Epidemiology Wonders of Biostatistics Chapter 13 - Effect Measures. John Koval

Size: px
Start display at page:

Download "Epidemiology Wonders of Biostatistics Chapter 13 - Effect Measures. John Koval"

Transcription

1 Epidemiology 9509 Wonders of Biostatistics Chapter 13 - Effect Measures John Koval Department of Epidemiology and Biostatistics University of Western Ontario

2 What is being covered 1. risk factors 2. risk differences 3. relative odds - odds ratio 4. relative risk - risk ratios

3 Risk factors factor which can lead to (bad) outcome Since risk and outcome are binary can think of risk as probability of presence of risk factor leading to bad outcome hence smoking is a risk factor for the outcome respiratory disease think of risk at two levels of smoking smokers, π 1 and non-smokers, π 2

4 Risk differences differences in risk for two levels of risk factor δ π = π 1 π 2 have already considered this 1. test of hypothesis (two-sided alternative) 1.1 Fisher exact test 1.2 test of association/independence with continuity correction S Y 2. test of hypothesis (one-sided alternative) 2.1 Fisher exact test 2.2 test of association/independence S Y 3. estimation 3.1 Wilson/Adjusted Wald estimators for π 1,π then Newcombe combination of these two into estimator for π 1 π 2

5 Relative Odds odds ω = π 1 1 π 1 eg π 1 = 0.6, so that (1 π) = 0.4 odds ω = 1.5 often quoted as 3:2 relative odds φ = ω 1 ω 2 relative odds for group 1 compared to group 2 eg π 2 = 0.5, so (1 π 2 ) = 0.5 odds ω 2 = 1(1 : 1) relative odds φ = (1.5)/(1) = 1.5

6 Odds ratio - estimating the Relative Odds odds o i = p i 1 p i eg p 1 = 0.6, so that (1 p 1 ) = 0.4 odds o 1 = 1.5 often quoted as 3:2 odds ratio OR = o 1 o 2 odds ratio for group 1 compared to group 2 eg p 2 = 0.5, so (1 p 2 ) = 0.5 odds o 2 = 1(1 : 1) odds ratio OR = (1.5)/(1) = 1.5

7 shortcut computation of Odds Ratio if entries in 2x2 contingency table a, b, c,d p 1 = a/(a+b) p 2 = c/(c +d) so that o 1 = a a+b / b a+b = a b o 2 = c c+d / d c+d = c d then OR = o 1 o 2 = a b /c d = ad bc

8 Inference - test of hypothesis test of φ = 1 ie of ω 1 = ω 2 ie of π 1 = π 2 1. Fisher exact test 2. test of association S Y

9 inference - confidence interval can use odds ratio, OR, to estimate φ, the relative odds need standard error (1 se(or) = OR a + 1 b + 1 c + 1 ) d useful only for very large samples example, a=15, b=8, c=10,d=12 OR = ad bc = 15(12) 8(10 = 2.25 ( se(or) = OR = = 2.25(0.6124) = )

10 confidence interval (continued) 95% Confidence interval (2.25 ± 1.96(1.3793) = 2.25±2.70 = ( 0.45, 4.95) a very strange interval

11 confidence interval (better) use l = log(or) and its se l = log(or) = log(2.25) = (1 se(l) = a + 1 b + 1 c + 1 ) d ( = ) 10 = % CI ± 1.96(0.6124) = 0.811±1.200 = ( 0.389, 2.011) transform back (exponentiate) (0.68, 7.47)

12 Relative Risk if π 1 and π 2 are risks Relative Risk is π 1 π 2 if p 1 and p 2 are observed proportions Risk Ratio: RR = p 1 p 2 is point estimator of Relative Risk for example, for a,b,c,d p 1 = a a+b,p 2 = c c+d RR = a a+b / c c+d example RR = 15 = /12 22

13 Relative Risk: test of hypothesis test of H o : Relative Risk = 1 ie H o : π 1 π 2 = 1 can be rewritten as H o : π 1 = π 2 same hypothesis as for Risk Difference Hence use same tests: 1. Fisher s Exact Test 2. S Y, Yates continuity-corrected version of Pearson test

14 confidence interval for Relative Risk again using RR ± 1.96se(RR) produces strange interval for small samples use l RR = log(rr) and its standard error (1 p1 se(l RR ) = ) n 1 p p 2 n 2 p 2 for contingency tables entries a,b,c,d ( ) se(l RR ) = b a(a+b) + d c(c+d)

15 example of RR estimation RR = l RR = log(1.4288) = ( ) se(l RR ) = 8 15(23) (22) = = % confidence interval ± = ± = ( , ) exponentiate to get 95% CI for relative risk (0.831,2.478)

16 summary of estimates Parameter point estimate interval estimate Risk difference (-0.088,0.442) Relative odds (0.68,7.47) Relative risk (0.831,2.478)

17 SAS for effects title advanced contingency table ; DATA marj; INPUT r o freq; DATALINES; ; PROC FREQ; WEIGHT freq; TABLES r*o/chisq RISKDIFF RELRISK NOROW NOCOL NOPERCENT; add RELRISK to get estimated of Relative odds AND Relative Risk

18 Output of SAS effects program The FREQ Procedure Table of r by o r o Frequency 0 1 Total Total Statistics for Table of r by o Statistic DF Value Prob Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer s V

19 Output of SAS effects program II Fisher s Exact Test Cell (1,1) Frequency (F) 15 Left-sided Pr <= F Right-sided Pr >= F Table Probability (P) Two-sided Pr <= P

20 Output of SAS effects program III column 1 Risk Estimates (Asymptotic)95% Exact) 95% Risk ASE Confid Limits Confid Limits Row Row Total Difference Column 2 Risk Estimates (Asymptotic)95% Exact) 95% Risk ASE Confid Limits Confid Limits Row Row Total Difference

21 Output of SAS effects program IV Estimates of the Relative Risk (Row1/Row2) Type of Study Value 95% Confid Limits Case-Control (Odds Ratio) Cohort (Col1 Risk) Cohort (Col2 Risk) Sample Size = 45

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered

More information

ST3241 Categorical Data Analysis I Two-way Contingency Tables. Odds Ratio and Tests of Independence

ST3241 Categorical Data Analysis I Two-way Contingency Tables. Odds Ratio and Tests of Independence ST3241 Categorical Data Analysis I Two-way Contingency Tables Odds Ratio and Tests of Independence 1 Inference For Odds Ratio (p. 24) For small to moderate sample size, the distribution of sample odds

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios ST3241 Categorical Data Analysis I Two-way Contingency Tables 2 2 Tables, Relative Risks and Odds Ratios 1 What Is A Contingency Table (p.16) Suppose X and Y are two categorical variables X has I categories

More information

STAT 705: Analysis of Contingency Tables

STAT 705: Analysis of Contingency Tables STAT 705: Analysis of Contingency Tables Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Analysis of Contingency Tables 1 / 45 Outline of Part I: models and parameters Basic

More information

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval Epidemiology 9509 Wonders of Biostatistics Chapter 11 (continued) - probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being

More information

Means or "expected" counts: j = 1 j = 2 i = 1 m11 m12 i = 2 m21 m22 True proportions: The odds that a sampled unit is in category 1 for variable 1 giv

Means or expected counts: j = 1 j = 2 i = 1 m11 m12 i = 2 m21 m22 True proportions: The odds that a sampled unit is in category 1 for variable 1 giv Measures of Association References: ffl ffl ffl Summarize strength of associations Quantify relative risk Types of measures odds ratio correlation Pearson statistic ediction concordance/discordance Goodman,

More information

2 Describing Contingency Tables

2 Describing Contingency Tables 2 Describing Contingency Tables I. Probability structure of a 2-way contingency table I.1 Contingency Tables X, Y : cat. var. Y usually random (except in a case-control study), response; X can be random

More information

Ordinal Variables in 2 way Tables

Ordinal Variables in 2 way Tables Ordinal Variables in 2 way Tables Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2018 C.J. Anderson (Illinois) Ordinal Variables

More information

Confounding and effect modification: Mantel-Haenszel estimation, testing effect homogeneity. Dankmar Böhning

Confounding and effect modification: Mantel-Haenszel estimation, testing effect homogeneity. Dankmar Böhning Confounding and effect modification: Mantel-Haenszel estimation, testing effect homogeneity Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK Advanced Statistical

More information

Analytic Methods for Applied Epidemiology: Framework and Contingency Table Analysis

Analytic Methods for Applied Epidemiology: Framework and Contingency Table Analysis Analytic Methods for Applied Epidemiology: Framework and Contingency Table Analysis 2014 Maternal and Child Health Epidemiology Training Pre-Training Webinar: Friday, May 16 2-4pm Eastern Kristin Rankin,

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 3: Bivariate association : Categorical variables Proportion in one group One group is measured one time: z test Use the z distribution as an approximation to the binomial

More information

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

3 Way Tables Edpsy/Psych/Soc 589

3 Way Tables Edpsy/Psych/Soc 589 3 Way Tables Edpsy/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois Spring 2017

More information

BIOS 625 Fall 2015 Homework Set 3 Solutions

BIOS 625 Fall 2015 Homework Set 3 Solutions BIOS 65 Fall 015 Homework Set 3 Solutions 1. Agresti.0 Table.1 is from an early study on the death penalty in Florida. Analyze these data and show that Simpson s Paradox occurs. Death Penalty Victim's

More information

Lecture 8: Summary Measures

Lecture 8: Summary Measures Lecture 8: Summary Measures Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 8:

More information

Case-control studies C&H 16

Case-control studies C&H 16 Case-control studies C&H 6 Bendix Carstensen Steno Diabetes Center & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://bendixcarstensen.com PhD-course in Epidemiology, Department

More information

Sections 3.4, 3.5. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Sections 3.4, 3.5. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Sections 3.4, 3.5 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 3.4 I J tables with ordinal outcomes Tests that take advantage of ordinal

More information

Chapter 19. Agreement and the kappa statistic

Chapter 19. Agreement and the kappa statistic 19. Agreement Chapter 19 Agreement and the kappa statistic Besides the 2 2contingency table for unmatched data and the 2 2table for matched data, there is a third common occurrence of data appearing summarised

More information

Q30b Moyale Observed counts. The FREQ Procedure. Table 1 of type by response. Controlling for site=moyale. Improved (1+2) Same (3) Group only

Q30b Moyale Observed counts. The FREQ Procedure. Table 1 of type by response. Controlling for site=moyale. Improved (1+2) Same (3) Group only Moyale Observed counts 12:28 Thursday, December 01, 2011 1 The FREQ Procedure Table 1 of by Controlling for site=moyale Row Pct Improved (1+2) Same () Worsened (4+5) Group only 16 51.61 1.2 14 45.16 1

More information

Lab #11. Variable B. Variable A Y a b a+b N c d c+d a+c b+d N = a+b+c+d

Lab #11. Variable B. Variable A Y a b a+b N c d c+d a+c b+d N = a+b+c+d BIOS 4120: Introduction to Biostatistics Breheny Lab #11 We will explore observational studies in today s lab and review how to make inferences on contingency tables. We will only use 2x2 tables for today

More information

BIOMETRICS INFORMATION

BIOMETRICS INFORMATION BIOMETRICS INFORMATION (You re 95% likely to need this information) PAMPHLET NO. # 41 DATE: September 18, 1992 SUBJECT: Power Analysis and Sample Size Determination for Contingency Table Tests Statistical

More information

STA6938-Logistic Regression Model

STA6938-Logistic Regression Model Dr. Ying Zhang STA6938-Logistic Regression Model Topic 2-Multiple Logistic Regression Model Outlines:. Model Fitting 2. Statistical Inference for Multiple Logistic Regression Model 3. Interpretation of

More information

Suppose that we are concerned about the effects of smoking. How could we deal with this?

Suppose that we are concerned about the effects of smoking. How could we deal with this? Suppose that we want to study the relationship between coffee drinking and heart attacks in adult males under 55. In particular, we want to know if there is an association between coffee drinking and heart

More information

Inference for Binomial Parameters

Inference for Binomial Parameters Inference for Binomial Parameters Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 58 Inference for

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

PB HLTH 240A: Advanced Categorical Data Analysis Fall 2007

PB HLTH 240A: Advanced Categorical Data Analysis Fall 2007 Cohort study s formulations PB HLTH 240A: Advanced Categorical Data Analysis Fall 2007 Srine Dudoit Division of Biostatistics Department of Statistics University of California, Berkeley www.stat.berkeley.edu/~srine

More information

Three-Way Contingency Tables

Three-Way Contingency Tables Newsom PSY 50/60 Categorical Data Analysis, Fall 06 Three-Way Contingency Tables Three-way contingency tables involve three binary or categorical variables. I will stick mostly to the binary case to keep

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Effect measures ) GY Zou gzou@robarts.ca We have discussed inference procedures for 2 2 tables in the context of comparing two groups. Yes No Group 1 a b n 1 Group 2

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

An introduction to biostatistics: part 1

An introduction to biostatistics: part 1 An introduction to biostatistics: part 1 Cavan Reilly September 6, 2017 Table of contents Introduction to data analysis Uncertainty Probability Conditional probability Random variables Discrete random

More information

CDA Chapter 3 part II

CDA Chapter 3 part II CDA Chapter 3 part II Two-way tables with ordered classfications Let u 1 u 2... u I denote scores for the row variable X, and let ν 1 ν 2... ν J denote column Y scores. Consider the hypothesis H 0 : X

More information

One-stage dose-response meta-analysis

One-stage dose-response meta-analysis One-stage dose-response meta-analysis Nicola Orsini, Alessio Crippa Biostatistics Team Department of Public Health Sciences Karolinska Institutet http://ki.se/en/phs/biostatistics-team 2017 Nordic and

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

Measures of Association and Variance Estimation

Measures of Association and Variance Estimation Measures of Association and Variance Estimation Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 35

More information

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data Person-Time Data CF Jeff Lin, MD., PhD. Incidence 1. Cumulative incidence (incidence proportion) 2. Incidence density (incidence rate) December 14, 2005 c Jeff Lin, MD., PhD. c Jeff Lin, MD., PhD. Person-Time

More information

Small n, σ known or unknown, underlying nongaussian

Small n, σ known or unknown, underlying nongaussian READY GUIDE Summary Tables SUMMARY-1: Methods to compute some confidence intervals Parameter of Interest Conditions 95% CI Proportion (π) Large n, p 0 and p 1 Equation 12.11 Small n, any p Figure 12-4

More information

E509A: Principle of Biostatistics. (Week 11(2): Introduction to non-parametric. methods ) GY Zou.

E509A: Principle of Biostatistics. (Week 11(2): Introduction to non-parametric. methods ) GY Zou. E509A: Principle of Biostatistics (Week 11(2): Introduction to non-parametric methods ) GY Zou gzou@robarts.ca Sign test for two dependent samples Ex 12.1 subj 1 2 3 4 5 6 7 8 9 10 baseline 166 135 189

More information

Categorical Data Analysis Chapter 3

Categorical Data Analysis Chapter 3 Categorical Data Analysis Chapter 3 The actual coverage probability is usually a bit higher than the nominal level. Confidence intervals for association parameteres Consider the odds ratio in the 2x2 table,

More information

n y π y (1 π) n y +ylogπ +(n y)log(1 π).

n y π y (1 π) n y +ylogπ +(n y)log(1 π). Tests for a binomial probability π Let Y bin(n,π). The likelihood is L(π) = n y π y (1 π) n y and the log-likelihood is L(π) = log n y +ylogπ +(n y)log(1 π). So L (π) = y π n y 1 π. 1 Solving for π gives

More information

WORKSHOP 3 Measuring Association

WORKSHOP 3 Measuring Association WORKSHOP 3 Measuring Association Concepts Analysing Categorical Data o Testing of Proportions o Contingency Tables & Tests o Odds Ratios Linear Association Measures o Correlation o Simple Linear Regression

More information

Lecture 25: Models for Matched Pairs

Lecture 25: Models for Matched Pairs Lecture 25: Models for Matched Pairs Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture

More information

Logistic Regression Analyses in the Water Level Study

Logistic Regression Analyses in the Water Level Study Logistic Regression Analyses in the Water Level Study A. Introduction. 166 students participated in the Water level Study. 70 passed and 96 failed to correctly draw the water level in the glass. There

More information

Measures of Association for I J tables based on Pearson's 2 Φ 2 = Note that I 2 = I where = n J i=1 j=1 J i=1 j=1 I i=1 j=1 (ß ij ß i+ ß +j ) 2 ß i+ ß

Measures of Association for I J tables based on Pearson's 2 Φ 2 = Note that I 2 = I where = n J i=1 j=1 J i=1 j=1 I i=1 j=1 (ß ij ß i+ ß +j ) 2 ß i+ ß Correlation Coefficient Y = 0 Y = 1 = 0 ß11 ß12 = 1 ß21 ß22 Product moment correlation coefficient: ρ = Corr(; Y ) E() = ß 2+ = ß 21 + ß 22 = E(Y ) E()E(Y ) q V ()V (Y ) E(Y ) = ß 2+ = ß 21 + ß 22 = ß

More information

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as page1 Loglinear Models Loglinear models are a way to describe association and interaction patterns among categorical variables. They are commonly used to model cell counts in contingency tables. These

More information

Reports of the Institute of Biostatistics

Reports of the Institute of Biostatistics Reports of the Institute of Biostatistics No 02 / 2008 Leibniz University of Hannover Natural Sciences Faculty Title: Properties of confidence intervals for the comparison of small binomial proportions

More information

6 Applying Logistic Regression Models

6 Applying Logistic Regression Models 6 Applying Logistic Regression Models I Model Selection and Diagnostics I.1 Model Selection # of x s can be entered in the model: Rule of thumb: # of events (both [Y = 1] and [Y = 0]) per x 10. Need to

More information

SAS Analysis Examples Replication C8. * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ;

SAS Analysis Examples Replication C8. * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ; SAS Analysis Examples Replication C8 * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ; libname ncsr "P:\ASDA 2\Data sets\ncsr\" ; data c8_ncsr ; set ncsr.ncsr_sub_13nov2015

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Logistic regression: Miscellaneous topics

Logistic regression: Miscellaneous topics Logistic regression: Miscellaneous topics April 11 Introduction We have covered two approaches to inference for GLMs: the Wald approach and the likelihood ratio approach I claimed that the likelihood ratio

More information

CHL 5225 H Crossover Trials. CHL 5225 H Crossover Trials

CHL 5225 H Crossover Trials. CHL 5225 H Crossover Trials CHL 55 H Crossover Trials The Two-sequence, Two-Treatment, Two-period Crossover Trial Definition A trial in which patients are randomly allocated to one of two sequences of treatments (either 1 then, or

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 1/15/008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Some comments on Partitioning

Some comments on Partitioning Some comments on Partitioning Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/30 Partitioning Chi-Squares We have developed tests

More information

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response)

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response) Model Based Statistics in Biology. Part V. The Generalized Linear Model. Logistic Regression ( - Response) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch 9, 10, 11), Part IV

More information

Logistic regression analysis. Birthe Lykke Thomsen H. Lundbeck A/S

Logistic regression analysis. Birthe Lykke Thomsen H. Lundbeck A/S Logistic regression analysis Birthe Lykke Thomsen H. Lundbeck A/S 1 Response with only two categories Example Odds ratio and risk ratio Quantitative explanatory variable More than one variable Logistic

More information

Statistics 3858 : Contingency Tables

Statistics 3858 : Contingency Tables Statistics 3858 : Contingency Tables 1 Introduction Before proceeding with this topic the student should review generalized likelihood ratios ΛX) for multinomial distributions, its relation to Pearson

More information

Session 3 The proportional odds model and the Mann-Whitney test

Session 3 The proportional odds model and the Mann-Whitney test Session 3 The proportional odds model and the Mann-Whitney test 3.1 A unified approach to inference 3.2 Analysis via dichotomisation 3.3 Proportional odds 3.4 Relationship with the Mann-Whitney test Session

More information

MSUG conference June 9, 2016

MSUG conference June 9, 2016 Weight of Evidence Coded Variables for Binary and Ordinal Logistic Regression Bruce Lund Magnify Analytic Solutions, Division of Marketing Associates MSUG conference June 9, 2016 V12 web 1 Topics for this

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Statistical Methods in Clinical Trials Categorical Data

Statistical Methods in Clinical Trials Categorical Data Statistical Methods in Clinical Trials Categorical Data Types of Data quantitative Continuous Blood pressure Time to event Categorical sex qualitative Discrete No of relapses Ordered Categorical Pain level

More information

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti Good Confidence Intervals for Categorical Data Analyses Alan Agresti Department of Statistics, University of Florida visiting Statistics Department, Harvard University LSHTM, July 22, 2011 p. 1/36 Outline

More information

Case-control studies

Case-control studies Matched and nested case-control studies Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark b@bxc.dk http://bendixcarstensen.com Department of Biostatistics, University of Copenhagen, 8 November

More information

APPENDIX B Sample-Size Calculation Methods: Classical Design

APPENDIX B Sample-Size Calculation Methods: Classical Design APPENDIX B Sample-Size Calculation Methods: Classical Design One/Paired - Sample Hypothesis Test for the Mean Sign test for median difference for a paired sample Wilcoxon signed - rank test for one or

More information

Describing Contingency tables

Describing Contingency tables Today s topics: Describing Contingency tables 1. Probability structure for contingency tables (distributions, sensitivity/specificity, sampling schemes). 2. Comparing two proportions (relative risk, odds

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

Topic 21 Goodness of Fit

Topic 21 Goodness of Fit Topic 21 Goodness of Fit Contingency Tables 1 / 11 Introduction Two-way Table Smoking Habits The Hypothesis The Test Statistic Degrees of Freedom Outline 2 / 11 Introduction Contingency tables, also known

More information

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) B.H. Robbins Scholars Series June 23, 2010 1 / 29 Outline Z-test χ 2 -test Confidence Interval Sample size and power Relative effect

More information

Lecture 3.1 Basic Logistic LDA

Lecture 3.1 Basic Logistic LDA y Lecture.1 Basic Logistic LDA 0.2.4.6.8 1 Outline Quick Refresher on Ordinary Logistic Regression and Stata Women s employment example Cross-Over Trial LDA Example -100-50 0 50 100 -- Longitudinal Data

More information

Appendix: Computer Programs for Logistic Regression

Appendix: Computer Programs for Logistic Regression Appendix: Computer Programs for Logistic Regression In this appendix, we provide examples of computer programs to carry out unconditional logistic regression, conditional logistic regression, polytomous

More information

Chapter 4: Generalized Linear Models-I

Chapter 4: Generalized Linear Models-I : Generalized Linear Models-I Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Modelling Rates. Mark Lunt. Arthritis Research UK Epidemiology Unit University of Manchester

Modelling Rates. Mark Lunt. Arthritis Research UK Epidemiology Unit University of Manchester Modelling Rates Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 05/12/2017 Modelling Rates Can model prevalence (proportion) with logistic regression Cannot model incidence in

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Measuring relationships among multiple responses

Measuring relationships among multiple responses Measuring relationships among multiple responses Linear association (correlation, relatedness, shared information) between pair-wise responses is an important property used in almost all multivariate analyses.

More information

Lecture 24. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 24. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University November 24, 2015 1 2 3 4 5 1 Odds ratios for retrospective studies 2 Odds ratios approximating the

More information

Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio

Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio Lecture 3: Measures of effect: Risk Difference Attributable Fraction Risk Ratio and Odds Ratio Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK March 3-5,

More information

Sociology 362 Data Exercise 6 Logistic Regression 2

Sociology 362 Data Exercise 6 Logistic Regression 2 Sociology 362 Data Exercise 6 Logistic Regression 2 The questions below refer to the data and output beginning on the next page. Although the raw data are given there, you do not have to do any Stata runs

More information

Simultaneous Confidence Intervals for Risk Ratios in the Many-to-One Comparisons of Proportions

Simultaneous Confidence Intervals for Risk Ratios in the Many-to-One Comparisons of Proportions Western University Scholarship@Western Electronic Thesis and Dissertation Repository August 2012 Simultaneous Confidence Intervals for Risk Ratios in the Many-to-One Comparisons of Proportions Jungwon

More information

Meta-analysis of epidemiological dose-response studies

Meta-analysis of epidemiological dose-response studies Meta-analysis of epidemiological dose-response studies Nicola Orsini 2nd Italian Stata Users Group meeting October 10-11, 2005 Institute Environmental Medicine, Karolinska Institutet Rino Bellocco Dept.

More information

Longitudinal Modeling with Logistic Regression

Longitudinal Modeling with Logistic Regression Newsom 1 Longitudinal Modeling with Logistic Regression Longitudinal designs involve repeated measurements of the same individuals over time There are two general classes of analyses that correspond to

More information

11 November 2011 Department of Biostatistics, University of Copengen. 9:15 10:00 Recap of case-control studies. Frequency-matched studies.

11 November 2011 Department of Biostatistics, University of Copengen. 9:15 10:00 Recap of case-control studies. Frequency-matched studies. Matched and nested case-control studies Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark http://staff.pubhealth.ku.dk/~bxc/ Department of Biostatistics, University of Copengen 11 November 2011

More information

Logistic Regression. Interpretation of linear regression. Other types of outcomes. 0-1 response variable: Wound infection. Usual linear regression

Logistic Regression. Interpretation of linear regression. Other types of outcomes. 0-1 response variable: Wound infection. Usual linear regression Logistic Regression Usual linear regression (repetition) y i = b 0 + b 1 x 1i + b 2 x 2i + e i, e i N(0,σ 2 ) or: y i N(b 0 + b 1 x 1i + b 2 x 2i,σ 2 ) Example (DGA, p. 336): E(PEmax) = 47.355 + 1.024

More information

Collated responses from R-help on confidence intervals for risk ratios

Collated responses from R-help on confidence intervals for risk ratios Collated responses from R-help on confidence intervals for risk ratios Michael E Dewey November, 2006 Introduction This document arose out of a problem assessing a confidence interval for the risk ratio

More information

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests Chapter 59 Two Correlated Proportions on- Inferiority, Superiority, and Equivalence Tests Introduction This chapter documents three closely related procedures: non-inferiority tests, superiority (by a

More information

Discrete Multivariate Statistics

Discrete Multivariate Statistics Discrete Multivariate Statistics Univariate Discrete Random variables Let X be a discrete random variable which, in this module, will be assumed to take a finite number of t different values which are

More information

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval Epidemiology 9509 Principles of Biostatistics Chapter 10 - Inferences about John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. differences in

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information

Review of One-way Tables and SAS

Review of One-way Tables and SAS Stat 504, Lecture 7 1 Review of One-way Tables and SAS In-class exercises: Ex1, Ex2, and Ex3 from http://v8doc.sas.com/sashtml/proc/z0146708.htm To calculate p-value for a X 2 or G 2 in SAS: http://v8doc.sas.com/sashtml/lgref/z0245929.htmz0845409

More information

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health Meta-analysis 21 May 2014 www.biostat.ku.dk/~pka Per Kragh Andersen, Biostatistics, Dept. Public Health pka@biostat.ku.dk 1 Meta-analysis Background: each single study cannot stand alone. This leads to

More information

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

13.1 Categorical Data and the Multinomial Experiment

13.1 Categorical Data and the Multinomial Experiment Chapter 13 Categorical Data Analysis 13.1 Categorical Data and the Multinomial Experiment Recall Variable: (numerical) variable (i.e. # of students, temperature, height,). (non-numerical, categorical)

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted events/trials.

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted events/trials. The GENMOD Procedure MODEL Statement MODEL response = < effects > < /options > ; MODEL events/trials = < effects > < /options > ; You can specify the response in the form of a single variable or in the

More information

Chapter 11: Models for Matched Pairs

Chapter 11: Models for Matched Pairs : Models for Matched Pairs Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Marginal Screening and Post-Selection Inference

Marginal Screening and Post-Selection Inference Marginal Screening and Post-Selection Inference Ian McKeague August 13, 2017 Ian McKeague (Columbia University) Marginal Screening August 13, 2017 1 / 29 Outline 1 Background on Marginal Screening 2 2

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

More Statistics tutorial at Logistic Regression and the new:

More Statistics tutorial at  Logistic Regression and the new: Logistic Regression and the new: Residual Logistic Regression 1 Outline 1. Logistic Regression 2. Confounding Variables 3. Controlling for Confounding Variables 4. Residual Linear Regression 5. Residual

More information

Chapter 11: Analysis of matched pairs

Chapter 11: Analysis of matched pairs Chapter 11: Analysis of matched pairs Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 42 Chapter 11: Models for Matched Pairs Example: Prime

More information

Page: 3, Line: 24 ; Replace 13 Building... with 13 More on Multiple Regression. Page: 83, Line: 9 ; Replace The ith ordered... with The jth ordered...

Page: 3, Line: 24 ; Replace 13 Building... with 13 More on Multiple Regression. Page: 83, Line: 9 ; Replace The ith ordered... with The jth ordered... ERRATA FOR THE OTT/LONGNECKER BOOK AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS (Some of these typos have been corrected in later printings) Page: xiv, Line: 15 ; Replace these with the Page:

More information