Novel Approach to Prompt Fission Neutron Investigation

Size: px
Start display at page:

Download "Novel Approach to Prompt Fission Neutron Investigation"

Transcription

1 Novel Approach to Prompt ission Neutron Investigation Sh. Zenalov, O. Zenalova, P.Sedshev, V. Shvetsov JIN-Joint Institute for Nuclear esearch, Dubna, ussia ISINN, Alushta Ukraine, Ma -5, 3

2 Motivation Scission neutrons were predicted in 939 in classic paper of N. Bohr and J. Wheeler. irst eperiments made in 96-ies b Manhattan Group concluded eistence of scission neutrons for 5 Cfsf. Soon after scission neutrons were discovered for 35 Un,f b K. Skarsvag and I. Singstad. C. Budtz-Jǿrgensen and H.-H. Knitter investigated 5 Cfsf in simultaneous measurement of, kinetic energies, mass and the emission angle. Less than<% of scission neutrons was concluded from the PN angular distribution analsis in centre-of-mass reference sstem in that work. According to the theor models linear dependence of average PN multiplicit on TKE in fission is epected, but the eperiment did not confirm that. The results obtained using DPP for PN investigation in 5 Cfsf reaction in EC-JC- IMM during 5-7 for the first time confirm results of C. Budtz-Jǿrgensen and H.- H. Knitter, at the same time revealing linear dependence of PN number on TKE release in fission. We further developed fission detector and mathematical data analsis, which we believe opens the new perspectives in stud nuclei at low ecitation energies, undergoing the nuclear superfluid to normal liquid phase transition. The scission configuration offers the unique possibilit to investigate, how two different nuclei at constant temperature share the available intrinsic ecitation when the are in thermal contact. ISINN, Alushta Ukraine, Ma -5, 3

3 Pre-scission nuclear shape parameterization in MM-N and PN emission PN emission mechanism in MM-N is considered as N, leading to the ecited s. PN emission is the first stage of s de-ecitation, following b γ-ra emission. At scission configuration the temperatures of the nascent fragments remain different in spite of the flow of ecitation energ from the hot to cold fragment. ISINN, Alushta Ukraine, Ma -5, 3

4 PN emission kinematics The detailed information on the intrinsic state of the fragments can be obtained b measurement of dependence of the average number of PN emitted b the with mass number A and TKE release of two fission fragments. To do this one needs reconstruction of PN emission kinematics as illustrated in the figure above. A A, TKE Y A, TKE dtke Y A, TKE dtke or TKE A, TKE Y A, TKE da Y A, TKE da A, TKE Y A, TKE dtkeda, Y A, TKE dtkeda ISINN, Alushta Ukraine, Ma -5, 3

5 Twin risch-grid ionization chamber Signals from the TGIC anodes arise because of the motion of charge carriers after the are formed b the The time evolution of the signal is of fundamental importance in understanding the timing properties of pulses as well as in predicting the effects of changes in the location of the radiation interactions on the shape of the pulse. The Poisson equation is the starting point for these calculations, where, Electric field grad ISINN, Alushta Ukraine, Ma -5, 3

6 The Signal ormation Q q To find this weighting potential ϕ as a function of position,one must solve the Laplace equation for the geometr of the detector, but with some artificial boundar conditions:. The voltage on the electrode for which the induced charge is to be calculated is set equal to unit.. The voltages on all other electrodes are set to zero. 3. Even if a trapped charge is present within the detector volume, it is ignored in the calculation. ISINN, Alushta Ukraine, Ma -5, 3

7 inite difference approimation,, equation Laplace difference - finite, o u p q v o u p o q v puqv qv pu u p u u p p q v q q v v pu u p u u p p qv v q q q v v ISINN, Alushta Ukraine, Ma -5, 3

8 Ycoord. [arb] Averaged potential Weighting potential 57, Weighting potential for the anode,8 a 5 a,6 468,4,, Grid position Xcoord. [arb.] Distance from the cathode arb. Q cos D for D l D for D D cos dq d l D D l q Q E, D d L e E, cos D d N E Xˆ E cos D e T Q,cos D W l D X Q cos D ISINN, Alushta Ukraine, Ma -5, 3

9 Eperimental setup for PN investigation ISINN, Alushta Ukraine, Ma -5, 3

10 Digital pulse processing steps ISINN, Alushta Ukraine, Ma -5, 3

11 eal measurement of angular distribution ,5 99, D plot of pulse height vs drift time PQ,Talong with profiles to Q-,Taesleft. Partial derivative plotted along with the respective dp Q, T DT profiles right. Minimum and maimum on the T-profile corresponds to the and 9 degree angle between and the cathode normal respectivel ISINN, Alushta Ukraine, Ma -5, 3

12 Counts Numerical simulation d - - Angular distribution Derivative = Derivative = Derivative =4 ep -,5,,5,,5 COSQ Numerical simulation of rectangular cosine distribution measured with Gaussian response function black curve. esult of differentiation using Eq. : d d d d d ISINN, Alushta Ukraine, Ma -5, 3

13 X/D eal measurement of angular distribution 8 6 Chamber Chamber Pulse height [arb] The pulse height dependence of T min Q~X the centre of charge distribution along the trace is plotted in for both halves of the TGIC. or fied Q pulse height the minimum value of drift time realized for moving along the normal to the cathode plane. The drift time is maimum for at grazing angles. ISINN, Alushta Ukraine, Ma -5, 3

14 Counts Comparison of angular distributions 75 5 Cfsf 5 5 Laer side Backing side -,5,,5,5,75,,5 COSQ Angular distribution measured from the target laer side demonstrates rather better accurac, almost independent on the angle in respect to the laer surface. The backing side accurac degrades at angle close to 9. This fact makes measurement of PN emission for targets like 35 U and 39 Pu ver difficult task. To overcome that we developed a position sensitive TIC, allowing measurement with an arbitrar allocated multiple ND ISINN, Alushta Ukraine, Ma -5, 3

15 Application: The Stripped Detector The anode of modified TIC was made of strips and the grid was removed. Strips divided along the diogonal forming two isolated Δ-electrodes. Separate electrical contacts generall are made to each Δ-electrode. No space charges are present in the chamber volume. Dimensions of the chamber in the and у directions are large compared with the thickness of strips, so that edge effects can be neglected. e ISINN, Alushta Ukraine, Ma -5, 3

16 ,,8,6,4,, Weighting potential for the single strip,,8,6,4,, The weighting potential in the TIC volume was calculated for one strip potential raised to leaving other electrodes grounded. If the strips are operated at a positive potential relative to the cathode surface, then electrons will be attracted along field lines that are parallel to each other and perpendicular to the anode surfaces. It is ver important to notice that the onl electrons that collected b the selected strip will contribute to the pulse formed on the strip circuit. ISINN, Alushta Ukraine, Ma -5, 3

17 Potential [V] Averaged potential Comparison with TGIC, ,,8 Weighting potential for the anode,5 a,6,4 Grid position, 5 5 Distance from anode plane [arb. units],, Distance from the cathode arb. Left graph demonstrates the weighting potential dependence on the ratio of the anode strip width to the anode-cathode distance. On the right graph the weighting potential for the TGIC is shown. Comparison demonstrates that if anode-cathode distance is properl chosen, the there is no need in risch-grid at all. This has influence on the pulse shape of individual strip and possibl could facilitate determination of ionization densit along the fission fragment deceleration path. This effect was not investigated et. Another feature of new design is improve of pulse rise time, which makes the TIC more attractive for eperiments with targets with high intrinsic alpha-radiation. ISINN, Alushta Ukraine, Ma -5, 3

18 Non point target Point target investigation was realized so far onl with 5 Cf nucleus. or the majorit of interesting nuclei point target option is not available for different reasons, but instead large area thin targets - sq. cm with thickness of 4-6 μg/sq. cm can be manufactured. PN investigation is difficult due to small cross section of fission reactions. One of the wa to overcome that difficult is to use large area target and as much as possible the number of ND. Then the task of reaction kinematics reconstruction can be solved b the position sensitive TIC measuring angles in 3D Cartesian coordinates ISINN, Alushta Ukraine, Ma -5, 3

19 angle determination in 3D Cartesian coordinates ISINN, Alushta Ukraine, Ma -5, 3 ; COSY ; COSY ; COSX ; X COS

20 Counts Counts Unfolding of angular distributions 5 COSQ COSX COSY 5 COSQ COSX COSZ 5 -, -, -,8 -,6 -,4 -,,,,4,6,8,, COSQ -, -, -,8 -,6 -,4 -,,,,4,6,8,, COSQ Unfolding procedure is illustrated b two figures above. irst graph illustrates COSX and COSY values Calculated from the row data truncated according to the following formula: if COSQ> then COSQ=. On the right side graph the unfolded angular distribution functions are presented. The idea of unfolding came from the Shannon sampling theorem. According to the theorem: continuous function can be represented b its sampled form periodicall epanded over the argument. Using this the unfolding of angular distribution can be reduced to the following simple formula: ifcosq > then D=-COSQ COSQunf= -D; esult of such unfolding procedure is presented on the right side graph.

21 Average PNM Average PN number versus mass in comparison with previous measurements 4 Digital data B-K Nifenecker et al A, TKE Y A, TKE dtke A, A, TKE Y A, TKE dtkeda, Y A, TKE dtkeda Y A, TKE dtke MASS [amu] ISINN, Alushta Ukraine, Ma -5, 3

22 Average total prompt neutron multiplicit Average PN number versus TKE in comparison with literature CfS Budtz-Jorgensen, Knitter, 989 EXO Bowman USABK 63 using YA of IMM EXO Zacharova USKU 98 EXO Bowman USABK 63 Zenalov et al. IMM 9 ussian PNPI PbP calc. using ussian PNPI ep.ya PbP Annals Nucl.Energ TKE MeV A, TKE Y A, TKE da TKE, A, TKE Y A, TKE dtkeda, Y A, TKE dtkeda Y A, TKE da ISINN, Alushta Ukraine, Ma -5, 3

23 Average PN number versus TKE for selected mass numbers Average PN number Average PN bumber A=5+6 A=7+8 A= A=+ 8 A=3+4 8 A= TKE [MeV] 6 8 TKE [MeV] 6 8 TKE [MeV] A, TKE Y A, TKE TKE A, A, TKE Y A, TKE dtkeda, Y A, TKE dtkeda Y A, TKE ISINN, Alushta Ukraine, Ma -5, 3

24 Neutron imaging with n-γ converter and CCD camera ISINN, Alushta Ukraine, Ma -5, 3

25 Summar and conclusions Significant modifications of the eperimental methods were done in our work thanks to fleibilit and power provided b the digital signal processing. Man conclusions of previous investigations have been confirmed in our work. At the same time we managed to resolve the longstanding contradiction between eperimental results and theoretical calculations. With higher confidence than in previous investigations we proved the statement on isotropic PN emission in s centre-of-mass reference frame. or the first time it was shown that dependence of average PN multiplicit is linear as was epected from the theor. This made obsolete eperiments, where search of pre-scission neutrons was epected to resolve the problem of PN deficit at low TKE values. We developed new fission detector and advanced mathematical data analsis, which we believe opens a new perspective in stud of PN emission in low energ fission. A new detector can be used in neutron imaging applications as a competitive option to eisting solutions. ISINN, Alushta Ukraine, Ma -5, 3

26

PROMPT FISSION NEUTRON MULTIPLICITY INVESTIGATION. Belgium

PROMPT FISSION NEUTRON MULTIPLICITY INVESTIGATION. Belgium PROMPT FISSION NEUTRON MULTIPLICITY INVESTIGATION Sh. Zeynalov a, O. Zeynalova a, F.-J. Hambsch b, S. Oberstedt b a) JINR-Joint Institute for Nuclear Research, Dubna Moscow region, Russia b) EC JRC Institute

More information

Fig. 1 Sketch of the experimental setup for PFN investigation.

Fig. 1 Sketch of the experimental setup for PFN investigation. 1) Title Prompt Fission Neutron Investigation with Frisch-gridded Twin Back-to-back Ionization Chamber. 2) Introduction Modern models consider the nuclear fission process as a result of competition between

More information

Pulse Formation on the Anode of Frisch-Gridded Ionization Chamber

Pulse Formation on the Anode of Frisch-Gridded Ionization Chamber ulse Formation on the node of Frisch-Gridded Ionization hamber Jaksybekov., Svetov L., Sidorova O., Zeynalov Sh. Joint Institute for Nuclear Research, ubna, Russia Figure 1. hotograph and scheme of the

More information

VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A.

VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A. Investigation of the Prompt Neutron Emission Mechanism in Low Energy Fission of 233, 235 U(n th, f) and 252 Cf(sf) VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A. Petersburg Nuclear

More information

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Vorobyev AS, Shcherbakov OA, Gagarski AM, Val ski GV, Petrov GA National Research Center Kurchatov

More information

JRC Place on dd Month YYYY Event Name 1

JRC Place on dd Month YYYY Event Name 1 JRC Place on dd Month YYYY Event Name 1 A new measurement of the prompt fission neutron emission spectrum of 235 U(n,f) Correlation of prompt neutron emission with fission fragment properties F.-J. Hambsch

More information

(1) with ( p, ) the basic conventional correlation being independent of neutron spin between the momenta of FF and TP; p

(1) with ( p, ) the basic conventional correlation being independent of neutron spin between the momenta of FF and TP; p DETAILED STUDY OF THE EFFECTS FOLLOWING FROM ROTATION OF THE SCISSIONING NUCLEI IN TERNARY FISSION OF 235 U BY COLD POLARISED NEUTRONS ( ROT AND TRI EFFECTS) A.Gagarski a, G. Petrov a, I. Guseva a, T.

More information

Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes. J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes. J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA Abstract Fortran subroutines have been written to simulate

More information

PROMPT EMISSION MODELING IN THE FISSION PROCESS

PROMPT EMISSION MODELING IN THE FISSION PROCESS PROMPT EMISSION MODELING IN THE FISSION PROCESS I.VISAN 1,, G.GIUBEGA 1, A. TUDORA 1 1 University of Bucharest, Faculty of Physics, Bucharest-Magurele, POB MG-11, R-769, Romania E-mail: iuliana.visan@yahoo.com;

More information

PHYSICS PART II SECTION- I. Straight objective Type

PHYSICS PART II SECTION- I. Straight objective Type PHYSICS PAT II SECTION- I Straight objective Tpe This section contains 9 multiple choice questions numbered to 1. Each question has choices,, (C) and, out of which ONLY ONE is correct.. A parallel plate

More information

VERDI a double (v, E) fission-fragment fragment spectrometer

VERDI a double (v, E) fission-fragment fragment spectrometer EFNUDAT Slow and Resonance Neutrons, Budapest (HU), Sep. 23-25, 2009 1 VERDI a double (v, E) fission-fragment fragment spectrometer S. Oberstedt, R. Borcea,, Th. Gamboni,, W. Geerts, F.-J. Hambsch, A.

More information

Normalization and Zero-Point Energy The amplitude A 2 in Eq can be found from the normalizing equation, 1106 CHAPTER 39 MORE ABOUT MATTER WAVES

Normalization and Zero-Point Energy The amplitude A 2 in Eq can be found from the normalizing equation, 1106 CHAPTER 39 MORE ABOUT MATTER WAVES 116 CHAPTER 39 MORE ABOUT MATTER WAVES Fig. 39-4 A dot plot of the radial probabilit densit P(r) for the hdrogen atom in a quantum state with a relativel large principal quantum number namel, n 45 and

More information

Gas-filled Detectors

Gas-filled Detectors Gas-filled Detectors Radiation Gas-filled Detectors In a gas-filled detector, the io9nization provides electrons and positive ions. The acceleration of these charged particles obeys the simple equation

More information

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado Experiment 9 1 Introduction The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado During the late nineteenth century, a great deal of evidence accumulated indicating that radiation

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Daniel Higgins 1,2*, Uwe Greife 1, Shea Mosby 2, and Fredrik Tovesson 2 1 Colorado School of Mines, Physics Department,

More information

MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION

MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION SFBE PETERSBURG NUCLEAR PHYSICS INSTITUTE NAMED B.P. KONSTANTINOV MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION A.Gagarski, F.Goennenwein, I.Guseva, Yu.Kopach,

More information

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory PC1144 Physics IV Radioactivity 1 Objectives Investigate the analogy between the decay of dice nuclei and radioactive nuclei. Determine experimental and theoretical values of the decay constant λ and the

More information

SOFIA Fission studies at GSI

SOFIA Fission studies at GSI SOFIA Fission studies at GSI Julie-Fiona Martin for the SOFIA collaboration CEA, DAM, DIF Perspective on Nuclear Data for the Next Decade - Oct. 2014 1 Intro 2 Experimental setup Secondary beam Fission

More information

IRMM - Institute for Reference Materials and Measurements

IRMM - Institute for Reference Materials and Measurements REACTION CROSS SECTIONS, FISSION YIELDS AND PROMPT-NEUTRON EMISSION FROM ACTINIDE TARGETS F.-J. Hambsch, S. Oberstedt, A. Al-Adili, Adili, P. Schillebeeckx, S. Kopecky, C. Sage, C. Lampoudis, IRMM - Institute

More information

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin.

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin. THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY 1. Introduction V. A. Sharifulin Perm State Technical Universit, Perm, Russia e-mail: sharifulin@perm.ru Water

More information

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo

CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo CALIBRATION OF SCINTILLATION DETECTORS USING A DT GENERATOR Jarrod D. Edwards, Sara A. Pozzi, and John T. Mihalczo Oak Ridge National Laboratory Oak Ridge, TN 37831-6010 PO Box 2008 Ms6010 ABSTRACT The

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

(Inverse-kinematics) fission investigations in active targets

(Inverse-kinematics) fission investigations in active targets ! (Inverse-kinematics) fission investigations in active targets 1. First experiment performed in GANIL.! 2. Exploring exotic fissioning systems with ACTAR TPC. C. Rodríguez-Tajes et al., rodriguez@ganil.fr!

More information

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy.

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy. Name: Date: Nuclear Physics 3. A student suggests that the following transformation may take place. Measurement of rest masses shows that 7 7 N+ He 8 O+ total rest mass( N 7 + He ) < total rest mass( O

More information

Preparatory experiments for cold-neutron induced fission studies at IKI

Preparatory experiments for cold-neutron induced fission studies at IKI Preparatory experiments for cold-neutron induced fission studies at IKI A. Oberstedt 1, S. Oberstedt 2, R. Billnert 1, J. Karlsson 1, X. Ledoux 3, J.-G. Marmouget 3 and F.-J. Hambsch 2 1 School of Science

More information

Chapter 3. Theory of measurement

Chapter 3. Theory of measurement Chapter. Introduction An energetic He + -ion beam is incident on thermal sodium atoms. Figure. shows the configuration in which the interaction one is determined b the crossing of the laser-, sodium- and

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in an current or future media, including reprinting/republishing this material for advertising

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physics (Theory) Time allowed: 3 hours] [Maximum marks:70 General Instructions: (i) All questions are compulsory. (ii) (iii) (iii) (iv) (v) There are 30 questions in total. Question Nos. to 8 are very

More information

PHASE SPACE TOMOGRAPHY OF BEAMS WITH EXTREME SPACE CHARGE *

PHASE SPACE TOMOGRAPHY OF BEAMS WITH EXTREME SPACE CHARGE * PHASE SPACE TOMOGRAPHY OF BEAMS WITH EXTREME SPACE CHARGE * D. Stratakis #, R. A. Kishek, I. Haber, M. Walter, R. B. Fiorito, S. Bernal, J.C.T. Thangaraj, K. Tian, C. Papadopoulos, M. Reiser, P. G. O Shea

More information

Lise Meitner, Otto Hahn. Nuclear Fission Hans-Jürgen Wollersheim

Lise Meitner, Otto Hahn. Nuclear Fission Hans-Jürgen Wollersheim Lise Meitner, Otto Hahn Nuclear Fission Hans-Jürgen Wollersheim Details of the 252 Cf decay α s: 96.9% SF: 3.1% T 1/2 = 2.647 a Q α = 6.217 MeV E α = 6.118 MeV α α α α α-decay of 252 Cf Mass data: nucleardata.nuclear.lu.se/database/masses/

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM

SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM J. JIN 1, I.V. MURSENKOVA 1,c, N. N. SYSOEV 1 and I.A. ZNAMENSKAYA 1 1 Department of Phsics, Lomonosov Moscow

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

Absorption and Backscattering of β-rays

Absorption and Backscattering of β-rays Experiment #54 Absorption and Backscattering of β-rays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

3. Gas Detectors General introduction

3. Gas Detectors General introduction 3. Gas Detectors 3.1. General introduction principle ionizing particle creates primary and secondary charges via energy loss by ionization (Bethe Bloch, chapter 2) N0 electrons and ions charges drift in

More information

SAVE PAPER AND INK!!!

SAVE PAPER AND INK!!! SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn off the backgrounds (Tools>Options>Print>UNcheck "Background Printing")!

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Measurement of prompt fission γ-ray spectra in fast neutroninduced

Measurement of prompt fission γ-ray spectra in fast neutroninduced Available online at www.sciencedirect.com Physics Procedia 31 (2012 ) 13 20 GAMMA-1 Emission of Prompt Gamma-Rays in Fission and Related Topics Measurement of prompt fission γ-ray spectra in fast neutroninduced

More information

Teflon lid. O ring. Catalyst. Catalyst Chamber. Electrolyte (H 2 SO 4 + de-ionized H 2 0)

Teflon lid. O ring. Catalyst. Catalyst Chamber. Electrolyte (H 2 SO 4 + de-ionized H 2 0) Pt lead wires Pt lead wires Teflon lid Teflon lid O ring O ring Catalyst Chamber Catalyst (0.5% Pd on Al 2 O 3 pellets) Catalyst Chamber Catalyst (0.5% Pd on Al 2 O 3 pellets) 50mm Electrolyte (H 2 SO

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

molar mass = 0.239kg (1) mass needed = = kg (1) [7]

molar mass = 0.239kg (1) mass needed = = kg (1) [7] PhysicsAndMathsTutor.com 1 1. (a) (i) proton number 82 and nucleon number 214 (ii) Pb 2 (b) (i) kinetic energy [or electrostatic potential energy] (ii) m = 8.6 E 2 c 1 10 = 8 2 (10 ) = 9.6 10 0 kg [5]

More information

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P ) Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P2522015) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Moderne Physik Experiment:

More information

arxiv: v2 [nucl-th] 9 Jan 2019

arxiv: v2 [nucl-th] 9 Jan 2019 Parameter Optimization and Uncertainty Analysis of FREYA for Spontaneous Fission J. Van Dyke a, L. A. Bernstein b,c, R. Vogt d,e arxiv:1809.05587v2 [nucl-th] 9 Jan 2019 a Physics Department, University

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems Slide 1 / 57 Nuclear Physics & Nuclear Reactions Practice Problems Slide 2 / 57 Multiple Choice Slide 3 / 57 1 The atomic nucleus consists of: A B C D E Electrons Protons Protons and electrons Protons

More information

Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal

Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal G.S. Ahmadov, F.I. Ahmadov Institute of Radiation Problems of ANAS, Baku, Azerbaijan C. Granja, S. Pospíšil

More information

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments D. Regnier, O. Litaize, O. Serot CEA Cadarache, DEN/DER/SPRC/LEPH WONDER, 27/09/2012 D. Regnier, O. Litaize, O. Serot - CEA Cadarache,

More information

Simplified Fast Multipole Methods for Micromagnetic Modeling

Simplified Fast Multipole Methods for Micromagnetic Modeling implified Fast Multipole Methods for Micromagnetic Modeling D. M. Apalkov and P. B.Visscher Department of Phsics and Astronom and MIT Center The Universit of Alabama This project was supported b F grants

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone A Predictive Theory for Fission A. J. Sierk Peter Möller John Lestone Support This research is supported by the LDRD Office at LANL as part of LDRD-DR project 20120077DR: Advancing the Fundamental Understanding

More information

Fission-yield data. Karl-Heinz Schmidt

Fission-yield data. Karl-Heinz Schmidt Fission-yield data Karl-Heinz Schmidt Topical day From nuclear data to a reliable estimate of spent fuel decay heat October 26, 2017 SCK CEN Lakehouse, Mol, Belgium Lay out Introduction Stages of the fission

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms Teacher Notes and Answers Chapter 4 SECTION 1 SHORT ANSWER 1. In order for an electron to be ejected from a metal surface, the electron must be struck

More information

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction 1 Module 1 : The equation of continuit Lecture 4: Fourier s Law of Heat Conduction NPTEL, IIT Kharagpur, Prof. Saikat Chakrabort, Department of Chemical Engineering Fourier s Law of Heat Conduction According

More information

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14 Accelerator Phsics Statistical and Beam-Beam Effects G. A. Krafft Old Dominion Universit Jefferson Lab Lecture 4 Graduate Accelerator Phsics Fall 7 Waterbag Distribution Lemons and Thode were first to

More information

Covariance Matrix Evaluation for Independent Fission Yields

Covariance Matrix Evaluation for Independent Fission Yields Covariance Matrix Evaluation for Independent Fission Yields N. Terranova 1, O. Serot 2, P. rchier 2, C. De Saint Jean 2, M. Sumini 1 1 Dipartimento di Ingegneria Industriale (DIN), Università di Bologna,

More information

Absorption and Backscattering ofβrays

Absorption and Backscattering ofβrays Experiment #54 Absorption and Backscattering ofβrays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic Nucleus

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

Waste Characterization

Waste Characterization Radiation Monitoring Systems & Waste Characterization Lecture 4 - Neutron Detectors M.Taiuti MASTER UNIVERSITARIO DI II LIVELLO IN SCIENZE E TECNOLOGIE DEGLI IMPIANTI NUCLEARI Neutron Detectors What does

More information

UNIT-VIII ATOMIC NUCLEUS 1) what conclusions were drawn from the observation in which few alpha-particle were seen rebounding from gold foil? 2) which observation led to the conclusion in the α-particle

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

EP225 Note No. 4 Wave Motion

EP225 Note No. 4 Wave Motion EP5 Note No. 4 Wave Motion 4. Sinusoidal Waves, Wave Number Waves propagate in space in contrast to oscillations which are con ned in limited regions. In describing wave motion, spatial coordinates enter

More information

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator Svirikhin A.I. Joint Institute for Nuclear Research, Dubna, Russia Manipal University,

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive source,

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear Reactions Homework Unit 13 - Topic 4

Nuclear Reactions Homework Unit 13 - Topic 4 Nuclear Reactions Homework Unit 13 - Topic 4 Use the laws of conservation of mass number and charge to determine the identity of X in the equations below. Refer to a periodic table as needed. 222 a. Rn

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Correlated Prompt Fission Data

Correlated Prompt Fission Data Correlated Prompt Fission Data Patrick Talou 1, T. Kawano 1, I. Stetcu 1, D. Neudecker 2 1 Theoretical Division, Los Alamos National Laboratory, USA 2 XCP-5, Computational Physics Division, Los Alamos

More information

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY 4. Newton s Method 99 4. Newton s Method HISTORICAL BIOGRAPHY Niels Henrik Abel (18 189) One of the basic problems of mathematics is solving equations. Using the quadratic root formula, we know how to

More information

CURRENT ELECTRICITY LEVEL A QUESTIONS

CURRENT ELECTRICITY LEVEL A QUESTIONS CURRENT ELECTRICITY LEVEL A QUESTIONS 1.Define electric current and give its SI unit. (1) 2. Define current density and give its SI unit. (1) 3. State Ohm s law. (1) 4. Derive an expression for resistivity..mention

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Hrant Gulkanyan and Amur Margaryan

Hrant Gulkanyan and Amur Margaryan ALPHA-SPECTROSCOPY OF 252 Cf DECAYS: A NEW APPROACH TO SEARCHING FOR THE OCTONEUTRON YerPhI Preprint -1628 (2014) Hrant Gulkanyan and Amur Margaryan A.I. Alikhanyan National Science Laboratory (Yerevan

More information

Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry

Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry Atomic Structure and Nuclear Chemistry Multiple Choice Questions PSI Chemistry Name: 1. What was the first particle discovered inside an atom? A. Proton C. Electron 2. What characteristic of cathode rays

More information

Uncertainty principle

Uncertainty principle Chapter 3 Uncertainty principle Now it is Amperé s hypotheis that the source of all magnetic fields is the motion of charges. In particular, magnetic dipole moments arise from the circulation of charge.

More information

This lab was adapted from Kwantlen University College s Determination of e/m lab.

This lab was adapted from Kwantlen University College s Determination of e/m lab. e /m: Charge to Mass Ratio of the Electron This lab was adapted from Kwantlen University College s Determination of e/m lab. Purpose To determine the charge to mass ratio of the electron, e /m, using Helmholtz

More information

Chapter 4 Transport of Pollutants

Chapter 4 Transport of Pollutants 4- Introduction Phs. 645: Environmental Phsics Phsics Department Yarmouk Universit hapter 4 Transport of Pollutants - e cannot avoid the production of pollutants. hat can we do? - Transform pollutants

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 NAME SCHOOL INDEX NUMBER DATE RADIOACTIVITY 1. 1995 Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 C N + e 6 7 y Determine the values of x and y in the equation (2 marks)

More information

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING 822 PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING C.D.R. Azevedo 1, C.A.B. Oliveira 1, J.M.F. dos Santos 2, J.F.C.A. Veloso 1 1.University of Aveiro,

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

Detailed Modeling of Fission

Detailed Modeling of Fission Detailed Modeling of Fission Ramona Vogt (LLNL) LLNL-PRES-6698" This work performed under the auspices of the U.S. Department of Energy by under Contract DE-AC5-7NA744" Fission Nomenclature! Compound nucleus:

More information

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes 1 Nuclear Chemistry Mass Defect 4 Some of the mass can be converted into energy Shown by a very famous equation! E=mc 2 Energy Mass Speed of light Radioactivity 2 Types of Radiation 5 One of the pieces

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 12 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 12 Group Theory For Crystals ECEN 5005 Crstals, Nanocrstals and Device Applications Class 1 Group Theor For Crstals Hierarch of Smmetr Irreducible Representations of oint Groups Transformation roperties of Functions Luminescence Hierarch

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information