f() = Considerafunctionoftheform f() = 2 +a,where arepresentsarealnumber.thegraph of this function is represented by a parabola. (a)when a > 0,whathappenstotheparabolaas aincreases? (b)when a < 0,whathappenstotheparabolaas adecreases? 6.Writedownthemaimumnumberofturningpointsonthegraphofapolynomialfunctionof degree: (a) 2 (b) 3 (c) 12 (d) n 7. Write down a polynomial function with roots: (a) 1, 2, 3, 4 (b) 2, 4 (c) 12, 1, 6 8. Write down the roots and identify their multiplicity for each of the following functions: (a) f() = ( 2) 3 ( + 4) 4 (b) f() = ( 1)( + 2) 2 ( 4) 3 9. Sketch the following functions: (a) f() = ( 2) 2 ( + 1) (b) f() = ( 1) 2 ( + 3) Answers 1.Apolynomialfunctionisafunctionthatcanbewrittenintheform f() = a n n + a n 1 n 1 + a n 2 n a a 1 + a 0, whereeach a 0, a 1,etc.representsarealnumber,andwhere nisanaturalnumber(including0). 2. (a) f() = isapolynomial (b) f() = isnotapolynomial,becauseof (c) f() = isapolynomial (d) f() = sin + 1isnotapolynomial,becauseof sin (e) f() = /isnotapolynomial,becauseof 2/ (f) f() = isapolynomial 3. (a) Thehighestpowerof mustbe3,soeamplesmightbe f() = or f() = 3 2. (b) Thehighestpowerof mustbe1,soeamplesmightbe f() = or f() = 6 5. (c) Thehighestpowerof mustbe4,soeamplesmightbe f() = or f() = 4 5. (d) Thehighestpowerof mustbe2,soeamplesmightbe f() = 2 or f() = mc-ty-polynomial c mathcentre June 25, 2009

10 f () f () = 4 2 f () = 2 f () = 2 f () = (a) When a > 0,theparabolamovesdownandtotheleftas aincreases. (b) When a < 0,theparabolamovesdownandtotherightas adecreases. 6. (a) 1 turning point (d) (n 1) turning points. (b) 2 turning points (c) 11 turning points 7. (a) f() = ( 1)( 2)( 3)( 4)oramultiple (b) f() = ( 2)( + 4)oramultiple (c) f() = ( 12)( + 1)( + 6)oramultiple. 8. (a) = 2 = 4 (b) = 1 = 2 = 4 odd multiplicity even multiplicity odd multiplicity even multiplicity odd multiplicity c mathcentre June 25, mc-ty-polynomial

11 9) f () f () = ( 1) 2 ( + 3) f () = ( 2) 2 ( + 1) 11 mc-ty-polynomial c mathcentre June 25, 2009

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms mc-ty-difftakelogs-2009-1 In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks).

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks). Graphs of Polynomials: Polynomial functions of degree or higher are smooth and continuous. (No sharp corners or breaks). These are graphs of polynomials. These are NOT graphs of polynomials There is a

More information

1 x

1 x Unit 1. Calculus Topic 4: Increasing and decreasing functions: turning points In topic 4 we continue with straightforward derivatives and integrals: Locate turning points where f () = 0. Determine the

More information

Question 1. Find the coordinates of the y-intercept for. f) None of the above. Question 2. Find the slope of the line:

Question 1. Find the coordinates of the y-intercept for. f) None of the above. Question 2. Find the slope of the line: of 4 4/4/017 8:44 AM Question 1 Find the coordinates of the y-intercept for. Question Find the slope of the line: of 4 4/4/017 8:44 AM Question 3 Solve the following equation for x : Question 4 Paul has

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac Basic Math Formulas Arithmetic operations (ab means ab) Powers and roots a(b + c)= ab + ac a+b c = a b c + c a b + c d = ad+bc bd a b = a c d b d c a c = ac b d bd a b = a+b ( a ) b = ab (y) a = a y a

More information

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum Polynomials, Linear Factors, and Zeros To analyze the actored orm o a polynomial. To write a polynomial unction rom its zeros. Describe the relationship among solutions, zeros, - intercept, and actors.

More information

Introduction to Rational Functions

Introduction to Rational Functions Introduction to Rational Functions The net class of functions that we will investigate is the rational functions. We will eplore the following ideas: Definition of rational function. The basic (untransformed)

More information

Evaluate and Graph Polynomial Functions

Evaluate and Graph Polynomial Functions Evaluate and Graph Polynomial Functions Section 2.2 How do you identify and evaluate polynomial functions? What is synthetic substitution? How do you graph polynomial functions? Polynomial Function f(x)

More information

CHAPTER 2. Polynomial Functions

CHAPTER 2. Polynomial Functions CHAPTER Polynomial Functions.1 Graphing Polynomial Functions...9. Dividing Polynomials...5. Factoring Polynomials...1. Solving Polynomial Equations...7.5 The Fundamental Theorem of Algebra...5. Transformations

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n Chapter 2 Functions and Graphs Section 4 Polynomial and Rational Functions Polynomial Functions A polynomial function is a function that can be written in the form a n n 1 n x + an 1x + + a1x + a0 for

More information

Integrating algebraic fractions 1

Integrating algebraic fractions 1 Integrating algebraic fractions mc-stack-ty-algfrac-2009- Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fractionasthesumofitspartialfractions. Inthisunitwewillillustratethisidea.

More information

Section 2.5: Graphs of Functions

Section 2.5: Graphs of Functions Section.5: Graphs of Functions Objectives Upon completion of this lesson, ou will be able to: Sketch the graph of a piecewise function containing an of the librar functions. o Polnomial functions of degree

More information

5.1 Polynomial Functions

5.1 Polynomial Functions 5.1 Polynomial Functions In this section, we will study the following topics: Identifying polynomial functions and their degree Determining end behavior of polynomial graphs Finding real zeros of polynomial

More information

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts? L3 1.3 Factored Form Polynomial Functions Lesson MHF4U Jensen In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 Page 1 of 0 11 Practice Questions 6 1 5. Which

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

FUNCTIONS. Prepared by: Ms Sonia Tan

FUNCTIONS. Prepared by: Ms Sonia Tan FUNCTIONS FUNCTION A function is a pairing that assigns to each element of the set X eactly one element of the set Y. Using Diagrams X Y 1 a b 3 c 4 d X 1 3 4 Y a b c X Y 1 a b 3 c One to One Many to One

More information

Surds, and other roots

Surds, and other roots Surds, and other roots Roots and powers are closely related, but only some roots can be written as whole numbers. Surds are roots which cannot be written in this way. Nevertheless, it is possible to manipulate

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.)

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) MATH- Sample Eam Spring 7. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) a. 9 f ( ) b. g ( ) 9 8 8. Write the equation of the circle in standard form given

More information

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 = Math 1310 A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function is n. We call the term the leading term,

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! Theory Eample: Consider the graph of y = pictured

More information

CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview

CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview CALCULUS C3 Topic Overview C3 APPLICATIONS OF DIFFERENTIATION Differentiation can be used to investigate the behaviour of a function, to find regions where the value of a function is increasing or decreasing

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Practice Problems for Test II

Practice Problems for Test II Math 117 Practice Problems for Test II 1. Let f() = 1/( + 1) 2, and let g() = 1 + 4 3. (a) Calculate (b) Calculate f ( h) f ( ) h g ( z k) g( z) k. Simplify your answer as much as possible. Simplify your

More information

Pre-Calculus Midterm Practice Test (Units 1 through 3)

Pre-Calculus Midterm Practice Test (Units 1 through 3) Name: Date: Period: Pre-Calculus Midterm Practice Test (Units 1 through 3) Learning Target 1A I can describe a set of numbers in a variety of ways. 1. Write the following inequalities in interval notation.

More information

Math Analysis Chapter 2 Notes: Polynomial and Rational Functions

Math Analysis Chapter 2 Notes: Polynomial and Rational Functions Math Analysis Chapter Notes: Polynomial and Rational Functions Day 13: Section -1 Comple Numbers; Sections - Quadratic Functions -1: Comple Numbers After completing section -1 you should be able to do

More information

1 k. cos tan? Higher Maths Non Calculator Practice Practice Paper A. 1. A sequence is defined by the recurrence relation u 2u 1, u 3.

1 k. cos tan? Higher Maths Non Calculator Practice Practice Paper A. 1. A sequence is defined by the recurrence relation u 2u 1, u 3. Higher Maths Non Calculator Practice Practice Paper A. A sequence is defined b the recurrence relation u u, u. n n What is the value of u?. The line with equation k 9 is parallel to the line with gradient

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

3.1 Power Functions & Polynomial Functions

3.1 Power Functions & Polynomial Functions 3.1 Power Functions & Polynomial Functions A power function is a function that can be represented in the form f() = p, where the base is a variable and the eponent, p, is a number. The Effect of the Power

More information

, a 1. , a 2. ,..., a n

, a 1. , a 2. ,..., a n CHAPTER Points to Remember :. Let x be a variable, n be a positive integer and a 0, a, a,..., a n be constants. Then n f ( x) a x a x... a x a, is called a polynomial in variable x. n n n 0 POLNOMIALS.

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Algebra I Quadratics Practice Questions

Algebra I Quadratics Practice Questions 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 From CCSD CSE S Page 1 of 6 1 5. Which is equivalent

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point quadratic form repeated zero multiplicity Graph Transformations of Monomial Functions

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Attributes of Polynomial Functions VOCABULARY

Attributes of Polynomial Functions VOCABULARY 8- Attributes of Polnomial Functions TEKS FCUS Etends TEKS ()(A) Graph the functions f () =, f () =, f () =, f () =, f () = b, f () =, and f () = log b () where b is,, and e, and, when applicable, analze

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes Solving polynomial equations 3.3 Introduction Linear and quadratic equations, dealt within sections 1 and 2 are members of a class of equations called polynomial equations. These have the general form:

More information

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities Section.7 Notes Name: Date: Precalculus Polynomial and Rational Inequalities At the beginning of this unit we solved quadratic inequalities by using an analysis of the graph of the parabola combined with

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient.

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient. CHAPTER 6 Vocabular The table contains important vocabular terms from Chapter 6. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. Term Page Definition Clarifing

More information

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH Postal Service Lesson 1-1 Polynomials Learning Targets: Write a third-degree equation that represents a real-world situation. Graph a portion of this equation and evaluate the meaning of a relative maimum.

More information

Math 1314 Lesson 1: Prerequisites

Math 1314 Lesson 1: Prerequisites Math 131 Lesson 1: Prerequisites Prerequisites are topics you should have mastered before you enter this class. Because of the emphasis on technology in this course, there are few skills which you will

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power Precalculus Notes: Section. Modeling High Degree Polnomial Functions Graphs of Polnomials Polnomial Notation f ( ) a a a... a a a is a polnomial function of degree n. n n 1 n n n1 n 1 0 n is the degree

More information

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n 1.1 Power Functions A rock that is tossed into the water of a calm lake creates ripples that move outward in a circular pattern. The area, A, spanned b the ripples can be modelled b the function A(r) πr,

More information

Chapter 4E - Combinations of Functions

Chapter 4E - Combinations of Functions Fry Texas A&M University!! Math 150!! Chapter 4E!! Fall 2015! 121 Chapter 4E - Combinations of Functions 1. Let f (x) = 3 x and g(x) = 3+ x a) What is the domain of f (x)? b) What is the domain of g(x)?

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus Math 0-03-RE - Calculus I Functions Page of 0 Definition of a function f() : Topics of Functions used in Calculus A function = f() is a relation between variables and such that for ever value onl one value.

More information

P1 Chapter 4 :: Graphs & Transformations

P1 Chapter 4 :: Graphs & Transformations P1 Chapter 4 :: Graphs & Transformations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 14 th September 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Performing well in calculus is impossible without a solid algebra foundation. Many calculus Chapter Algebra Review Performing well in calculus is impossible without a solid algebra foundation. Many calculus problems that you encounter involve a calculus concept but then require many, many steps

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

The degree of a function is the highest exponent in the expression

The degree of a function is the highest exponent in the expression L1 1.1 Power Functions Lesson MHF4U Jensen Things to Remember About Functions A relation is a function if for every x-value there is only 1 corresponding y-value. The graph of a relation represents a function

More information

Exponential Growth. b.) What will the population be in 3 years?

Exponential Growth. b.) What will the population be in 3 years? 0 Eponential Growth y = a b a b Suppose your school has 4512 students this year. The student population is growing 2.5% each year. a.) Write an equation to model the student population. b.) What will the

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens Section.1 Graphing Quadratics Objectives: 1. Graph Quadratic Functions. Find the ais of symmetry and coordinates of the verte of a parabola.. Model data using a quadratic function. y = 5 I. Think and Discuss

More information

Math 1500 Fall 2010 Final Exam Review Solutions

Math 1500 Fall 2010 Final Exam Review Solutions Math 500 Fall 00 Final Eam Review Solutions. Verify that the function f() = 4 + on the interval [, 5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7 Name Date.7 Analyzing Graphs of Polynomial Functions For use with Eploration.7 Essential Question How many turning points can the graph of a polynomial function have? 1 EXPLORATION: Approimating Turning

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Math 2412 Activity 2(Due by EOC Feb. 27) Find the quadratic function that satisfies the given conditions. Show your work!

Math 2412 Activity 2(Due by EOC Feb. 27) Find the quadratic function that satisfies the given conditions. Show your work! Math 4 Activity (Due by EOC Feb 7) Find the quadratic function that satisfies the given conditions Show your work! The graph has a verte at 5, and it passes through the point, 0 7 The graph passes through

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Answer Key Name: Date: UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Part I Questions. Which of the following is the value of 6? () 6 () 4 () (4). The epression is equivalent to 6 6 6 6 () () 6

More information

Modeling Revision Questions Set 1

Modeling Revision Questions Set 1 Modeling Revision Questions Set. In an eperiment researchers found that a specific culture of bacteria increases in number according to the formula N = 5 2 t, where N is the number of bacteria present

More information

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON CONDENSED LESSON 9.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations solve

More information

Cubic and quartic functions

Cubic and quartic functions 3 Cubic and quartic functions 3A Epanding 3B Long division of polnomials 3C Polnomial values 3D The remainder and factor theorems 3E Factorising polnomials 3F Sum and difference of two cubes 3G Solving

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)(3 + 5)

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Concepts of graphs of functions:

Concepts of graphs of functions: Concepts of graphs of functions: 1) Domain where the function has allowable inputs (this is looking to find math no-no s): Division by 0 (causes an asymptote) ex: f(x) = 1 x There is a vertical asymptote

More information

Factors, Zeros, and Roots

Factors, Zeros, and Roots Factors, Zeros, and Roots Solving polynomials that have a degree greater than those solved in previous courses is going to require the use of skills that were developed when we previously solved quadratics.

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions Lesson Package MHF4U Chapter 1 Outline Unit Goal: By the end of this unit, you will be able to identify and describe some key features of polynomial functions, and make

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Core 1 Inequalities and indices Section 1: Errors and inequalities

Core 1 Inequalities and indices Section 1: Errors and inequalities Notes and Eamples Core Inequalities and indices Section : Errors and inequalities These notes contain subsections on Inequalities Linear inequalities Quadratic inequalities This is an eample resource from

More information