Temperature-Dependent Defect Dynamics in SiO 2. Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen

Size: px
Start display at page:

Download "Temperature-Dependent Defect Dynamics in SiO 2. Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen"

Transcription

1 Temperature-Dependent Defect Dynamics in SiO 2 Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen x i, y i, z i, [Å] =25 K =325 K x i (t) y i (t) z i (t) zoo = 7 zoo = 7 zoo = 7 zoo = 7 zoo = 8 zosi = zsio = 5 jumper zsisi = 3 zoo = 8 t = ns t = ns t = ns Göttingen, June 2, 23

2 Introduction: Glass V liquid Crystal Glass Liquid glass crystal T m T log η [Poise] 2 GeO 2 strong glass former Glycerol SiO2 fragile glass former 2 4Ca(NO 3 ) 2 6KNO.4 T /T 3. g [C.A. Angell and W. Sichina, Ann. NY Acad. Sci. 279, 53 (976)] Dynamics: Viscocity η as function of inverse temperature T slowing down of many decades very interesting dynamics strong and fragile glass formers Here: SiO 2 (strong glass former)

3 Model & Simulations Model: BKS Potential [B.W.H. van Beest et al., PRL 64, 955 (99)] φ(r ij ) = q iq j e 2 r ij + A ij e B ijr ij C ij r 6 ij 2 Si & 224 O ρ = 2.32 g/cm 3 T c = 333 K O Si network (potential only "spheres") Molecular Dynamics Simulations: 5 K 376 K T Ti T c 2 initial configurations 325 K 3 K.33 ns 33 ns 275 K NVT NVE 25 K (Nose Hoover) (Velocity Verlet) time

4 Motivation log η [Poise] 2 GeO 2 strong glass former SiO2 Glycerol fragile glass former 2 4Ca(NO 3 ) 2 6KNO.4 T /T 3. g Unexpected Similar Dynamics: scaling plots (C q, χ 4, P (C q )) jump statistics (P ( R), P ( t b )) r n (t) R td tb SiO 2 -specific perspective?

5 Network Glass SiO 2 extract main features

6 Time Averaged Trajectories t av =.327 ns t {r i } {r i } {r i } {r i } x i, y i, z i, [Å] t av x i (t) y i (t) z i (t) =25 K x i, y i, z i, [Å] =325 K x i (t) y i (t) z i (t) strong temperature dependence

7 Structure: Radial Distribution Function g αβ (r) = V N αn β N α i= N β j= j i δ( r r ij (t) α, β {Si,O} g SiO g OO g SiSi r i (t) t av = ns r i (t) t av =.327 ns r i (t) t av =.654 ns =25 K t av =.327 ns {ri} {ri} {ri} {ri} time average sharpens peaks t r [Å]

8 Structure: Radial Distribution Function g αβ (r) = V N αn β N α i= N β j= j i δ( r r ij (t) α, β {Si,O} g SiO = 25 K = 275 K = 3 K = 325 K almost no temperature dependence r [Å]

9 Structure: Coordination Number z αβ i via minimum of g αβ (α, β {Si,O}) = number of nearest neighbors - =25 K =325 K =25 K - =325 K - =325 K =25 K - =325 K =25 K P OSi (z) -3-4 P SiO (z) -3-4 P SiSi (z) -3-4 P OO (z) z z z z sharply peaked

10 SiO 2 -Network g SiO g OO g SiSi r i (t) t av = ns r i (t) t av =.327 ns r i (t) t av =.654 ns =25 K O Si P OSi (z) r [Å] =25 K =325 K P SiO (z) z =25 K - =325 K z almost perfect neighborhood well defined defects: z αβ i z αβ perfect focus on defects z OSi perfect =2 zsio perfect =4

11 Number of Defects { if at time t z αβ χ D i (t, β) = i (t) z αβ perfect if at time t z αβ i (t) = z αβ perfect Mαβ D = χ D i (t, β). N α N α i= - M D αβ -2-3 αβ= SiSi SiO OSi OO [K] few defects (mostly OO) strong temperature dependence: increases with temperature M D αβ Arrhenius fits Life Time of Defects?

12 Defect-Defect Correlation C DD (t, α, β) = Nα Nα χ D i (t, β) = χ D i (t, β)χ D i (t + t, β) i= if at time t z αβ i (t) z αβ perfect if at time t z αβ i Nα Nα (t) = z αβ perfect χ D i (t, β) i= C α,β DD (t) = CDD (t,α,β) C DD (t=,α,β) Nα Nα χ D i (t + t, β) i=.4.3 = 25 K = 275 K = 3 K = 325 K = 25 K = 275 K = 3 K = 325 K C ~DD SiO.2 C ~DD OO strong temperature dependence

13 Life Time of Defects.4.3 = 25 K = 275 K = 3 K = 325 K C ~DD SiO.2... DD DD DD DD τ τsio SiO τ τsio SiO τ DD αβ [ns] - -2 t av αβ= SiSi SiO OSi OO / [K - ] t b t d z i (t) td tb SiO- & OSi-defects short-lived (flashes) OO-defects longer lived

14 Jumps { during jump χ J i (t) = otherwise x i,y i,z i [Å] 5 5 =25 K J(t) O-atom

15 Number of Jumps { during jump χ J i (t) = otherwise Mα J = χ J i (t) N α N α i= M J α - -2 α= Si O very few jumps Arrhenius fits strong temperature dependence [K]

16 Defect-Jump Correlation zoo = 7 zoo = 7 zoo = 7 zoo = 8 zoo = 7 zosi = zsio = 5 jumper zsisi = 3 zoo = 8 t = ns t = ns t = ns D(t,O) =25 K OO-defect D(t,O) =25 K SiO-defect J(t) O-atom jumping J(t) Si-atom jumping D(t,Si) OSi-defect D(t,Si) Are Defects and Jumps Correlated? SiSi-defect

17 Defect-Jump Correlation D(t,O) =25 K OO-defect D(t,O) =25 K SiO-defect J(t) O-atom jumping J(t) Si-atom jumping D(t,Si) OSi-defect A DJ α,β = Nα D(t,Si) SiSi-defect Nα χ D i (t,β)χj i (t) Nα χ Nα D i (t,β) Nα i= i= Nα χ Nα D i (t,β) Nα χ Nα J i (t) i= i= Nα χ J i (t) i=

18 Defect-Jump Correlation A DJ α,β = Nα Nα χ D Nα i (t,β)χj i (t) χ D Nα i (t,β) i= i= Nα χ Nα D Nα i (t,β) χ Nα J i (t) i= i= Nα = Nα χ D i (t,β)χj i M (t) D αβ M J α i= Mαβ D M α J Nα Nα i= χ J i (t) A DJ αβ 5 αβ= SiSi SiO OSi OO strong correlation between defects and jumps correlation is decreasing with increasing temperature [K]

19 Summary Simulations of SiO 2 -Glass Extract Information: time averaged positions χ D i (t, β), χj i (t) Defects: well defined (g αβ (r) & P αβ (z)) strong temperature dependence of C DD α,β (t) τα,β DD: SiO- & OSi-defects short lived and OO-defects long lived τ DD α,β decreasing with increasing temperature Jump-Defect Correlation: strongly correlated decreases with increasing temperature A DJ α,β Acknowledgments: Supported by DFG via SFB 62 & FOR394.

Microscopic Picture of Aging in SiO 2 : A Computer Simulation

Microscopic Picture of Aging in SiO 2 : A Computer Simulation Microscopic Picture of Aging in SiO 2 : A Computer Simulation Katharina Vollmayr-Lee, Robin Bjorkquist, Landon M. Chambers Bucknell University & Göttingen 7 td tb r n (t) 6 R 5 4 3 2 ti t [ns] waiting

More information

Computer Simulation of Glasses: Jumps and Self-Organized Criticality

Computer Simulation of Glasses: Jumps and Self-Organized Criticality Computer Simulation of Glasses: Jumps and Self-Organized Criticality Katharina Vollmayr-Lee Bucknell University November 2, 2007 Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach V glass crystal

More information

Cooling rate effects in amorphous Silica: A Computer Simulation Study. Abstract

Cooling rate effects in amorphous Silica: A Computer Simulation Study. Abstract August 14, 2018 Cooling rate effects in amorphous Silica: A Computer Simulation Study Katharina Vollmayr, Walter Kob and Kurt Binder Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Mar 1997

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Mar 1997 arxiv:cond-mat/9703237v1 [cond-mat.dis-nn] 27 Mar 1997 Molecular Dynamics Computer Simulation of the Dynamics of Supercooled Silica J. Horbach, W. Kob 1 and K. Binder Institute of Physics, Johannes Gutenberg-University,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996 December 21, 2013 arxiv:cond-mat/9610066v1 [cond-mat.stat-mech] 8 Oct 1996 Some Finite Size Effects in Simulations of Glass Dynamics Jürgen Horbach, Walter Kob, Kurt Binder Institut für Physik, Johannes

More information

P. W. Anderson [Science 1995, 267, 1615]

P. W. Anderson [Science 1995, 267, 1615] The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition. This could be the next breakthrough in the coming decade.

More information

Part 2: Molecular Dynamics. Literature History Practical Issues

Part 2: Molecular Dynamics. Literature History Practical Issues Part 2: Molecular Dynamics Literature History Practical Issues 1 Literature A. K. Hartmann Big Practical Guide to Computer Simulations (World Scientific, 2015) M. P. Allen and D.J. Tildesley Computer Simulations

More information

Lecture 3, Part 3: Computer simulation of glasses

Lecture 3, Part 3: Computer simulation of glasses Lehigh University Lehigh Preserve US-Japan Winter School Semester Length Glass Courses and Glass Schools Winter 1-1-2008 Lecture 3, Part 3: Computer simulation of glasses Walter Kob Universite Montpellier

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 17 Dec 1996 silica Abstract

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 17 Dec 1996 silica Abstract Strong to fragile transition in a model of liquid arxiv:cond-mat/9612154v1 [cond-mat.mtrl-sci] 17 Dec 1996 silica Jean-Louis Barrat James Badro, and Philippe Gillet Abstract The transport properties of

More information

Inelastic X ray Scattering

Inelastic X ray Scattering Inelastic X ray Scattering with mev energy resolution Tullio Scopigno University of Rome La Sapienza INFM - Center for Complex Dynamics in Structured Systems Theoretical background: the scattering cross

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 12 Dec 2002

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 12 Dec 2002 Large well-relaxed models of vitreous silica, coordination numbers and entropy arxiv:cond-mat/0212215v2 [cond-mat.mtrl-sci] 12 Dec 2002 R. L. C. Vink and G. T. Barkema Institute for Theoretical Physics,

More information

An introduction to classical molecular dynamics

An introduction to classical molecular dynamics An introduction to classical molecular dynamics Simona ISPAS simona.ispas@univ-montp2.fr Laboratoire Charles Coulomb, Dépt. Colloïdes, Verres et Nanomatériaux, UMR 5221 Université Montpellier 2, France

More information

Single particle jumps in a binary Lennard-Jones system below the glass transition

Single particle jumps in a binary Lennard-Jones system below the glass transition JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 10 8 SEPTEMBER 2004 Single particle jumps in a binary Lennard-Jones system below the glass transition K. Vollmayr-Lee a) Department of Physics, Bucknell University,

More information

Spatially heterogeneous dynamics in supercooled organic liquids

Spatially heterogeneous dynamics in supercooled organic liquids Spatially heterogeneous dynamics in supercooled organic liquids Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu UW-Madison NSF Chemistry 1 Image from Weeks and Weitz,

More information

Research article Evolution of structure of SiO 2 nanoparticles upon cooling from the melt Nguyen Thi Xuan Huynh* 1, Vo Van Hoang* 2 and Hoang Zung 3

Research article Evolution of structure of SiO 2 nanoparticles upon cooling from the melt Nguyen Thi Xuan Huynh* 1, Vo Van Hoang* 2 and Hoang Zung 3 Research article Evolution of structure of SiO 2 nanoparticles upon cooling from the melt Nguyen Thi Xuan Huynh* 1, Vo Van Hoang* 2 and Hoang Zung 3 Open Access Address: 1 Department of Physics, Quy Nhon

More information

Liquid-Liquid Phase Transitions and Water-Like Anomalies in Liquids

Liquid-Liquid Phase Transitions and Water-Like Anomalies in Liquids 1 Liquid-Liquid Phase Transitions and Water-Like Anomalies in Liquids Erik Lascaris Final oral examination 9 July 2014 2 Outline Anomalies in water and simple models Liquid-liquid phase transition in water

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases MD Simulation of Diatomic Gases Bull. Korean Chem. Soc. 14, Vol. 35, No. 1 357 http://dx.doi.org/1.51/bkcs.14.35.1.357 Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases Song

More information

Heat Transport in Glass-Forming Liquids

Heat Transport in Glass-Forming Liquids Heat Transport in Glass-Forming Liquids by VINAY VAIBHAV The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. A thesis submitted in partial fulfillment of requirements for

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

Molecular structural order and anomalies in liquid silica

Molecular structural order and anomalies in liquid silica Molecular structural order and anomalies in liquid silica M. Scott Shell, Pablo G. Debenedetti,* and Athanassios Z. Panagiotopoulos Department of Chemical Engineering, Princeton University, Princeton,

More information

Glassy Dynamics in the Potential Energy Landscape

Glassy Dynamics in the Potential Energy Landscape Glassy Dynamics in the Potential Energy Landscape Vanessa de Souza University of Granada, Spain University of Cambridge 10ǫAA Glassy Dynamics in the Potential Energy Landscape p. 1/ Overview Introduction

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Dynamical heterogeneities below the glass transition

Dynamical heterogeneities below the glass transition Dynamical heterogeneities below the glass transition K. Vollmayr-Lee, W. Kob, K. Binder, and A. Zippelius Citation: J. Chem. Phys. 116, 5158 (2002); doi: 10.1063/1.1453962 View online: http://dx.doi.org/10.1063/1.1453962

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

Statistical thermodynamics (mechanics)

Statistical thermodynamics (mechanics) Statistical thermodynamics mechanics) 1/15 Macroskopic quantities are a consequence of averaged behavior of many particles [tchem/simplyn.sh] 2/15 Pressure of ideal gas from kinetic theory I Molecule =

More information

Thermally Activated Processes

Thermally Activated Processes General Description of Activated Process: 1 Diffusion: 2 Diffusion: Temperature Plays a significant role in diffusion Temperature is not the driving force. Remember: DRIVING FORCE GRADIENT of a FIELD VARIALE

More information

Correlation between local structure and dynamic heterogeneity in a metallic glass-forming liquid

Correlation between local structure and dynamic heterogeneity in a metallic glass-forming liquid Correlation between local structure and dynamic heterogeneity in a metallic glass-forming liquid S. P. Pan a,b,*, S. D. Feng c, J. W. Qiao a,b, W. M. Wang d, and J. Y. Qin d a College of Materials Science

More information

Supporting Information. Influence of Vapor Deposition on Structural. and Charge Transport Properties of. Ethylbenzene Films

Supporting Information. Influence of Vapor Deposition on Structural. and Charge Transport Properties of. Ethylbenzene Films Supporting Information Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films Lucas W. Antony, Nicholas E. Jackson,, Ivan Lyubimov, Venkatram Vishwanath, Mark

More information

The samples used in these calculations were arranged as perfect diamond crystal of

The samples used in these calculations were arranged as perfect diamond crystal of Chapter 5 Results 5.1 Hydrogen Diffusion 5.1.1 Computational Details The samples used in these calculations were arranged as perfect diamond crystal of a2 2 2 unit cells, i.e. 64 carbon atoms. The effect

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Glass V.M. Sglavo GlassEng - UNITN 2017

Glass V.M. Sglavo GlassEng - UNITN 2017 Glass Definition material with no long range order matarial characterized by the glass transition phenomenon amorphous solid without long range order and ordered atomic structure, which shows the glass

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 14, 2012 All electrons vs pseudopotentials Classes of Basis-set Condensed phase: Bloch s th and PBC Hamann-Schlüter-Chiang pseudopotentials

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

LECTURE 1: Disordered solids: Structure properties

LECTURE 1: Disordered solids: Structure properties LECTURE 1: Disordered solids: Structure properties What is an disordered solid: examples amorphous solids or glasses inorganic compounds (e.g. SiO 2 /silicates, B 2 O 3 /borates, GeO 2 /germanates, P 2

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Experimental predictions for strongly correlating liquids

Experimental predictions for strongly correlating liquids Experimental predictions for strongly correlating liquids A new look at the Prigogine-Defay ratio, and how to estimate γ Ulf Rørbæk Pedersen Glass and Time - DNRF centre for viscous liquids dynamics, IMFUFA,

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

Bose-Einstein condensation in Quantum Glasses

Bose-Einstein condensation in Quantum Glasses Bose-Einstein condensation in Quantum Glasses Giuseppe Carleo, Marco Tarzia, and Francesco Zamponi Phys. Rev. Lett. 103, 215302 (2009) Collaborators: Florent Krzakala, Laura Foini, Alberto Rosso, Guilhem

More information

Thermodynamics of histories: application to systems with glassy dynamics

Thermodynamics of histories: application to systems with glassy dynamics Thermodynamics of histories: application to systems with glassy dynamics Vivien Lecomte 1,2, Cécile Appert-Rolland 1, Estelle Pitard 3, Kristina van Duijvendijk 1,2, Frédéric van Wijland 1,2 Juan P. Garrahan

More information

Implementation of consistent embedding for a larger system Amorphous silica

Implementation of consistent embedding for a larger system Amorphous silica Journal of Computer-Aided Materials Design (2006) 13:61 73 Springer 2006 DOI 10.1007/s10820-006-9015-z Implementation of consistent embedding for a larger system Amorphous silica KRISHNA MURALIDHARAN a,,

More information

A COMPARATIVE STUDY OF OXYGEN VACANCY MIGRATION PATHWAYS IN CRYSTALLINE POLYMORPHS OF SILICA

A COMPARATIVE STUDY OF OXYGEN VACANCY MIGRATION PATHWAYS IN CRYSTALLINE POLYMORPHS OF SILICA A COMPARATIVE STUDY OF OXYGEN VACANCY MIGRATION PATHWAYS IN CRYSTALLINE POLYMORPHS OF SILICA L. René Corrales Pacific Northwest National Laboratory Richland, WA 99352 Corresponding author: rene.corrales@pnl.gov

More information

Heterogenous Nucleation in Hard Spheres Systems

Heterogenous Nucleation in Hard Spheres Systems University of Luxembourg, Softmatter Theory Group May, 2012 Table of contents 1 2 3 Motivation Event Driven Molecular Dynamics Time Driven MD simulation vs. Event Driven MD simulation V(r) = { if r < σ

More information

Experimental predictions for strongly correlating liquids

Experimental predictions for strongly correlating liquids Experimental predictions for strongly correlating liquids A new look at the Prigogine-Defay ratio Ulf Rørbæk Pedersen Glass and Time - DNRF centre for viscous liquids dynamics, IMFUFA, Department of Science,

More information

Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order.

Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order. Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order Zhenyu Yan, Sergey V. Buldyrev,, Pradeep Kumar, Nicolas Giovambattista 3, Pablo

More information

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM S. GRABOWSKI, K. KADAU and P. ENTEL Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany (Received...) Abstract We present molecular-dynamics

More information

Search for a liquid-liquid critical point in models of silica

Search for a liquid-liquid critical point in models of silica Search for a liquid-liquid critical point in models of silica Erik Lascaris, 1 Mahin Hemmati, 2 Sergey V. Buldyrev, 3 H. Eugene Stanley, 1 and C. Austen Angell 2 1 Center for Polymer Studies and Department

More information

Learning from and about complex energy landspaces

Learning from and about complex energy landspaces Learning from and about complex energy landspaces Lenka Zdeborová (CNLS + T-4, LANL) in collaboration with: Florent Krzakala (ParisTech) Thierry Mora (Princeton Univ.) Landscape Landscape Santa Fe Institute

More information

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data P. B.Visscher and D. M. Apalkov Department of Physics and Astronomy The University of Alabama This project

More information

SAMPLE ANSWERS TO HW SET 3B

SAMPLE ANSWERS TO HW SET 3B SAMPLE ANSWERS TO HW SET 3B First- Please accept my most sincere apologies for taking so long to get these homework sets back to you. I have no excuses that are acceptable. Like last time, I have copied

More information

Solid-State Diffusion and NMR

Solid-State Diffusion and NMR Solid-State Diffusion and NMR P. Heitjans, S. Indris, M. Wilkening University of Hannover Germany Diffusion Fundamentals, Leipzig, 3 Sept. 005 Introduction Diffusivity in Solids as Compared to Liquids

More information

Finite size scaling of the dynamical free-energy in the interfacial regime of a kinetically constrained model

Finite size scaling of the dynamical free-energy in the interfacial regime of a kinetically constrained model Finite size scaling of the dynamical free-energy in the interfacial regime of a kinetically constrained model Thierry Bodineau 1, Vivien Lecomte 2, Cristina Toninelli 2 1 DMA, ENS, Paris, France 2 LPMA,

More information

Polarized and unpolarised transverse waves, with applications to optical systems

Polarized and unpolarised transverse waves, with applications to optical systems 2/16/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Polarized and unpolarised transverse waves, with applications to optical systems T. Johnson 2/16/17 Electromagnetic Processes In Dispersive

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC C. Yildrim, O. Laurent, B. Mantisi, M. Bauchy «Chasseurs d

More information

Energy and Forces in DFT

Energy and Forces in DFT Energy and Forces in DFT Total Energy as a function of nuclear positions {R} E tot ({R}) = E DF T ({R}) + E II ({R}) (1) where E DF T ({R}) = DFT energy calculated for the ground-state density charge-density

More information

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Grzegorz Szamel Department of Chemistry Colorado State University Ft. Collins, CO 80523, USA Workshop on

More information

Reaction-Diffusion Problems

Reaction-Diffusion Problems Field Theoretic Approach to Reaction-Diffusion Problems at the Upper Critical Dimension Ben Vollmayr-Lee and Melinda Gildner Bucknell University Göttingen, 30 November 2005 Reaction-Diffusion Models Doi

More information

8.6 Drag Forces in Fluids

8.6 Drag Forces in Fluids 86 Drag Forces in Fluids When a solid object moves through a fluid it will experience a resistive force, called the drag force, opposing its motion The fluid may be a liquid or a gas This force is a very

More information

arxiv: v1 [cond-mat.soft] 26 Feb 2015

arxiv: v1 [cond-mat.soft] 26 Feb 2015 Persistent Homology and Many-Body Atomic Structure for Medium-Range Order in the Glass arxiv:5.75v [cond-mat.soft] Feb 5 Takenobu Nakamura, Yasuaki Hiraoka, Akihiko Hirata, Emerson G. Escolar 3 and Yasumasa

More information

Silica glass structure generation for ab initio calculations using small samples of amorphous silica

Silica glass structure generation for ab initio calculations using small samples of amorphous silica Silica glass structure generation for ab initio calculations using small samples of amorphous silica Renée M. Van Ginhoven* University of Washington, Seattle, Washington 98512, USA Hannes Jónsson University

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Supplementary Information for: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Tamoghna Das, a,b Saswati Ganguly, b Surajit Sengupta c and Madan Rao d a Collective Interactions

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 Mar 2004

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 Mar 2004 APS/123-QED Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study. arxiv:cond-mat/0403151v1 [cond-mat.dis-nn] 4 Mar 2004 Patrick Ganster

More information

Chapter 2 The Well 9/5/2017. E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University

Chapter 2 The Well 9/5/2017. E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University hapter 2 The Well E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University p+ sub ~ 150 m thick, p-epi ~ 30 m thick All transistors go in p- epi layer Typical p- doping

More information

Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling

Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling Brian A. Lockwood, Markus P. Rumpfkeil, Wataru Yamazaki and Dimitri J. Mavriplis Mechanical Engineering

More information

A Toy Model. Viscosity

A Toy Model. Viscosity A Toy Model for Sponsoring Viscosity Jean BELLISSARD Westfälische Wilhelms-Universität, Münster Department of Mathematics SFB 878, Münster, Germany Georgia Institute of Technology, Atlanta School of Mathematics

More information

arxiv: v1 [cond-mat.dis-nn] 25 Oct 2017

arxiv: v1 [cond-mat.dis-nn] 25 Oct 2017 Slow and Long-ranged Dynamical Heterogeneities in Dissipative Fluids arxiv:70.09488v [cond-mat.dis-nn] 25 Oct 207 Introduction Supercooled liquids, colloidal suspensions, and granular systems show evidence

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Improved Resolution of Tertiary Structure Elasticity in Muscle Protein

Improved Resolution of Tertiary Structure Elasticity in Muscle Protein Improved Resolution of Tertiary Structure Elasticity in Muscle Protein Jen Hsin and Klaus Schulten* Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

More information

One-shot free energy calculations for crystalline materials

One-shot free energy calculations for crystalline materials Instability One-shot free energy calculations for crystalline materials Thesis for the Degree Master of Science TOMMY ANDERSSON Department of Applied Physics Chalmers University of Technology Gothenburg,

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

arxiv:gr-qc/ v1 14 Jul 1994

arxiv:gr-qc/ v1 14 Jul 1994 LINEAR BIMETRIC GRAVITATION THEORY arxiv:gr-qc/9407017v1 14 Jul 1994 M.I. Piso, N. Ionescu-Pallas, S. Onofrei Gravitational Researches Laboratory 71111 Bucharest, Romania September 3, 2018 Abstract A general

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

The Rise and Fall of Anomalies in Tetrahedral Liquids.

The Rise and Fall of Anomalies in Tetrahedral Liquids. The Rise and Fall of Anomalies in Tetrahedral Liquids. Waldemar Hujo, 1 B. Shadrack Jabes, 2 Varun K. Rana, 2 Charusita Chakravarty 2 and Valeria Molinero 1 1Department of Chemistry, University of Utah,

More information

Introduction to Pseudodifferential Operators

Introduction to Pseudodifferential Operators Introduction to Pseudodifferential Operators Mengxuan Yang Directed by Prof. Dean Baskin May, 206. Introductions and Motivations Classical Mechanics & Quantum Mechanics In classical mechanics, the status

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Inhomogeneous elastic response of silica glass

Inhomogeneous elastic response of silica glass Inhomogeneous elastic response of silica glass Fabien Leonforte, Anne Tanguy, Joachim Wittmer, Jean-Louis Barrat To cite this version: Inhomogeneous elastic re- Fabien Leonforte, Anne Tanguy, Joachim Wittmer,

More information

Selected Features of Potential Energy Landscapes and Their Inherent Structures

Selected Features of Potential Energy Landscapes and Their Inherent Structures Slide 1 Selected Features of Potential Energy Landscapes and Their Inherent Structures Lecture delivered for ChE 536 Frank H Stillinger Department of Chemistry Princeton Univesity Slide Potential Energy/Enthalpy

More information

Direct observation of dynamical heterogeneities near the attraction driven glass

Direct observation of dynamical heterogeneities near the attraction driven glass Direct observation of dynamical heterogeneities near the attraction driven glass Maria Kilfoil McGill University Co-worker: Yongxiang Gao, PhD student http://www.physics.mcgill.ca/~kilfoil Dynamical heterogeneity

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Scattering angle Crystalline materials Bragg s law: Scattering vector Q ~ d -1, where d is interplanar distance Q has dimension [m -1 ], hence large Q (large scattering

More information

STUDY ON CORROSION P HENOMENA OF STEELS IN PB-BI FLOW

STUDY ON CORROSION P HENOMENA OF STEELS IN PB-BI FLOW 11 th International Conference on Nuclear Engineering Tokyo, JAPAN, April -3, 3 ICONE11-36375 STUDY ON CORROSION P HENOMENA OF STEELS IN PB-BI FLOW Yingxia Qi Research Laboratory for Nuclear Reactors Tokyo

More information

Oxide growth model. Known as the Deal-Grove or linear-parabolic model

Oxide growth model. Known as the Deal-Grove or linear-parabolic model Oxide growth model Known as the Deal-Grove or linear-parabolic model Important elements of the model: Gas molecules (oxygen or water) are incident on the surface of the wafer. Molecules diffuse through

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures)

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures) Landscape Approach to Glass Transition and Relaxation Lecture # 4, April 1 (last of four lectures) Relaxation in the glassy state Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) Review

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Gravitational Waves. Basic theory and applications for core-collapse supernovae. Moritz Greif. 1. Nov Stockholm University 1 / 21

Gravitational Waves. Basic theory and applications for core-collapse supernovae. Moritz Greif. 1. Nov Stockholm University 1 / 21 Gravitational Waves Basic theory and applications for core-collapse supernovae Moritz Greif Stockholm University 1. Nov 2012 1 / 21 General Relativity Outline 1 General Relativity Basic GR Gravitational

More information

Decentralized Disturbance Attenuation for Large-Scale Nonlinear Systems with Delayed State Interconnections

Decentralized Disturbance Attenuation for Large-Scale Nonlinear Systems with Delayed State Interconnections Decentralized Disturbance Attenuation for Large-Scale Nonlinear Systems with Delayed State Interconnections Yi Guo Abstract The problem of decentralized disturbance attenuation is considered for a new

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

arxiv:cond-mat/ v2 7 Dec 1999

arxiv:cond-mat/ v2 7 Dec 1999 Molecular dynamics study of a classical two-dimensional electron system: Positional and orientational orders arxiv:cond-mat/9906213v2 7 Dec 1999 Satoru Muto 1, Hideo Aoki Department of Physics, University

More information