Glassy Dynamics in the Potential Energy Landscape

Size: px
Start display at page:

Download "Glassy Dynamics in the Potential Energy Landscape"

Transcription

1 Glassy Dynamics in the Potential Energy Landscape Vanessa de Souza University of Granada, Spain University of Cambridge 10ǫAA Glassy Dynamics in the Potential Energy Landscape p. 1/

2 Overview Introduction Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape Glassy Dynamics Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants Cage-break Metabasins Random Walk Metabasins vs. Cagebreaks Glassy Dynamics in the Potential Energy Landscape p. 2/

3 Strong and Fragile Glasses Super-Arrhenius behaviour For some supercooled liquids, the temperature dependence of relaxation times or transport properties such as the diffusion constant, D, is stronger than predicted by the Arrhenius law. Arrhenius Super-Arrhenius Temperature dependence Arrhenius Law VTF equation η = η 0 exp[a/t] η = η 0 exp[a/(t T 0 )] Angell s classification Strong Fragile Glassy Dynamics in the Potential Energy Landscape p. 3/

4 Strong and Fragile Glasses 12 log 10 η/poise 8 Strong 4 0 Fragile T g /T Arrhenius Super-Arrhenius Temperature dependence Arrhenius Law VTF equation η = η 0 exp[a/t] η = η 0 exp[a/(t T 0 )] Angell s classification Strong Fragile Glassy Dynamics in the Potential Energy Landscape p. 3/

5 The Loch Ness Monster Glassy Dynamics in the Potential Energy Landscape p. 4/

6 The Loch Ness Monster Glassy Dynamics in the Potential Energy Landscape p. 4/

7 The Loch Ness Monster Glassy Dynamics in the Potential Energy Landscape p. 4/

8 Potential Energy Landscapes Potential Energy Landscape (PEL): the potential energy as a function of all the relevant particle coordinates. transition state Any structure can be minimised to find its inherent structure, a minimum on the PEL. Discretisation and simplification of configuration space. minimum minimum Dynamics requires information about transition states, the highest point on the lowest-energy pathway between two minima. Glassy Dynamics in the Potential Energy Landscape p. 5/

9 Visualising the Landscape - Crystal Landscapes Disconnectivity Graphs 10ǫAA Calvo, Bogdan, de Souza and Wales, JCP 127, (2007) Glassy Dynamics in the Potential Energy Landscape p. 6/

10 Visualising the Landscape - Glassy Landscapes Disconnectivity Graphs 10ǫAA de Souza and Wales, JCP 129, (2008) Glassy Dynamics in the Potential Energy Landscape p. 7/

11 Overview Introduction Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape Glassy Dynamics Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants Cage-break Metabasins Random Walk Metabasins vs. Cagebreaks Glassy Dynamics in the Potential Energy Landscape p. 8/

12 Coarse-graining the landscape Transitions between metabasins follow a random walk Metabasins are well-characterised by an energy and waiting time Diffusion constants can be calculated Problems with this approach: Doliwa and Heuer, PRE (2003) How but not Why. No information about microscopic mechanisms, within metabasins or for transitions between metabasins. Identify minima by total system energy, the method cannot be scaled for larger system sizes, restricted to around 65 atoms. Glassy Dynamics in the Potential Energy Landscape p. 9/

13 Fitting to Super-Arrhenius Behaviour lnd erg (T) = ( ) m n T c T +lnd 0 Arrhenius component: c T +lnd 0 Correction: ( m T ) n de Souza and Wales PRB 74, (2006) PRL 96, (2006) space here lnd space here /T Glassy Dynamics in the Potential Energy Landscape p. 10/

14 Levels of Coarse-Graining 10ǫAA Negative correlation in Minima-to-Minima Transitions Negatively correlated Diffusive Processes Random Walk between Metabasins Glassy Dynamics in the Potential Energy Landscape p. 11/

15 Mean square displacement Diffusion Einstein relation: D = lim t 1 6t r2 (t) 1 10 Diffusive behaviour r 2 (t) t r 2 (t) low temperature Ballistic motion r 2 (t) t t Glassy Dynamics in the Potential Energy Landscape p. 12/

16 Nearest Neighbours gaa(r) 8 4 AA interaction end of first-neighbour shell r gbb(r) gab(r) r 1.4 AB interaction BB interaction r Glassy Dynamics in the Potential Energy Landscape p. 13/

17 Nearest Neighbours gaa(r) 8 4 AA interaction gbb(r) gab(r) AB interaction BB interaction r Glassy Dynamics in the Potential Energy Landscape p. 13/

18 Cage-Breaking Criteria Nearest neighbours are within a distance of 1.25 for an AA interaction. For the loss of a neighbour, relative distance changes by more than 0.561, which corresponds to half the equilibrium pair separation. A cage-break occurs with the loss/gain of at least two neighbours. Sequence of minimum transition state minimum for a cagebreak. de Souza and Wales, JCP 129, (2008) Glassy Dynamics in the Potential Energy Landscape p. 14/

19 Reversed Cage-Breaks Identified when the net displacement squared is less than10 5. Chains of repeatedly reversed cage-breaks are found. Determine cage-breaks which are Productive towards long-term diffusion: The cage-break is not followed by the reverse event. The cage-break is not part of a reversal chain OR ends a chain with an even number of reversals space here 3 cage-breaks 2 reversals Last cage-break is Productive Glassy Dynamics in the Potential Energy Landscape p. 15/

20 Diffusion from Productive Cage-Breaks Productive Cage-breaks follow a random walk, r 2 (t) = lnd M j=1 L 2 j /T 60-atom binary Lennard-Jones at number densities of 1.3 and 1.1 Landscape-influenced regime(1/t): 0.78 and 1.78 Landscape-dominanced regime(1/t): 1.56 and 3.56 Glassy Dynamics in the Potential Energy Landscape p. 16/

21 Accounting for correlation The following simplifications are suggested by our studies of diffusion using Molecular Dynamics trajectories: The displacements of cage-breaks are similar and can be represented by a constant, L. Correlation arises from direct return events. We can account for correlation effects using a count of reversal chains of length z, n(z). ( r 2 (t) = ML n(1)+n(2) n(3)+ ) M space here Reversal chain, z=2. Two reversal chains, z=1. n(1) = 2 and n(2) = 1 Glassy Dynamics in the Potential Energy Landscape p. 17/

22 Diffusion from All Cage-Breaks r 2 (t) = M L 2 j j=1 ( 1+2 n(1)+n(2) n(3)+ ) M All Cage-Breaks lnd /T Glassy Dynamics in the Potential Energy Landscape p. 18/

23 Overview Introduction Strong and Fragile Glasses Potential Energy Landscape Visualising the Potential Energy Landscape Glassy Dynamics Coarse-graining the Landscape - Metabasins Cage-breaking Reversed and Productive Cagebreaks Calculating Diffusion Constants Cage-break Metabasins Random Walk Metabasins vs. Cagebreaks Glassy Dynamics in the Potential Energy Landscape p. 19/

24 Levels of Coarse-Graining 10ǫAA Negative correlation in Minima-to-Minima Transitions Negatively correlated Diffusive Processes Random Walk between Metabasins Glassy Dynamics in the Potential Energy Landscape p. 20/

25 Levels of Coarse-Graining 10ǫAA Negative correlation in Minima-to-Minima Transitions Correlated Random Walk of Cage-Breaking events Random Walk between Metabasins Glassy Dynamics in the Potential Energy Landscape p. 20/

26 Levels of Coarse-Graining 10ǫAA Negative correlation in Minima-to-Minima Transitions Correlated Random Walk of Cage-Breaking events Random Walk of Productive Cage-Breaking events Glassy Dynamics in the Potential Energy Landscape p. 20/

27 Metabasins vs. Cagebreaks Advantages of this method: How and Why. Transitions between metabasins follow a random walk Metabasins are well-characterised by an energy and waiting time Diffusion constants can be calculated de Souza, Rehwald and Heuer, in preparation Information about microscopic mechanisms, within metabasins and for transitions between metabasins. Method can be scaled for larger system sizes. (2013) Glassy Dynamics in the Potential Energy Landscape p. 21/

28 Conclusions The Potential Energy Landscape for glass-forming systems is extremely complex. The landscape can be coarse-grained into metabasins Important transitions such as cagebreaks can be identified We have reconciled the two approaches, providing a microscopic description for metabasins within the PEL in the form of productive cagebreaks. Microscopic mechanisms < > Macroscopic properties Glassy Dynamics in the Potential Energy Landscape p. 22/

29 The Loch Ness Monster Glassy Dynamics in the Potential Energy Landscape p. 23/

Correlation effects and super-arrhenius diffusion in binary Lennard-Jones mixtures

Correlation effects and super-arrhenius diffusion in binary Lennard-Jones mixtures Correlation effects and super-arrhenius diffusion in binary Lennard-Jones mixtures Vanessa K. de Souza and David J. Wales University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom

More information

Computer Simulation of Glasses: Jumps and Self-Organized Criticality

Computer Simulation of Glasses: Jumps and Self-Organized Criticality Computer Simulation of Glasses: Jumps and Self-Organized Criticality Katharina Vollmayr-Lee Bucknell University November 2, 2007 Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach V glass crystal

More information

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

arxiv:cond-mat/ v2 23 Sep 2002

arxiv:cond-mat/ v2 23 Sep 2002 The favoured cluster structures of model glass formers Jonathan P. K. Doye and David J. Wales University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom Fredrik H. M. Zetterling

More information

How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? 1

How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? 1 How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? Takayuki NARUMI and Michio TOKUYAMA Summary We investigate the dynamics of liquids and supercooled

More information

A Microscopically-Based, Global Landscape Perspective on Slow Dynamics in. Condensed-Matter

A Microscopically-Based, Global Landscape Perspective on Slow Dynamics in. Condensed-Matter Phys. Rev. Lett. (submitted) 2/7/07 A Microscopically-Based, Global Landscape Perspective on Slow Dynamics in Condensed-Matter Chengju Wang and Richard M. Stratt Department of Chemistry Brown University

More information

Frequency distribution of mechanically stable disk packings

Frequency distribution of mechanically stable disk packings Frequency distribution of mechanically stable disk packings Guo-Jie Gao, 1 Jerzy Bławzdziewicz, 1 and Corey S. O Hern 1,2 1 Department of Mechanical Engineering, Yale University, New Haven, Connecticut

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

Computer simulations of glasses: the potential energy landscape

Computer simulations of glasses: the potential energy landscape Computer simulations of glasses: the potential energy landscape Zamaan Raza, Björn Alling and Igor Abrikosov Linköping University Post Print N.B.: When citing this work, cite the original article. Original

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

Crystals of binary Lennard-Jones solids

Crystals of binary Lennard-Jones solids PHYSICAL REVIEW B, VOLUME 64, 184201 Crystals of binary Lennard-Jones solids Thomas F. Middleton, 1 Javier Hernández-Rojas, 2 Paul N. Mortenson, 1 and David J. Wales 1 1 University Chemical Laboratories,

More information

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures)

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures) Landscape Approach to Glass Transition and Relaxation Lecture # 4, April 1 (last of four lectures) Relaxation in the glassy state Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) Review

More information

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Supplementary Information for: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Tamoghna Das, a,b Saswati Ganguly, b Surajit Sengupta c and Madan Rao d a Collective Interactions

More information

Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid

Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid JOURNAL OF CHEMCAL PHYSCS VOLUME 112, NUMBER 22 8 JUNE 2000 Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid Thomas B. Schrøder Center for Theoretical and Computational

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev The yielding transition in periodically sheared binary glasses at finite temperature Nikolai V. Priezjev 5 March, 2018 Department of Mechanical and Materials Engineering Wright State University Movies,

More information

Single particle jumps in a binary Lennard-Jones system below the glass transition

Single particle jumps in a binary Lennard-Jones system below the glass transition JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 10 8 SEPTEMBER 2004 Single particle jumps in a binary Lennard-Jones system below the glass transition K. Vollmayr-Lee a) Department of Physics, Bucknell University,

More information

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses Eloi Pineda Dept. de Física i Enginyeria Nuclear, ESAB, Universitat Politècnica de Catalunya, Campus

More information

Inhomogeneous elastic response of amorphous solids

Inhomogeneous elastic response of amorphous solids Inhomogeneous elastic response of amorphous solids Jean-Louis Barrat Université de Lyon Institut Universitaire de France Acknowledgements: Anne Tanguy, Fabien Chay Goldenberg, Léonforte, Michel Tsamados

More information

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses A normal liquid will crystallize at a melting temperature T m as it is cooled via a first-order phase transition (see figure above).

More information

Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape

Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape PHYSICAL REVIEW B, VOLUME 63, 214204 Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape David J. Wales and Jonathan P. K. Doye University Chemical Laboratories,

More information

Liquid to Glass Transition

Liquid to Glass Transition Landscape Approach to Glass Transition and Relaxation (Lecture # 3, March 30) Liquid to Glass Transition Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) PKGupta(OSU) Landscape #3

More information

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Dmitry Matyushov Arizona State University Glass and Entropy II, Aberystwyth, 22 24 April, 2009 activated

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 May 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 May 2000 arxiv:cond-mat/0005127v1 [cond-mat.dis-nn] 8 May 2000 Hopping in Disordered Media: A Model Glass Former and A Hopping Model Thomas B. Schrøder (tbs@mmf.ruc.dk) Department of Mathematics and Physics, Roskilde

More information

Microscopic Picture of Aging in SiO 2 : A Computer Simulation

Microscopic Picture of Aging in SiO 2 : A Computer Simulation Microscopic Picture of Aging in SiO 2 : A Computer Simulation Katharina Vollmayr-Lee, Robin Bjorkquist, Landon M. Chambers Bucknell University & Göttingen 7 td tb r n (t) 6 R 5 4 3 2 ti t [ns] waiting

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Energy landscapes of model glasses. II. Results for constant pressure

Energy landscapes of model glasses. II. Results for constant pressure JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 10 8 MARCH 2003 Energy landscapes of model glasses. II. Results for constant pressure Thomas F. Middleton and David J. Wales a) University Chemical Laboratories,

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

arxiv: v1 [cond-mat.stat-mech] 23 Jan 2019

arxiv: v1 [cond-mat.stat-mech] 23 Jan 2019 arxiv:1901.07797v1 [cond-mat.stat-mech] 23 Jan 2019 Accelerated relaxation and suppressed dynamic heterogeneity in a kinetically constrained (East) model with swaps 1. Introduction Ricardo Gutiérrez Complex

More information

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Atsushi Ikeda Fukui Institute for Fundamental Chemistry, Kyoto University Atsushi Ikeda & Ludovic Berthier Phys. Rev. E 92,

More information

Direct observation of dynamical heterogeneities near the attraction driven glass

Direct observation of dynamical heterogeneities near the attraction driven glass Direct observation of dynamical heterogeneities near the attraction driven glass Maria Kilfoil McGill University Co-worker: Yongxiang Gao, PhD student http://www.physics.mcgill.ca/~kilfoil Dynamical heterogeneity

More information

Clusters of mobile molecules in supercooled water

Clusters of mobile molecules in supercooled water Clusters of mobile molecules in supercooled water Nicolas Giovambattista, 1, * Sergey V. Buldyrev, 1,2 H. Eugene Stanley, 1 and Francis W. Starr 3 1 Center for Polymer Studies and Department of Physics,

More information

Relationship between the Potential Energy Landscape and the Dynamic Crossover in a Water-Like Monatomic Liquid with a Liquid-Liquid Phase Transition

Relationship between the Potential Energy Landscape and the Dynamic Crossover in a Water-Like Monatomic Liquid with a Liquid-Liquid Phase Transition Relationship between the Potential Energy Landscape and the Dynamic Crossover in a Water-Like Monatomic Liquid with a Liquid-Liquid Phase Transition Gang Sun 1, Limei Xu 1,2,, Nicolas Giovambattista 3,4,

More information

Theoretical Approaches to the Glass Transition

Theoretical Approaches to the Glass Transition Theoretical Approaches to the Glass Transition Walter Kob Laboratoire des Colloïdes, Verres et Nanomatériaux Université Montpellier 2 http://www.lcvn.univ-montp2.fr/kob Kavli Institute for Theoretical

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Glass Formation and Thermodynamics of Supercooled Monatomic Liquids

Glass Formation and Thermodynamics of Supercooled Monatomic Liquids pubs.acs.org/jpcb Glass Formation and Thermodynamics of Supercooled Monatomic Liquids Vo Van Hoang* Department of Physics, Institute of Technology, National University of HochiMinh City, 268 Ly Thuong

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Chandan Dasgupta Centre for Condensed Matter Theory Department of Physics, Indian Institute of Science With Smarajit Karmakar

More information

Structural order in glassy water

Structural order in glassy water Structural order in glassy water Nicolas Giovambattista, 1 Pablo G. Debenedetti, 1 Francesco Sciortino, 2 and H. Eugene Stanley 3 1 Department of Chemical Engineering, Princeton University, Princeton,

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Comparison of the Supercooled Liquid. and the Kinetically Arrested Glass

Comparison of the Supercooled Liquid. and the Kinetically Arrested Glass 47 2. Chapter 2: The Glass Transition: Comparison of the Supercooled Liquid and the Kinetically Arrested Glass 2.1. Introduction Interest in valence-limited materials is growing, due to both their unique

More information

Lecture 3, Part 3: Computer simulation of glasses

Lecture 3, Part 3: Computer simulation of glasses Lehigh University Lehigh Preserve US-Japan Winter School Semester Length Glass Courses and Glass Schools Winter 1-1-2008 Lecture 3, Part 3: Computer simulation of glasses Walter Kob Universite Montpellier

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

Finite temperature analysis of stochastic networks

Finite temperature analysis of stochastic networks Finite temperature analysis of stochastic networks Maria Cameron University of Maryland USA Stochastic networks with detailed balance * The generator matrix L = ( L ij ), i, j S L ij 0, i, j S, i j j S

More information

Xiaoming Mao Physics, University of Michigan, Ann Arbor. IGERT Summer Institute 2017 Brandeis

Xiaoming Mao Physics, University of Michigan, Ann Arbor. IGERT Summer Institute 2017 Brandeis Xiaoming Mao Physics, University of Michigan, Ann Arbor IGERT Summer Institute 2017 Brandeis Elastic Networks A family of discrete model networks involving masses connected by springs 1 2 kk( ll)2 Disordered

More information

Heat Transport in Glass-Forming Liquids

Heat Transport in Glass-Forming Liquids Heat Transport in Glass-Forming Liquids by VINAY VAIBHAV The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. A thesis submitted in partial fulfillment of requirements for

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Structural Signatures of Mobility in Jammed and Glassy Systems

Structural Signatures of Mobility in Jammed and Glassy Systems Lisa Manning Sam Schoenholz Ekin Dogus Cubuk Brad Malone Tim Kaxiras Joerg Rottler Rob Riggleman Jennifer Rieser Doug Durian Daniel Sussman Carl Goodrich Sid Nagel Structural Signatures of Mobility in

More information

Inelastic X ray Scattering

Inelastic X ray Scattering Inelastic X ray Scattering with mev energy resolution Tullio Scopigno University of Rome La Sapienza INFM - Center for Complex Dynamics in Structured Systems Theoretical background: the scattering cross

More information

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Quantum (spin) glasses Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Giulio Biroli (Saclay) Daniel R. Grempel (Saclay) Gustavo Lozano (Buenos Aires) Homero Lozza (Buenos Aires) Constantino

More information

Mapping from a fragile glass-forming system to a simpler one near their glass transitions

Mapping from a fragile glass-forming system to a simpler one near their glass transitions Physica A 385 (7) 439 455 www.elsevier.com/locate/physa Mapping from a fragile glass-forming system to a simpler one near their glass transitions Michio Tokuyama a,, Takayuki Narumi b, Eri Kohira b a Institute

More information

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity 1 A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity Hiroshi Matsuoka a) Department of hysics, Illinois State University,

More information

Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function JOURAL OF CHEMICAL PHYSICS VOLUME 119, UMBER 14 8 OCTOBER 2003 Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. Lačević Department of Chemical

More information

Calorimetry. A calorimeter is a device in which this energy transfer takes place

Calorimetry. A calorimeter is a device in which this energy transfer takes place Calorimetry One technique for measuring specific heat involves heating a material, adding it to a sample of water, and recording the final temperature This technique is known as calorimetry A calorimeter

More information

Contents. Introduction.

Contents. Introduction. Introduction. Chapter 1 Crystallography and 1.1 Crystal Lattices 1 1.2 Lattices and Unit Cells 1 1.3 Miller Indices 4 1.4 Powder X-Ray Diffraction and Bragg's Law 5 1.5 Typical Powder XRD Setup 7 1.6 Indexing

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Spatially heterogeneous dynamics in supercooled organic liquids

Spatially heterogeneous dynamics in supercooled organic liquids Spatially heterogeneous dynamics in supercooled organic liquids Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu UW-Madison NSF Chemistry 1 Image from Weeks and Weitz,

More information

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride - 1 - PLMMP 2016, Kyiv Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride Jadran Vrabec Tatjana Janzen, Gabriela Guevara-Carrión,

More information

Papers Cited >1000X GOOGLE SCHOLAR

Papers Cited >1000X GOOGLE SCHOLAR Papers Cited >1000X GOOGLE SCHOLAR March 2019 Citations 60861 15529 h-index 111 57 i10-index 425 206 1. Title: Formation of glasses from liquids and biopolymers Source: Science, 1995 sciencemag.org Abstract

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Mar 2006

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Mar 2006 An energy landscape model for glass-forming liquids in three dimensions arxiv:cond-mat/v [cond-mat.soft] Mar Ulf R. Pedersen, Tina Hecksher, Jeppe C. Dyre, and Thomas B. Schrøder Department of Mathematics

More information

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at Chapter 7 What is steady state diffusion? Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at any point, x, and hence the concentration gradient at x, in the solid,

More information

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l SUPPLEMENTARY INFORMATION Bond-orientational order parameters. We use a particle-level bond-orientational order parameter defined as follows. where the coefficients W l l l l q lm1 q lm2 q lm3 (1) m 1,m

More information

A Review of Liquid-Glass Transitions

A Review of Liquid-Glass Transitions A Review of Liquid-Glass Transitions Anne C. Hanna December 14, 2006 Abstract Supercooling of almost any liquid can induce a transition to an amorphous solid phase. This does not appear to be a phase transition

More information

Journal. A Monte-Carlo Approach for Modeling Glass Transition. H. H. Ruan and L. C. Zhang

Journal. A Monte-Carlo Approach for Modeling Glass Transition. H. H. Ruan and L. C. Zhang Journal J. Am. Ceram. Soc., 94 [10] 3350 3358 (2011) DOI: 10.1111/.1551-2916.2011.04784.x 2011 The American Ceramic Society A Monte-Carlo Approach for Modeling Glass Transition H. H. Ruan and L. C. Zhang

More information

Glasses and Jamming: lessons from hard disks in a narrow channel

Glasses and Jamming: lessons from hard disks in a narrow channel Glasses and Jamming: lessons from hard disks in a narrow channel Mike Moore School of Physics and Astronomy, University of Manchester, UK June 2014 Co-Author: Mike Godfrey, University of Manchester Mike

More information

Modélisation des propriétés thermodynamiques par une approche topologique

Modélisation des propriétés thermodynamiques par une approche topologique Modélisation des propriétés thermodynamiques par une approche topologique Matthieu Micoulaut (UPMC) Rigidity transitions and compositional trends «Topological engineering» (Mauro-Gupta) MD based rigidity

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Mechanisms of Nonexponential Relaxation in Supercooled Glucose Solutions: the Role of Water Facilitation

Mechanisms of Nonexponential Relaxation in Supercooled Glucose Solutions: the Role of Water Facilitation J. Phys. Chem. A 2004, 108, 3699-3712 3699 ARTICLES Mechanisms of Nonexponential Relaxation in Supercooled Glucose Solutions: the Role of Water Facilitation Valeria Molinero, Tahir Çaǧın, and William A.

More information

Mal. Res. Soc. Symp. Proc. Vol Materials Research Society

Mal. Res. Soc. Symp. Proc. Vol Materials Research Society 91 MOLECULAR-DYNAMICS SIMULATION OF THIN-FILM GROWTH MATTHIAS SCHNEIDER,* IVAN K. SCHULLER,* AND A. RAHMAN Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 Supercomputer Institute,

More information

The Equilibrium State

The Equilibrium State Materials Science & Metallurgy Part III Course M16 Computation of Phase Diagrams (Revision) H. K. D. H. Bhadeshia The Equilibrium State Equilibrium is a state in which no further change is perceptible,

More information

VI. Porous Media. Lecture 34: Transport in Porous Media

VI. Porous Media. Lecture 34: Transport in Porous Media VI. Porous Media Lecture 34: Transport in Porous Media 4/29/20 (corrected 5/4/2 MZB) Notes by MIT Student. Conduction In the previous lecture, we considered conduction of electricity (or heat conduction

More information

Analysis of the simulation

Analysis of the simulation Analysis of the simulation Marcus Elstner and Tomáš Kubař January 7, 2014 Thermodynamic properties time averages of thermodynamic quantites correspond to ensemble averages (ergodic theorem) some quantities

More information

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different ( = ) -6.9-6.94 (a) N = 8 < y.2 (T = 1).4 (T = 1).6 (T = 1).7 (T = 1) ( = ) -6.94 (b).8 (T = 1).9 (T = 1).12 (T = 1).14 (T = 1).8 (T =.466).9 (T =.466).12 (T =.466).14 (T =.466) > y n * 12 8 (c) N = 8

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Ultrastable glasses from in silico vapour deposition Sadanand Singh, M. D. Ediger and Juan J. de Pablo. Nature Materials 12, (2013).

Ultrastable glasses from in silico vapour deposition Sadanand Singh, M. D. Ediger and Juan J. de Pablo. Nature Materials 12, (2013). Ultrastable glasses from in silico vapour deposition Sadanand Singh, M. D. Ediger and Juan J. de Pablo Nature Materials 12, 139 144 (2013). In the version of the Supplementary Information originally published,

More information

Topological defects in spherical crystals

Topological defects in spherical crystals Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: María del Carmen Miguel López Abstract: Spherical crystals present properties that are quite different

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Towards Elucidating the Role of the Probe in Single Molecule Experiments in Supercooled Liquids 1

Towards Elucidating the Role of the Probe in Single Molecule Experiments in Supercooled Liquids 1 Towards Elucidating the Role of the Probe in Single Molecule Experiments in Supercooled Liquids 1 Ronen ZANGI 2, Stephan A. MACKOWIAK 3, Tobias HERMAN 4, Krithika KAVANOOR 5 and Laura J. KAUFMAN 6 Summary

More information

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids F.Kremer Content 1. Reminder concerning Broadband Dielectric Spectroscopy (BDS).. What are Ionic Liquids (IL)?

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

Selected Features of Potential Energy Landscapes and Their Inherent Structures

Selected Features of Potential Energy Landscapes and Their Inherent Structures Slide 1 Selected Features of Potential Energy Landscapes and Their Inherent Structures Lecture delivered for ChE 536 Frank H Stillinger Department of Chemistry Princeton Univesity Slide Potential Energy/Enthalpy

More information

COMPUTER SIMULATIONS OF LIQUID SILICA: WATER-LIKE THERMODYNAMIC AND DYNAMIC ANOMALIES, AND THE EVIDENCE FOR POLYAMORPHISM

COMPUTER SIMULATIONS OF LIQUID SILICA: WATER-LIKE THERMODYNAMIC AND DYNAMIC ANOMALIES, AND THE EVIDENCE FOR POLYAMORPHISM COMPUTER SIMULATIONS OF LIQUID SILICA: WATER-LIKE THERMODYNAMIC AND DYNAMIC ANOMALIES, AND THE EVIDENCE FOR POLYAMORPHISM IVAN SAIKA-VOIVOD 1 and PETER H. POOLE 2 1 Department of Physics and Physical Oceanography,

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

Experimental Colloids I (and I)

Experimental Colloids I (and I) Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab Boulder Summer School 7/24/17 Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab

More information

Temperature-Dependent Defect Dynamics in SiO 2. Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen

Temperature-Dependent Defect Dynamics in SiO 2. Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen Temperature-Dependent Defect Dynamics in SiO 2 Katharina Vollmayr-Lee and Annette Zippelius Bucknell University & Göttingen x i, y i, z i, [Å] 2 8 6 4 2 8 6 4 2 =25 K 5 5 2 25 3 =325 K x i (t) y i (t)

More information

The glassy state is ubiquitous in nature and

The glassy state is ubiquitous in nature and Supercooled liquids and the glass transition insight review articles Pablo G. Debenedetti* & Frank H. Stillinger *Department of Chemical Engineering and Princeton Materials Institute, Princeton University,

More information

Study of Local Structure, Stress and Dynamics in Disordered Materials Using Ab-Initio and Molecular Dynamics Simulation

Study of Local Structure, Stress and Dynamics in Disordered Materials Using Ab-Initio and Molecular Dynamics Simulation University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Study of Local Structure, Stress and Dynamics in Disordered Materials Using

More information

Reversible crosslinking: a potent paradigm for designer materials

Reversible crosslinking: a potent paradigm for designer materials Reversible crosslinking: a potent paradigm for designer materials Nicholas B. Tito with Wouter Ellenbroek & Kees Storm Department of Applied Physics, TU/e September 29, 2016 1 M o t i va t i o n Soft materials

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Chapter 5 Methods for studying diffusion in Polymers:

Chapter 5 Methods for studying diffusion in Polymers: V -1 Chapter 5 Methods for studying diffusion in Polymers: Greenfield and Theodorou i give a review of the methods for prediction of the diffusivity of penetrants in various polymers. Another review is

More information

Probe particles alter dynamic heterogeneities in simple supercooled systems

Probe particles alter dynamic heterogeneities in simple supercooled systems THE JOURNAL OF CHEMICAL PHYSICS 126, 104501 2007 Probe particles alter dynamic heterogeneities in simple supercooled systems Ronen Zangi, Stephan A. Mackowiak, and Laura J. Kaufman a Department of Chemistry,

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES 3.091 Introduction to Solid State Chemistry Lecture Notes No. 6a BONDING AND SURFACES 1. INTRODUCTION Surfaces have increasing importance in technology today. Surfaces become more important as the size

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

Web Course Physical Properties of Glass. Range Behavior

Web Course Physical Properties of Glass. Range Behavior Web Course Physical Properties of Glass Glass Transformation- Range Behavior Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering Glass Transformation-1

More information