Neutral Atoms in Optical Lattices - from Quantum Simulators to Multiparticle Entanglement -

Size: px
Start display at page:

Download "Neutral Atoms in Optical Lattices - from Quantum Simulators to Multiparticle Entanglement -"

Transcription

1 Neutral Atoms n Optcal Lattces - from Quantum Smulators to Multpartcle Entanglement - Markus Grener, Olaf Mandel, Tm Rom, Artur Wdera, Smon Föllng T. W. Hänsch & I.B. LES HOUCHES 004 Introducton Durng the last 0 years a hgh degree of sophstcaton has been reached n the control of sngle quantum systems Atoms, Ions, Photons, Quantum Dots Ludwg-Maxmlans-Unversty, Munch, Max-Planck-Insttut for Quantum Optcs, Garchng Johannes-Gutenberg Unversty, Manz New challenges ahead: control, engneer and understand complex quantum system quantum computers, quantum smulators, novel (states of) quantum matter, advanced materals, mult-partcle entanglement Introducton Short Resume of Work wth the Mott State Control and engneer quantum matter at the ultmate lmt search for novel quantum phases solve longstandng open questons of condensed matter physcs Hgh precson spectroscopy Control nteracton propertes (mag. & opt. Feshbach resonances) producton of ground state moleculues realze Quantum smulators create large scale entanglement fast & robust qubts sngle ste addressng? Quantum Informaton applcatons The Mott state as a quantum regster Spn dependent potentals for ndvdual atoms O. Mandel et al., PRL 9, (003) Collaps and revval of the matter wave feld of a BEC M. Grener et al., Nature, 49, p. 5, 00. Controlled collsons massvely parallel quantum gate array controllable Isng nteracton O. Mandel et al. Nature, 45, p. 937, (003) Atomc/Molecular Physcs Entanglement Interferometry Precson measurement of atomc scatterng propertes A. Wdera et al., PRL 9, (004) State Selectve Producton of Molecules n Optcal Lattces T. Rom et al. (accepted for publcaton n PRL) Novel Quantum Phases Tonks-Grardeau Gas n an Optcal Lattce B. Paredes et al., Nature 49 (004)

2 Neutral Atoms n Optcal Lattces From a Classcal Gas to a Bose-Ensten Condensate Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook Nobel prze 00! T >> T c Classcal Gas T > T c λ db = hmv T T < T c λ d db T = 0 Coherent Matter Wave Matter Waves at Work! How about the Partcles beneath the Waves? (MIT) Andrews et al., Scence (997)

3 How Can We Descrbe the Ground State of a Many-Body System n a Trap? From a Bose Gas wthout Interactons to a Strongly Correlated Bose System Many-Body State No Interactons Ψ ψ N External confnement Weak Interactons Ψ ψ nt N N partcle system Strongly Correlated System Ψ ψ nt N Neutral Atoms n Optcal Lattces Expermental Setup for Lattce Experments Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook

4 Magnetc Transport of Cold Atoms Laser Coolng n Acton MOT BEC Magnetc Transport of Cold Atoms Plus a lot of Optcs and Electroncs (Table )!! M. Grener et al., PRA 63, 0340

5 Table How do we detect these quantum gases? Energy of a dpole n an electrc feld: Trappng Atoms n Lght Feld - Optcal Dpole Potentals Udp r r = d E Optcal Lattces 4 mm Polystyrol Partcles n Water r r An electrc feld nduces a dpole moment: d =αe Udp r α( ω) I( ) Red detunng: Atoms are trapped n the ntensty maxma Blue detunng: Atoms are repelled from the ntensty maxma beams 4 beams See R. Grmm et al., Adv. At. Mol. Opt. Phys. 4, (000). Poneerng work by Steven Chu see also work by: Hemmerch & Hänsch, Phllps, Grynberg, Cohen-Tannoudj, Salomon

6 Optcal Lattces D Lattce Potental Resultng potental conssts of an array of tghtly confng potental tubes BEC s splt nto up to 0,000 coupled D quantum gases (radal moton confned to zero pont oscllatons) V 0 up to 40 E recol ω r up to π 45 khz n 0-50 atoms per tube 3D Lattce Potental General Lattce Parameters Atomc Speces 87 Rb Wavelength 850 nm Wast (/e ) 5 µm Polarzaton Orthogonal between standng wave pars Intensty control All beams ntensty stablzed Resultng potental conssts of a smple cubc lattce BEC coherently populates more than 00,000 lattce stes V 0 up to 40 E recol ω r up to π 45 khz n -5 atoms on average per ste Lattce geometry Lattce spacng Smple cubc 45 nm

7 Neutral Atoms n Optcal Lattces Loadng the Atoms nto the Lattce Potental Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook Here: Exponental ramp up n 80 ms wth a tmeconstant of 0 ms. Not very senstve to exact waveform, or ramp speed Start wth a pure condensate n a magnetc trap Turn on lattce potental adabatcally, so that the wave functon remans n the many body ground state of the system! Macroscopc Wave Functon of a BEC n an Optcal Lattce Detectng the Atoms n the Lattce Number of atoms on j th lattce ste φ ( x j ) ( j ) wx x j Ψ( x) = A x ( ) e j Phase of wave functon on j th lattce ste Spacng between neghborng lattce stes ( 45 nm) s too small to be detectable by optcal means! Localzed wave functon on J th lattce ste Swtch off the lattce lght Localzed wavefunctons expand and nterfere wth each other If there s a constant phase shft Df between lattce stes, the state s an egenstate (Bloch wavefuncton) of the lattce potental! Observe the multple matter wave nterference pattern! Quantum number characterzng these Bloch waves: h Crystal (Quas-) momentum q = φ λ (smulaton)

8 Momentum Dstrbutons D Matter Wave Interference Pattern of a BEC n an Optcal Lattce Momentum dstrbuton can be obtaned by Fourer transformaton of the macroscopc wave functon. Ψ( x) = A( x j ) wx ( x j ) e j φ ( x j ) Tme of flght measurement tme of flght ms 6 ms 0 ms 4 ms 8 ms Indvdual condensates n the lattce expand and nterfere wth each other, revealng the momentum dstrbuton of the atoms n the lattce. Interference Pattern of a 3D Lattce s-wave Scatterng (Experment) D Lattce experment theory s-wave scatterng sphere see also work from J. Walraven on d-wave scatterng!

9 Preparng Arbtrary Phase Dfferences Between Neghbourng Lattce Stes Mappng the Populaton of the Energy Bands onto the Brlloun Zones Phase dfference between neghborng lattce stes ( ) φ j = V' λ/ t/ h hω v Crystal momentum s conserved whle lowerng the lattce depth adabatcally! (cp. Bloch-Oscllatons) Crystal momentum But: dephasng f gradent s left on for long tmes! Populaton of n th band s mapped onto n th Brlloun zone! φ=0 φ=π A. Kastberg et al. PRL 74, 54 (995) M. Grener et al. PRL 87, (00) Free partcle momentum Expermental Results Pet Mondran Populatng Hgher Energy Bands Brlloun Zones n D Momentum dstrbuton of a dephased condensate after turnng off the lattce potental adabtcally Sngle lattce ste Energy bands D Stmulated Raman transtons between vbratonal levels are used to populate hgher energy bands. 3D Measured Momentum Dstrbuton!

10 Neutral Atoms n Optcal Lattces Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook Lattce Potental s ncreased Observe at tme-offlght mages Rampng up the Lattce Potental Momentum Dstrbuton for Dfferent Potental Depths Can We Restore Coherence? 0 E recol Ramp down for dfferent tmes t and montor momemtum dstrbuton! Before rampng down 0. ms.4 ms 4 ms 4 ms E recol

11 How Long Does t Take to Restore Coherence? Bose-Hubbard Hamltonan Dephased Bose- Ensten condensate Expandng the feld operator n the Wanner bass of localzed wave functons on each lattce ste, yelds : ψ ˆ ( x) = aw ˆ ( x x ) Bose-Hubbard Hamltonan Tunnelng tme H = J n + U nˆ ( ˆ n ) aˆ ˆ ˆ aj + ε, j Tunnelmatrx element/hoppng element 3 h J = d xw( x x ) + V ( ) w( ) x m lat x x j Onste nteracton matrx element 4π h a U = m 3 d x w ( x) 4 0. ms.4 ms 4 ms 4 ms Coherence s restored on the order of a tunnelng tme! M.P.A. Fsher et al., PRB 40, 546 (989); D. Jaksch et al., PRL 8, 308 (998) Related experments n D: C. Orzel et al., Scence 9, 386 (00). Superflud Lmt Atomc Lmt of a Mott-Insulator H = J aˆ ˆ ˆ ( ˆ aj + U n n ), j Atoms are delocalzed over the entre lattce! Macroscopc wave functon descrbes ths state very well. M N Ψ ˆ SF a 0 = aˆ 0 H = J aˆ ˆ ˆ ( ˆ aj + U n n ), j Atoms are completely localzed to lattce stes! M n Ψ ( ˆ Mott a ) 0 a ˆ = 0 = Possonan atom number dstrbuton per lattce ste n= Atom number dstrbuton after a measurement Fock states wth a vanshng atom number fluctuaton are formed. n= Atom number dstrbuton after a measurement

12 The Smplest Possble Lattce : Atoms n a Double Well Quantum Phase Transton (QPT) from a Superflud to a Mott-Insulator Superflud State φ+φ l r φ+φ l r ( ) ( ) MI State φl φ r+ φr φl At the crtcal pont g c the system wll undergo a phase transton from a superflud to an nsulator! Average atom number per ste: Average onste Interacton per ste: 0.5 x x x <n> = <n> = <E nt > = ½U <E nt > = 0 Characterstc for a QPT Ths phase transton occurs even at T=0 and s drven by quantum fluctuatons! Exctaton spectrum s dramatcally modfed at the crtcal pont. U/J < g c (Superflud regme) Exctaton spectrum s gapless Crtcal rato for: U/J > g c (Mott-Insulator regme) Exctaton spectrum s gapped U/J = z 5.8 see Subr Sachdev, Quantum Phase Transtons, Cambrdge Unversty Press Superflud Mott-Insulator Phase Dagram Ground State of an Inhomogeneous System Jaksch et al. PRL 8, 308 (998) From Jaksch et al. PRL 8, 308 (998) From M. Nemeyer and H. Monen (prvate communcaton) For an nhomogeneous system an effectve local chemcal potental can be ntroduced µ =µ ε loc

13 Creatng Exctatons n the MI Phase Exctaton Probablty vs. Gradent Mott-Insulator wth n = atom per lattce ste 0 E recol t perturb = ms 3 E recol t perturb = 4 ms Wthout gradent potental Wth gradent potental Specal case: E j = U Energy Scales: hω ν 0 U U J S. Sachdev, K. Sengupta, S. M. Grvn, cond-mat/ E recol t perturb = 9 ms 0 E recol t perturb = 0 ms Resonance Gradent vs. Potental Depth Neutral Atoms n Optcal Lattces U theory Shaded green area denotes possble expermental values due to systematc uncertantes. Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook

14 What Happens to the Relatve Phase of two Quantum Lquds over Tme? Dynamcal Evoluton of a Many Atom State due to Cold Collson Start wth a sngle Bose-Ensten condensate How do collsons affect the many body state n tme? Fundamental queston arses: BEC BEC Relatve phase φ Splt t nto two BECs wth a constant relatve phase φ Phase evoluton of the quantum state of two nteractng atoms: Collsonal phase () t = e U t / h What happens to the relatve phase between the two condensates over tme? What happens to the ndvdual wave functons of the two BECs over tme? M. Grener, O. Mandel, T. W. Hänsch and I. Bloch Nature, 49 (690), 00 Phase shft s coherent! Can be used for quantum computaton (see Jaksch, Bregel, Crac, Zoller schemes) Leads to dramatc effects beyond meanfeld theores! Collsonal phase of n- atoms n a trap: Et n / h= Un( n ) t/ h Tme Evoluton of a Coherent State due to Cold Collsons Freezng Out Atom Number Fluctuatons Coherent state n each lattce ste! + B A Ramp up lattce fast from the superflud regme (A) to the MI regme (B), such that atoms do not have tme to tunnel! α / Ψ = e n α n n! n = + e U t/ h Atom number fluctuatons at (A) are frozen!. Here α = ampltude of the coherent state. Here α = average number of atoms per lattce ste + e 3 Ut/ h / Ψ ( 0) = e α n α n n! n

15 Collapse and Revval of the Matter Wave Feld due to Cold Collsons Quantum state n each lattce ste (e.g. for a coherent state) n ( ) / / α Un n t h t e e n n! α Ψ () = Matter wave feld on the th lattce ste n () ˆ Ψ t = Ψ() t a Ψ() t The dynamcal evoluton can be vsualzed through the Q-functon Dynamcal Evoluton of a Coherent State due to Cold Collsons Q = αψ () t Characterzes overlap of our nput state wth an arbtrary coherent state α π. Matter wave feld collapses but revves after tmes multple tmes of h/u!. Collapse tme depends on the varance σ N of the atom number dstrbuton! Im(a) Yurke & Stoler, 986, F. Sols 994; Wrght et al. 997; Imamoglu, Lewensten & You et al. 997, Castn & Dalbard 997, E. Altman & A. Auerbach 00 Smlar to Collapse and Revval of Rab-Oscllatons n Cavty QED! Re(a) Dynamcal Evoluton of a Coherent State due to Cold Collsons Dynamcal Evoluton of the Interference Pattern tme t=50 ms t=50 ms t=00 ms t=300 ms Im(α) Re(α) t=400 ms t=450 ms t=600 ms G.J. Mlburn & C.A. Holmes PRL 56, 37 (986); B. Yurke & D. Stoler PRL 57, 3 (986) After a potental jump from V A =8E r to V B =E r.

16 Collapse and Revval N coh /N tot Revval Frequency vs. Lattce Potental Depth Oscllatons after lattce potental jump from 8 E recol to E recol h/u from theory Up to 5 revvals are vsble! Influence of the Atom Number Statstcs on the Collapse Tme t c /t rev for Dfferent Intal Potental Depths Fnal potental depth V B =E r Atom Number Statstcs n=, U/J 0 Atom Number Statstcs n=, U/J=7 V A =E r V A =4E r Independent proof of sub-possonan atom number statstcs for fnte U/J!

17 Controlled Collsons D. Jaksch et al., PRL 8,975(999), G. Brennen et al., PRL 8, 060 (999) A. Sorensen & K. Molmer, PRL 83, 74 (999) Movng the Lattce Potentals State Selectve Lattce Potentals 87 Rb Fne- structure Hyperfne structure I = I kx +θ/) I + 0 sn ( = I θ 0 sn ( kx / ) > 0> s - s + V ( x, ) V ( x, ) θ = θ 3 V0 ( x, θ ) = V ( x, θ) + V+ ( x, θ) 4 4

18 Delocalzaton by Hand Sngle Partcle State after Delocalzaton TOF π/ mcrowave pulse Shft π/ mcrowave pulse Intal state 0> More general, the sngle partcle state n > wll be: Ψ + Ψ e α + sngle partcle phase Sngle partcle phase depends on: m Accumulated knetc phase xt () dt h & Accumulated potental energy phase shft ) optcal potentals not constant durng transport ) magnetc feld fluctuatons can be removed by photon echo π/-π-π/ sequence If α s constant for all atoms, we can observe an nterference pattern wth absorpton magng after a tme of flght perod! α=0 α=π Shftng s Coherent! Temporal Phase Control Localzed Delocalzed stes V=70% Delocalzaton over two lattce stes ( x = 400 nm), shft tme 50 µs Varyng phase α of the last mcrowave pulse α = 0 +e ϕ + n ( ) 3 stes V=50% α = 80 4 stes We have been able to delocalze atoms over up to 7 lattce stes! O. Mandel, M. Grener etal.,phys. Rev. Lett. 9, (003)

19 Movng Atoms n Harmonc Potentals Mappng the Populaton of the Energy Bands onto the Brlloun Zones x [nm] 00 hω v Crystal momentum s conserved whle lowerng the lattce depth adabatcally! How fast can we move, n order to avod exctatons? 0 t t shft [µs] For a constant shft velocty v, frst order perturbaton theory yelds: v c () t = sn ( ωt/) ( a0ω) Crystal momentum Populaton of n th band s mapped onto n th Brlloun zone! A. Kastberg et al. PRL 74, 54 (995) M. Grener et al. PRL 87, (00) Free partcle momentum ω=π 30 khz, x = 00 nm Populatng Hgher Energy Bands Measurng the Exctaton Probablty vs. Shft Velocty Sngle lattce ste Stmulated Raman transtons between vbratonal levels are used to populate hgher energy bands. Energy bands Populaton of hgher vbratonal states (energy bands) can be mapped onto the correspondng Brlloun zones by adabatcally decreasng the lattce potental! A. Kastberg et al. PRL (995) M. Grener et al. PRL (00) Start wth ground state atoms Measured Momentum Dstrbuton! Constant Velocty Stop; measure remanng atoms n ground state Atoms moved over a dstance of approx. 00 nm

20 Complete Sequence used n the Experment Frst Trapped Atom Interferometer! Measure Atoms n State > Well suted for explorng Quantum Random Walks! 0 = +e ϕ ( ) Ramsey Frnge See also work by W. Ketterle, PRL 004 Controlled Collsons Buldng a Quantum Gate s acqured. D. Jaksch et al., PRL 8,975 (999) 4π h a 3 U = w0 ( x) w ( x ) d x m E = U n n In tme t Hold a phase factor of e 0 ϕ Et Hold / h = e D. Jaksch et al., PRL 8,975 (999) Input state Fnal state e φ Fundamental quantum gate for neutral atoms

21 Engneerng Entanglement Engneerng Entanglement ( + )( 0 + ) Engneerng Entanglement Engneerng Entanglement ( ) ( ) e ϕ ( + )( 0 + ) ( + )( 0 + )

22 Engneerng Entanglement Engneerng Entanglement ( e ϕ 0 + ) ( e ) Bell + ( + e ) ϕ ϕ + ( ) e ϕ ( ) e ϕ ( + )( 0 + ) ( + )( 0 + ) More General Entanglement Collapse and Revval of the Ramsey frnge Entangled State p/-pulse One atom per ste Shft trap Collsonal Phase Shft Shft trap p/-pulse Wth N atoms one obtans maxmally entangled cluster states from such a sequence! U( φ) = exp φ j + σ σ ( j) ( j+ ) z z D. Jaksch et al., PRL 8,975 (999), H.-J. Bregel et al., J.Mod.Opt. 47, 5 (000) H.-J. Bregel & R. Raussendorf PRL 86, 90 (00) & PRL 86, 588 (00). D. Jaksch, PhD-Thess, Innsbruck

23 Collapse and Revval of the Ramsey frnge Collapse and Revval of the Ramsey frnge One atom per ste φ = π ψ = BELL BELL { 0 ( 0 ) ( 0 + )} = c + One atom per ste φ = π ψ = BELL BELL { 0 ( 0 ) ( 0 + )} = c + Measured D. Jaksch, PhD-Thess, Innsbruck D. Jaksch, PhD-Thess, Innsbruck Entanglement Dynamcs I Condtonal Double-Slt α c β The gate operaton does not cause a loss of vsblty!

24 Condtonal Double-Slt Condtonal Double-Slt Condtonal Double-Slt Before π/-puls: ( e ϕ 0 + ) After π/-puls, detecton n 0 : Condtonal Double-Slt { 0 ( ) + 0 ( e 0 0 )} ϕ

25 Entanglement Dynamcs II Entanglement Dynamcs II 47% 30 µs 60 µs 90 µs 0 µs 50 µs 35% 36% 3% 6% 80 µs 0 µs 40 µs 70 µs 300 µs 7.6 % 6.5 % 5.3 % 4.7 % 4.7 % 330 µs 360 µs 390 µs 40 µs 450 µs Vsblty for φ=n π decreases for ncreasng n due to dephasng / decoherence. Vsblty for φ= (n+) π never falls below 4 %; best data for frst collapse and maxmum entanglement: V= 4.5 %. Experments here: Straghtforward extenson: Outlook 3600 copes of one dmensonal arrays of 60 atoms D or 3D entangled cluster states wth up to trapped atoms!!! H.-J. Bregel & R. Raussendorf PRL 86, 90 (00) & PRL 86, 588 (00). Neutral Atoms n Optcal Lattces Part Introducton Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook

26 Controllng the effectve nteracton Controllng the effectve nteracton Two atoms n a coherent superposton of the nternal states: φ00 φ0 φ ( 00 0 ) 0 φ e + e + e 0 + e 4π h a, j 3 φ, j= t d x w( x) wj( x) m Two atoms n a coherent superposton of the nternal states: φ00 φ0 φ ( 00 0 ) 0 φ e + e + e 0 + e 4π h a, j 3 φ, j= t d x w( x) wj( x) m φ + φ φ 0 Entanglement evoluton for 00 0 χ ( U + U U ) Cf.: A. Sørensen et al., Nature 409, 63 (00), see also further work of D. Jaksch and L. You Hyperfne Feshbach resonance for 87 Rb State preparaton F =, m =+ + F =, m = : F F Startng from Mott-nsulatng phase wth one and two atoms per ste Extracted from: E.G.M. van Kempen et. al, PRL 88 #9, 0930 (00) M. Erhard et al., PRA 69, (004)

27 State preparaton Feshbach resonance I Loss channel B π/ π/ τ tme Measurement n D lattce confguraton Measured poston 9.(9) G 0 Magnetc feld values calbrated by mcrowave transtons Cf. Work of E. Cornell (JILA) Theoretcal predcton: E.G.M. van Kempen et. al, PRL 88 #9, 0930 (00) Expermental detecton of loss channel: M. Erhard et al., Phys. Rev. A 69, (004) Elastc channel: Entanglement dynamcs Two atoms per ste B Varable Phase α 0 0 τ Use of spn echo technques optonal π/ π/ tme Ramsey frnge: State selectve detecton of relatve atom number versus mcrowave phase α Phase α

28 Two atoms per ste 0 0 π/ ( 0 + ) ( 0 + Two atoms per ste ) 0 0 π/ ( 0 + ) ( 0 + ) ( φ00 e eφ0 0 + eφ0 0 + eφ Two atoms per ste 0 0 π/ ( 0 + ) ( 0 + ( φ0 = φ0 φ00 φ φ φ00 φ0 ( Global phase Two atoms per ste ) φ00 e eφ0 0 + eφ0 0 + eφ φ00 e e φ 0 + e φ 0 + ) 0 0 π/ ( 0 + ) ( 0 + ) ) φ00 e eφ0 0 + eφ0 0 + eφ ( ) e φ 0 + e φ 0 + ( π/ (Phase α) ( ) ( ) e φ + e φ ) )

29 Entanglement dynamcs φ φ ( e ) ( e ) Entanglement dynamcs φ φ ( e ) ( e ) For one specal α: φ = 0 (π,...): 0 0 For one specal α: φ = 0 (π,...): 0 0 Sgnal of Ramsey experment wth two atoms per ste φ = π/ (3π/,...): (( + ) ( ) ) φ = π/ (3π/,...): (( + ) ( ) ) φ = π (3π,...): φ = π (3π,...): α Entanglement evoluton Entanglement evoluton Scetch of optcal lattce: Scetch of optcal lattce: φ = 0 φ = π /

30 Entanglement evoluton Entanglement dynamcs N x Isolated atoms + N x Atom pars = Total sgnal (rescaled) Scetch of optcal lattce: φ=0 φ = π φ=π/ φ=π Lattce stes wth one and two atoms separated wthout destructon Increasng nteracton phase corresponds to longer nteracton tme Expermental results Measurement of elastc channel (a) B = 9.08 G (a) Measured data; Not senstve to sgn of scatterng length (b) Ftresults: Poston: 9.8(9) G Wdth: 5(4) mg (c) (b) Ft to dspersve profle; sgn of scatterng length ncluded π Measured n experment Can be extracted A. Wdera et al., PRL 9, (004) (c) Can be measured usng methods of: Grener et al., Nature 49, 5 (00) a = a + a a ( ) s, χ 00 0 A. Wdera et al., PRL 9, (004)

31 Neutral Atoms n Optcal Lattces Part Expermental Setup Loadng a BEC nto an Optcal Lattce From a Superflud to a Mott Insulator Collapse and Revval of a Macroscopc Quantum Feld Part Spn dependent lattce potentals a quantum atomc conveyor belt Neutral Atom Quantum Gate Arrays Part 3 Entanglement Interferometry Controlled Molecule Formaton n Lattces Concluson and Outlook Mcroarray of Identcal Two-Partcle Systems Great envronment to form molecules! Ultracold molecules va Feshbach resonances: C. Weman, D. Jn, Ch. Salomon, R. Grmm, G. Rempe, W. Ketterle PA n Optcal Lattces Advantages of Photoassocaton n Optcal Lattces Startng from a Mott nsulator phase wth exactly two atoms per lattce ste. The moton s descrbed by : h r r r r H = ( + ) + mω ( r + r ) + V( r r ) m The moton ur can be separated n center-ofmass ( R ) moton and relatve coordnate ( r r ) moton: h ur Hcm.. = + Mω R R M ur h r r Hrel. = r + µω r + V( r ) r µ Possblty to create a Mottnsulatorwth exactly two atom s perlattce ste.a com plete mcroscopc understandng of the two-atom dynam cs and PA s possble. Isolated sngle molecules HgherFranck-Condon factorthanks to a bound-bound transton nstead ofa free-bound transton. Hgh atom c denstes wthout-and 3-body decay No nelastc molecule-molecule co lsons 3/4 Ω Ω ωtrap Com plete controlofnternaland externaldegrees of freedom No mean-feld shfts and broadenng oflnewdth

32 Creatng a Molecular BEC by Meltng a Mott Insulator The Expermental Setup Proposal:J.I.Crac,P.Zoleretal.PRL Vol.89, (00) Soluton:. An atomc BEC s loaded nto an optcal lattce. The lattce depth s ncreased to create a MI wth exactly two partcles per ste 3. A molecular MI s produced by twocolor PA under tght trappng condtons 4. By decreasng the lattce depth the MI s melted and a molecular BEC s created n a quantum phase transton LA LB phase locked Usng a sequence of Raman lasers to reach the vbratonal ground state wth hgh effcency The Expermental Setup Moble Raman laser system : Measurement: -Color PA Transton nto the molecular excted electronc state. The molecule producton s detected va the atom loss.

33 Trap Loss as a Probe of the Occupaton Numbers Molecule Formaton va Two-Photon Photoassocaton - Controllng the Internal Degrees of Freedom - 3D lattce D lattce A selecton of groups performng PA experments: D. Henzen, P. Pllet, J. Wener, M. Leduc & C. Cohen-Tannoudj, W.D. Phllps, R. Hulet Ultracold molecules can also be created through Feshbach resonances: D. Jn, Ch. Salomon, R. Grmm, G. Rempe, W. Ketterle Resolvng the External Quantum States Full Control over all Internal and External Quantum Degrees of a Chemcal Reacton Should be Possble The Raman spectrum addtonally resolves the quantzed vbratonal levels of the trapped molecules. relatve moton h r r H rel. = r + µω r + V( r ) r µ center-of-mass moton h ur Hcm.. = + Mω R R M ur Ground State Molecules Molecules n st excted state By resolvng the vbratonal quantum state of the center of mass coordnate, one should be able to control the external degrees of freedom as well. Molecules n nd excted state Fnal Quantum State s Now Completely Controllable!

34 Photoassocaton to the last bound vbratonal state No Mean Feld Broadenng! Hgh Resoluton Spectroscopy at Hgh Denstes: Peak densty *0 5 cm -3 Compare e.g. Dan Henzen experments : Peak densty *0 4 cm -3 Lnewdth. khz Autler-Townes Splttng Lnewdth of the Raman Transton and Lfetme of the Ground State Molecules Autler-Townes splttng nduced on bound-bound transtons allows us to measure couplng strengths! Lfetme lmtng effects:. Spontaneous Ram an scatterng. Colsonaldecay 3. Resonantlght(ASE,lattce lasers) Ω Ω Ω eff. = Lne broadenng: Ifthe polarzabltyof the molecules s nottwce the atom c one,the nhom ogeneous external trappng potentalleads to a dfferentalenergy shft. see also work by C. Zmmermann

35 Concluson & Outlook Control quantum matter at the ultmate lmt Engneer novel many partcle quantum states wth fundamental and practcal applcatons (e.g. precson metrology) Understand and explore complex quantum matter (use ths enhanced knowledge to buld new materals) Quantum computers (need to control approx qubts, when???) Quantum smulators to solve tough problems n condensed matter physcs e.g. hgh-tc-superconductvty (seem to be more wthn reach over the next few years) Engneer complex matter (molecules) n a bottom-upapproach n precsely defned quantum states

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

Relative phase for atomic de Broglie waves A tutorial

Relative phase for atomic de Broglie waves A tutorial Relatve phase for atomc de Brogle waves A tutoral Claude Cohen-Tannoudj HYPER Symposum Fundamental Physcs and Applcatons of cold atoms CNES, Pars, 04 November 00 Purpose of ths lecture Introduce the basc

More information

Ultracold Atoms in optical lattice potentials

Ultracold Atoms in optical lattice potentials ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Ultracold Atoms in optical lattice potentials Experiments at the interface between atomic physics and condensed

More information

Level Crossing Spectroscopy

Level Crossing Spectroscopy Level Crossng Spectroscopy October 8, 2008 Contents 1 Theory 1 2 Test set-up 4 3 Laboratory Exercses 4 3.1 Hanle-effect for fne structure.................... 4 3.2 Hanle-effect for hyperfne structure.................

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Ultracold atoms in an optical lattice -an ideal simulator of strongly-correlated quantum many-body system-

Ultracold atoms in an optical lattice -an ideal simulator of strongly-correlated quantum many-body system- GCOE Symposum Development of emergent new felds February 14 2013 Ultracold atoms n an optcal lattce -an deal smulator of strongly-correlated quantum many-body system- Kyoto Unversty Y. Takahash R. Yamamoto

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

Physics 452 Quantum Optics and Quantum Gases. Class information:

Physics 452 Quantum Optics and Quantum Gases. Class information: Physcs 45 Quantum Otcs and Quantum Gases Class nformaton: htts://ultracold.uchcago.edu/hys_courses Physcs 45 Quantum Otcs and Quantum Gases Autumn 017 Physcs 4500 Quantum Otcs and Quantum Gases Tme: MWF

More information

Search for Permanent Electric Dipole Moments of Francium Atom

Search for Permanent Electric Dipole Moments of Francium Atom Search for Permanent Electrc Dpole Moments of Francum Atom Yasuhro SAKEMI Research Center for Nuclear Physcs (RCNP) Osaka Unversty ECR Ion source + Beam lne to transport the heavy ons from AVF + Trap/Coolng

More information

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution Effcent Optmal Control for a Untary Operaton under Dsspatve Evoluton Mchael Goerz, Danel Rech, Chrstane P. Koch Unverstät Kassel March 20, 2014 DPG Frühjahrstagung 2014, Berln Sesson Q 43 Mchael Goerz

More information

Department of Chemistry Purdue University Garth J. Simpson

Department of Chemistry Purdue University Garth J. Simpson Objectves: 1. Develop a smple conceptual 1D model for NLO effects. Extend to 3D and relate to computatonal chemcal calculatons of adabatc NLO polarzabltes. 2. Introduce Sum-Over-States (SOS) approaches

More information

Introduction to Super-radiance and Laser

Introduction to Super-radiance and Laser Introducton to Super-radance and Laser Jong Hu Department of Physcs and Astronomy, Oho Unversty Abstract Brefly dscuss the absorpton and emsson processes wth the energy levels of an atom. Introduce and

More information

Quantum Information Experiments in Penning traps John Bollinger NIST-Boulder Ion storage group

Quantum Information Experiments in Penning traps John Bollinger NIST-Boulder Ion storage group Quantum Informaton Experments n Pennng traps John Bollnger NIST-Boulder Ion storage group Wayne Itano, Davd Wneland, Jospeh Tan, Pe Huang, Brana Jelenkovc, Travs Mtchell, Brad Kng, Jason Kresel, Mare Jensen,

More information

Квантовые цепи и кубиты

Квантовые цепи и кубиты Квантовые цепи и кубиты Твердотельные наноструктуры и устройства для квантовых вычислений Лекция А.В. Устинов Karlsruhe Insttute of Technology, Germany Russan Quantum Center, Russa Alexey Ustnov Sold-state

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Deep sub-doppler cooling of Mg in MOT formed by light waves with elliptical polarization

Deep sub-doppler cooling of Mg in MOT formed by light waves with elliptical polarization Journal of Physcs: Conference Seres PAPER OPEN ACCESS Deep sub-doppler coolng of Mg n MOT formed by lght waves wth ellptcal polarzaton To cte ths artcle: O N Prudnkov et al 2017 J. Phys.: Conf. Ser. 793

More information

Towards electron-electron entanglement in Penning traps

Towards electron-electron entanglement in Penning traps PHYSCAL REVEW A 81, 0301 (010) Towards electron-electron entanglement n Pennng traps L. Lamata, D. Porras, and J.. Crac Max-Planck-nsttut für Quantenoptk, Hans-Kopfermann-Strasse 1, D-85748 Garchng, Germany

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Relaxation laws in classical and quantum long-range lattices

Relaxation laws in classical and quantum long-range lattices Relaxaton laws n classcal and quantum long-range lattces R. Bachelard Grupo de Óptca Insttuto de Físca de São Carlos USP Quantum Non-Equlbrum Phenomena Natal RN 13/06/2016 Lattce systems wth long-range

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

Modeling of Electron Transport in Thin Films with Quantum and Scattering Effects

Modeling of Electron Transport in Thin Films with Quantum and Scattering Effects Modelng of Electron Transport n Thn Flms wth Quantum and Scatterng Effects Anuradha Bulusu Advsor: Prof. D. G. Walker Interdscplnary Program n Materal Scence Vanderblt Unversty Nashvlle, TN Motvaton L

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013 Physcal Chemstry V Soluton II 8 March 013 1 Rab oscllatons a The key to ths part of the exercse s correctly substtutng c = b e ωt. You wll need the followng equatons: b = c e ωt 1 db dc = dt dt ωc e ωt.

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices Supplementary Informaton for Observaton of Party-Tme Symmetry n Optcally Induced Atomc attces Zhaoyang Zhang 1,, Yq Zhang, Jteng Sheng 3, u Yang 1, 4, Mohammad-Al Mr 5, Demetros N. Chrstodouldes 5, Bng

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

4. INTERACTION OF LIGHT WITH MATTER

4. INTERACTION OF LIGHT WITH MATTER Andre Tokmakoff, MIT Department of Chemstry, 3/8/7 4-1 4. INTERACTION OF LIGHT WITH MATTER One of the most mportant topcs n tme-dependent quantum mechancs for chemsts s the descrpton of spectroscopy, whch

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

Deterministic and Monte Carlo Codes for Multiple Scattering Photon Transport

Deterministic and Monte Carlo Codes for Multiple Scattering Photon Transport Determnstc and Monte Carlo Codes for Multple Scatterng Photon Transport Jorge E. Fernández 1 1 Laboratory of Montecuccolno DIENCA Alma Mater Studorum Unversty of Bologna Italy Isttuto Nazonale d Fsca Nucleare

More information

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N

STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N STABILITY OF METALLIC FERROMAGNETISM: CORRELATED HOPPING OF ELECTRONS IN Mn 4 N EUGEN BIRSAN 1, COSMIN CANDIN 2 1 Physcs Department, Unversty Lucan Blaga, Dr. I. Ratu str., No. 5 7, 550024, Sbu, Romana,

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.60 Thermodynamcs & Knetcs Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.60 Sprng 2008 Lecture #29 page 1

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Investigation of a New Monte Carlo Method for the Transitional Gas Flow

Investigation of a New Monte Carlo Method for the Transitional Gas Flow Investgaton of a New Monte Carlo Method for the Transtonal Gas Flow X. Luo and Chr. Day Karlsruhe Insttute of Technology(KIT) Insttute for Techncal Physcs 7602 Karlsruhe Germany Abstract. The Drect Smulaton

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Röntgen s experiment in X-ray Spectroscopy. Röntgen s experiment. Interaction of x-rays x. x-rays. with matter. Wavelength: m

Röntgen s experiment in X-ray Spectroscopy. Röntgen s experiment. Interaction of x-rays x. x-rays. with matter. Wavelength: m X-ray Spectroscopy Röntgen s experment n 1895 Lecture 1: Introducton & expermental aspects Lecture : Atomc Multplet Theory Crystal Feld Theory CTM4XAS program Lecture 3: Charge Transfer Multplet Theory

More information

At zero K: All atoms frozen at fixed positions on a periodic lattice.

At zero K: All atoms frozen at fixed positions on a periodic lattice. September, 00 Readng: Chapter Four Homework: None Entropy and The Degree of Dsorder: Consder a sold crystallne materal: At zero K: All atoms frozen at fxed postons on a perodc lattce. Add heat to a fnte

More information

Einstein-Podolsky-Rosen Paradox

Einstein-Podolsky-Rosen Paradox H 45 Quantum Measurement and Spn Wnter 003 Ensten-odolsky-Rosen aradox The Ensten-odolsky-Rosen aradox s a gedanken experment desgned to show that quantum mechancs s an ncomplete descrpton of realty. The

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

Relaxation in water /spin ice models

Relaxation in water /spin ice models Relaxaton n water /spn ce models Ivan A. Ryzhkn Insttute of Sold State Physcs of Russan Academy of Scences, Chernogolovka, Moscow Dstrct, 1443 Russa Outlne specfcty of approach quaspartcles Jaccard s theory

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Susceptibility and Inverted Hysteresis Loop of Prussian Blue Analogs with Orthorhombic Structure

Susceptibility and Inverted Hysteresis Loop of Prussian Blue Analogs with Orthorhombic Structure Commun. Theor. Phys. 58 (202) 772 776 Vol. 58, No. 5, November 5, 202 Susceptblty and Inverted Hysteress Loop of Prussan Blue Analogs wth Orthorhombc Structure GUO An-Bang (ÁËǑ) and JIANG We ( å) School

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Adiabatically induced coherent Josephson oscillations of ultracold atoms in an asymmetric two-dimensional magnetic lattice

Adiabatically induced coherent Josephson oscillations of ultracold atoms in an asymmetric two-dimensional magnetic lattice Edth Cowan Unversty Research Onlne ECU Publcatons Pre. 2011 2009 Adabatcally nduced coherent Josephson oscllatons of ultracold atoms n an asymmetrc two-dmensonal magnetc lattce Ahmed Abdelrahman Edth Cowan

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Wilbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1. Two-dimensional chemical maps as well as chemical profiles were done at 15 kv using

Wilbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1. Two-dimensional chemical maps as well as chemical profiles were done at 15 kv using DR2006139 Wlbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1 MINERAL ANALYSES Two-dmensonal chemcal maps as well as chemcal profles were done at 15 kv usng the JEOL JXA-8600 electron mcroprobe at Yale Unversty

More information

4. INTERACTION OF LIGHT WITH MATTER

4. INTERACTION OF LIGHT WITH MATTER Andre Tokmakoff, MIT Department of Chemstry, /8/7 4-1 4. INTERACTION OF LIGHT WITH MATTER One of the most mportant topcs n tme-dependent quantum mechancs for chemsts s the descrpton of spectroscopy, whch

More information

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae Neutral-Current Neutrno-Nucleus Inelastc Reactons for Core Collapse Supernovae A. Juodagalvs Teornės Fzkos r Astronomjos Insttutas, Lthuana E-mal: andrusj@tpa.lt J. M. Sampao Centro de Físca Nuclear da

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

Many-body theory of excitation dynamics in an ultracold Rydberg gas

Many-body theory of excitation dynamics in an ultracold Rydberg gas PHYSICAL REVIEW A 76, 13413 27 Many-body theory of exctaton dynamcs n an ultracold Rydberg gas C. Ates, 1 T. Pohl, 2 T. Pattard, 1, * and J. M. Rost 1 1 Max Planck Insttute for the Physcs of Complex Systems,

More information

Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt Appled Mathematcs Volume 2, Artcle ID 4539, pages do:.55/2/4539 Research Artcle A Treatment of the Absorpton Spectrum for a Multphoton V -Type Three-Level Atom Interactng wth a Squeezed Coherent Feld n

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localzaton Lookng Forward Bors Altshuler Physcs Department, Columba Unversty Collaboratons: Also Igor Alener Dens Basko, Gora Shlyapnkov, Vncent Mchal, Vladmr Kravtsov, Lecture3 September, 10,

More information

arxiv:quant-ph/ Jul 2002

arxiv:quant-ph/ Jul 2002 Lnear optcs mplementaton of general two-photon proectve measurement Andrze Grudka* and Anton Wóck** Faculty of Physcs, Adam Mckewcz Unversty, arxv:quant-ph/ 9 Jul PXOWRZVNDR]QDRODQG Abstract We wll present

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

The fermionic Hubbard model in an optical lattice

The fermionic Hubbard model in an optical lattice The fermonc Hubbard model n an optcal lattce Pnak Majumdar Harsh-Chandra Research Insttute (HRI) Allahabad, Inda QIPA School: Feb 2011 Plan of the lecture Background: many body problems Repulsve Hubbard

More information

GREENBERGER- HORNE- ZEILINGER (GHZ) STATES IN QUANTUM DOT MOLECULE

GREENBERGER- HORNE- ZEILINGER (GHZ) STATES IN QUANTUM DOT MOLECULE GREENERGER- ORNE- ZEILINGER (GZ) STATES IN QUANTUM DOT MOLECULE A. SARMA and P. AWRYLAK QUANTUM TEORY GROUP INSTITUTE FOR MICROSTRUCTURAL SCIENCES NATIONAL RESEARC COUNCIL OF CANADA OTTAWA, KAOR,CANADA

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE ame: THERMAL DISTRIBUTIO I THE HCL SPECTRUM OBJECTIVE To nvestgate a system s thermal dstrbuton n dscrete states; specfcally, determne HCl gas temperature from the relatve occupatons of ts rotatonal states.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do:10.1038/nature09901 Supplementary Informaton: Sample propertes The nvestgated sample was a 30 nm Gd 25 Fe 65.6 Co 9.4 thn flm deposted by magnetron sputterng on a free-standng Al fol of 500 nm thckness.

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems n atomc and condensed matter physcs Lecture notes for Physcs 84 by Eugene Demler Harvard Unversty September, 014 Chapter 7 Bose Hubbard model 7.1 Qualtatve arguments We consder

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

From Strongly-Interacting Fermi Gases to Nuclear Matter

From Strongly-Interacting Fermi Gases to Nuclear Matter From Strongly-Interactng Ferm Gases to uclear Matter John E. Thomas Quark-gluon plasma T = 10 1 K BIG BAG Computer smulaton of RHIC collson Ultracold atomc gas T = 10-7 K JETLa Group Students: Yngy Zhang

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Many-body localization (overview)

Many-body localization (overview) Many-body localzaton (overvew) Dma Abann Permeter Insttute Unversty of Geneva Closng The Entanglement Gap Santa Barbara, June 4, 2015 Ergodcty and ts breakng n classcal systems Ergodcty: System explores

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Quadratic speedup for unstructured search - Grover s Al-

Quadratic speedup for unstructured search - Grover s Al- Quadratc speedup for unstructured search - Grover s Al- CS 94- gorthm /8/07 Sprng 007 Lecture 11 001 Unstructured Search Here s the problem: You are gven a boolean functon f : {1,,} {0,1}, and are promsed

More information

John E. Thomas. Quark-gluon plasma T = K BIG BANG Computer simulation of RHIC collision. Ultracold atomic gas T = 10-7 K

John E. Thomas. Quark-gluon plasma T = K BIG BANG Computer simulation of RHIC collision. Ultracold atomic gas T = 10-7 K Quantum hydrodynamcs n a strongly nteractng Ferm gas John E. Thomas Quark-gluon plasma T 10 1 K BIG BANG Computer smulaton of RHIC collson Ultracold atomc gas T 10-7 K JETLa Group Students: Yngy Zhang

More information

MOLECULAR DYNAMICS ,..., What is it? 2 = i i

MOLECULAR DYNAMICS ,..., What is it? 2 = i i MOLECULAR DYNAMICS What s t? d d x t 2 m 2 = F ( x 1,..., x N ) =1,,N r ( x1 ( t),..., x ( t)) = v = ( x& 1 ( t ),..., x& ( t )) N N What are some uses of molecular smulatons and modelng? Conformatonal

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Probabilistic method to determine electron correlation energy

Probabilistic method to determine electron correlation energy Probablstc method to determne electron elaton energy T.R.S. Prasanna Department of Metallurgcal Engneerng and Materals Scence Indan Insttute of Technology, Bombay Mumba 400076 Inda A new method to determne

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

Lecture 8 Modal Analysis

Lecture 8 Modal Analysis Lecture 8 Modal Analyss 16.0 Release Introducton to ANSYS Mechancal 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overvew In ths chapter free vbraton as well as pre-stressed vbraton analyses n Mechancal

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

arxiv: v1 [cond-mat.mes-hall] 31 Dec 2018

arxiv: v1 [cond-mat.mes-hall] 31 Dec 2018 One-dmensonal effectve Wgner crystal n quantum and classcal regmes DnhDuy Vu and S. Das Sarma Condensed Matter Theory Center and Jont Quantum Insttute, Department of Physcs, Unversty of Maryland, College

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

Magnon pairing in quantum spin nematic

Magnon pairing in quantum spin nematic Magnon parng n quantum spn nematc (Grenoble) n collaboraton wth Hro Tsunetsugu (Tokyo) Introducton Outlne Introducton Bound magnon states: from 1D chan to frustrated square lattce Condensate of bound magnon

More information

Physics 30 Lesson 31 The Bohr Model of the Atom

Physics 30 Lesson 31 The Bohr Model of the Atom Physcs 30 Lesson 31 The Bohr Model o the Atom I. Planetary models o the atom Ater Rutherord s gold ol scatterng experment, all models o the atom eatured a nuclear model wth electrons movng around a tny,

More information

Supplementary Information:

Supplementary Information: Supplementary Informaton: Vsualzaton-based analyss of structural and dynamcal propertes of smulated hydrous slcate melt Bjaya B. Kark 1,2, Dpesh Bhattara 1, Manak Mookherjee 3 and Lars Stxrude 4 1 Department

More information

Coherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System

Coherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System Journal of Scences, Islamc Republc of Iran 24(2): 179-184 (2013) Unversty of Tehran, ISSN 1016-1104 http://jscences.ut.ac.r Coherent Control of Quantum Entropy va Quantum Interference n a Four-Level Atomc

More information

Aerosols, Dust and High Spectral Resolution Remote Sensing

Aerosols, Dust and High Spectral Resolution Remote Sensing Aerosols, Dust and Hgh Spectral Resoluton Remote Sensng Irna N. Sokolk Program n Atmospherc and Oceanc Scences (PAOS) Unversty of Colorado at Boulder rna.sokolk@colorado.edu Goals and challenges MAIN GOALS:

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus .101 Appled Nuclear Physcs (Fall 004) Lecture 3 (1/3/04) Nuclear Reactons: Energetcs and Compound Nucleus References: W. E. Meyerhof, Elements of Nuclear Physcs (McGraw-Hll, New York, 1967), Chap 5. Among

More information