Experimental predictions for strongly correlating liquids

Size: px
Start display at page:

Download "Experimental predictions for strongly correlating liquids"

Transcription

1 Experimental predictions for strongly correlating liquids A new look at the Prigogine-Defay ratio, and how to estimate γ Ulf Rørbæk Pedersen Glass and Time - DNRF centre for viscous liquids dynamics, IMFUFA, Department of Science, Systems and Models, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark Collaborators: Nicholas Bailey, Nicoletta Gnan, Tina Hecksher, Bo Jakobsen, Thomas B. Schrøder and Jeppe C. Dyre urp@ruc.dk May 11, Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

2 Strong W-U correlations in the Lennard-Jones liquid The well-studied Lennard-Jones liquid: [ ( U pair (r) = 4ε σ ) 12 ( r σ ) ] 6 r E = K + U p = Nk B T + W Fluctuations of conf. parts: U(t) = U(t) U W (t) = W (t) W Constant and T simulations. [Pedersen et al. PRL 100:015701, 2008] W γ U at constant NT Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

3 Relating to experiments Strongly correlating liquids (SCL) have W γ U at constant NT : ar 3γ + br + c U pair LJ Two important numbers Degree of correlation: R W U NT ( W ) 2 NT ( U) 2 NT Apparent exponent (r 3γ ): γ ( W ) 2 NT ( U) 2 NT Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

4 Relating to experiments Strongly correlating liquids (SCL) have W γ U at constant NT : ar 3γ + br + c U pair LJ Two important numbers Degree of correlation: R W U NT ( W ) 2 NT ( U) 2 NT Apparent exponent (r 3γ ): γ ( W ) 2 NT ( U) 2 NT General problem Subtract off ideal gas -terms: W = p Nk B T and U = E K. NT -ensemble (where we understand SCL) vs. NpT -ensemble (experiments) Recall density scaling: F (ρ γ /T ). Lots of γ scale in literature. Here, independent way(s) of getting γ. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

5 k B T 2 c (ω) = ( E) 2 iω 0 E(0) E(t) e iωt dt c (ω) = ω C k B T 2 ω { E(0) E(t) } C ω {f (t)}: cosine transform Fluctuations on slow 1/ω timescale. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

6 k B T 2 c (ω) = ( E) 2 iω 0 E(0) E(t) e iωt dt c (ω) = ω C k B T 2 ω { E(0) E(t) } C ω {f (t)}: cosine transform Fluctuations on slow 1/ω timescale. K ω T (ω) = k B T C ω{ p(0) p(t) NT } β (ω) = ω C k B T 2 ω { E(0) p(t) NT } Kinetic terms average out: U W E p SCL: c (ω) K T (ω) β (ω) Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

7 k B T 2 c (ω) = ( E) 2 iω 0 E(0) E(t) e iωt dt c (ω) = ω C k B T 2 ω { E(0) E(t) } C ω {f (t)}: cosine transform Fluctuations on slow 1/ω timescale. K ω T (ω) = k B T C ω{ p(0) p(t) NT } β (ω) = ω C k B T 2 ω { E(0) p(t) NT } Kinetic terms average out: U W E p SCL: c (ω) K T (ω) β (ω) Dynamic Prigogine-Defay ratio Λ NT (ω) c (ω)k T (ω) 1, R Λ 1/2 T [β (ω)]2 T γ(ω) = K T (ω) Tc (ω), γ(ω) γ Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

8 A new look at the Prigogine-Defay ratio Old: Λ = 1 single parameter -liquids (and Λ > 1?). New: 1 ΛT R Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

9 A new look at the Prigogine-Defay ratio Old: Λ = 1 single parameter -liquids (and Λ > 1?). New: 1 ΛT R Independent of ensemble: 1 = Λ T = Λ pt = Λ S = Λ ps Λ pt (ω) c p (ω)κ T (ω) T [α p (ω)] 2 [Ellegaard et al., JCP 126, (2007)] :-( unfortunately experimental data is not available (yet) :-) another approach can be made [PRE 77, (2008)] Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

10 Pressure and energy fluctuations of viscous liquids. ( E) 2 iω k B T 2 c (ω) = 0 E(0) E(t) e iωt dt. Liquid, c liquid = c (ω 0): k B T 2 c liquid = ( E) 2 Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

11 Pressure and energy fluctuations of viscous liquids. ( E) 2 iω k B T 2 c (ω) = 0 E(0) E(t) e iωt dt. Liquid, c liquid = c (ω 0): k B T 2 c liquid = ( E) 2 Solid-like, c solid = c (ω ): k B T 2 c solid = ( E) 2 ( E) 2 slow Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

12 Pressure and energy fluctuations of viscous liquids. ( E) 2 iω k B T 2 c (ω) = 0 E(0) E(t) e iωt dt. Liquid, c liquid = c (ω 0): k B T 2 c liquid = ( E) 2 Solid-like, c solid = c (ω ): k B T 2 c solid = ( E) 2 ( E) 2 slow ( ) ( E) 2 slow = k B T 2 c liquid c solid ( ) ( U) 2 slow = k B T 2 c liquid c solid Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

13 Pressure and energy fluctuations of viscous liquids. ( E) 2 iω k B T 2 c (ω) = 0 E(0) E(t) e iωt dt. Liquid, c liquid = c (ω 0): k B T 2 c liquid = ( E) 2 Solid-like, c solid = c (ω ): k B T 2 c solid = ( E) 2 ( E) 2 slow ( ) ( E) 2 slow = k B T 2 c liquid c solid ( ) ( U) 2 slow = k B T 2 c liquid c solid ( W ) 2 slow = k B T (K liquid T W U slow = k B T 2 (β liquid K solid T ) β solid ) Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

14 R and γ from (static) response functions ( U) 2 slow = k B T 2 ( c liquid ( W ) 2 slow = k B T (K liquid T W U slow = k B T 2 (β liquid R R R γ W U ( W ) 2 ( U) 2 W U slow ( W ) 2 slow ( U) 2 slow q (K liquid T (β liquid β solid ) K solid )(c liquid T ( W ) 2 ( U) 2 Recent note: [arxiv: ] c solid )/T (K liquid T KT solid ) T (cv liquid cv solid ) ) c solid K solid T ) β solid ) Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

15 DC704 silicone oil (a SCL) K S (ω): [Tina Hecksher, unpub.] Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

16 DC704 silicone oil (a SCL) γ ( W ) 2 ( U) 2 = (K liquid T KT solid ) T (cv liquid cv solid ) K S (ω): [Tina Hecksher, unpub.] c L (ω): [Bo Jacobsen, unpub.] α liquid P αp solid ref = 214K. = K 1 = K 1 (guess) Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

17 K S (ω): [Tina Hecksher, unpub.] c L (ω): [Bo Jacobsen, unpub.] α liquid P αp solid ref = 214K. DC704 silicone oil (a SCL) = K 1 = K 1 (guess) γ ( W ) 2 ( U) 2 = c = c p T α 2 pk T c K T = K S cp ( c = c p 1 + T α2 pk S c p ( K T = K S 1 + T α2 p K S T (α liquid p ) 2 K liquid S T (α solid p c liquid p ) 2 KS solid c solid p γ = 6.6 c p = 0.13 = 0.01 (K liquid T KT solid ) T (cv liquid cv solid ) ) 1 ) 1 Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

18 A method of extrapolation [Takahara et al. (1999)] OTP-OPP mixture. R = q γ = (K liquid T K T = 1/κ T (β liquid β solid ) KT solid )(cv liquid cv solid (K liquid T KT solid ) T (cv liquid cv solid ) c = c p T α 2 pk T β = α p K T )/T Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

19 A method of extrapolation Note on arxiv [arxiv: ] [Takahara et al. (1999)] OTP-OPP mixture. R = q γ = (K liquid T K T = 1/κ T (β liquid β solid ) KT solid )(cv liquid cv solid (K liquid T KT solid ) T (cv liquid cv solid ) c = c p T α 2 pk T β = α p K T R = 0.79 γ = 6.0 Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14 )/T

20 Density scaling OTP-OPP τ = f (ρ γ /T ) From [Roland et al., Rep. Prog. Phys. 68, 1405 (2005)] Reanalyzing OTP-OPP glass transition data from [Takahara et al., 1999]: K T T c v = 6.0 γ scaling Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

21 The classical Prigogine-Defay ratio The method of extrapolation is similar to what is done when evaluating the classical Prigogine-Defay ratio: Π NpT c p κ T T g ( α p ) 2, where refers to the change at the glass transition temperature. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

22 The classical Prigogine-Defay ratio The method of extrapolation is similar to what is done when evaluating the classical Prigogine-Defay ratio: Π NpT c p κ T T g ( α p ) 2, where refers to the change at the glass transition temperature. Since Π NT c K T T g ( β ) 2 R 2 and that single parameter -ness is ensemble independent, R = 1 = Π NT = Π NpT, we expect strongly correlating liquids to have Π NpT close to unity. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

23 Literature values of the (NpT) Prigogine-Defay ratio Material Π NpT Π 1/2 NpT Pure SiO 2 glass Glycerol, C 3 H 5 (OH) GeO 2 6.9± ± Na 2 O10B 2 O 3 74SiO B 2 O Ca NO 3 0.6KNO Glucose, OC 6 H 7 (OH) Se ZrTiCuNiBe Na 2 O74SiO Polyvinylacetate 2.2(1.7) 0.67(0.77) n-propanol, C 3 H 7 OH Polyvinylchlorid, PC Polystyrene, PS 1.3± ±0.03 OTP(75%)-TPCM(25%) OTP(67%)-OPP(33%) 1.20± ±0.02 Polystyrene, PS Phenoxy Polycarbonate Polysulfone Polyarylate Polyisobutene Π NpT 1 for van der Waals bonded glass formers.... not liquids with directional bonds. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

24 Conclusions R γ W U ( W ) 2 ( U) 2 ( W ) 2 ( U) 2 (β liquid β solid ) q (K liquid T KT solid )(c liquid c solid )/T (K liquid T KT solid ) T (cv liquid cv solid ) New look at Prigogine-Defay ratio: Λ 1/2 T = R Π NpT cp κ T T g ( α p) 1 for SCL 2 Strongly correlating liquid (SCL) W γ U at constant NT R W U NT ( W ) 2 NT ( U) 2 NT γ W NT U NT = n/3. Ulf R. Pedersen (urp@ruc.dk) Glass and Time. Roskilde Uni. May 11, / 14

25 Thank you for your attention. Ulf R. Pedersen Glass and Time. Roskilde Uni. May 11, / 14

Experimental predictions for strongly correlating liquids

Experimental predictions for strongly correlating liquids Experimental predictions for strongly correlating liquids A new look at the Prigogine-Defay ratio Ulf Rørbæk Pedersen Glass and Time - DNRF centre for viscous liquids dynamics, IMFUFA, Department of Science,

More information

Feasibility of a single-parameter description of equilibrium viscous liquid dynamics

Feasibility of a single-parameter description of equilibrium viscous liquid dynamics PHYSICAL REVIEW E 77, 2 28 Feasibility of a single-parameter description of equilibrium viscous liquid dynamics Ulf R. Pedersen, Tage Christensen, Thomas B. Schrøder, and Jeppe C. Dyre DNRF centre Glass

More information

arxiv: v1 [cond-mat.soft] 7 Apr 2010

arxiv: v1 [cond-mat.soft] 7 Apr 2010 Strongly correlating liquids and their isomorphs Ulf R. Pedersen Department of Chemistry, University of California, Berkeley, California 94720, USA arxiv:1004.1182v1 [cond-mat.soft] 7 Apr 2010 Nicoletta

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

Intermolecular distance and density scaling of dynamics in molecular liquids

Intermolecular distance and density scaling of dynamics in molecular liquids Intermolecular distance and density scaling of dynamics in molecular liquids D. Fragiadakis and C. M. Roland Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA (April 2, 2019)

More information

Linear-response theory and the fluctuation-dissipation theorem: An executive summary

Linear-response theory and the fluctuation-dissipation theorem: An executive summary Notes prepared for the 27 Summer School at Søminestationen, Holbæk, July 1-8 Linear-response theory and the fluctuation-dissipation theorem: An executive summary Jeppe C. Dyre DNRF centre Glass and Time,

More information

arxiv: v1 [physics.chem-ph] 4 Feb 2014

arxiv: v1 [physics.chem-ph] 4 Feb 2014 Discrete dynamics versus analytic dynamics Søren Toxvaerd DNRF centre Glass and Time, IMFUFA, Department of Sciences, Roskilde University, arxiv:1402.0679v1 [physics.chem-ph] 4 Feb 2014 Postbox 260, DK-4000

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Mar 2006

arxiv:cond-mat/ v2 [cond-mat.soft] 10 Mar 2006 An energy landscape model for glass-forming liquids in three dimensions arxiv:cond-mat/v [cond-mat.soft] Mar Ulf R. Pedersen, Tina Hecksher, Jeppe C. Dyre, and Thomas B. Schrøder Department of Mathematics

More information

Microscopic Picture of Aging in SiO 2 : A Computer Simulation

Microscopic Picture of Aging in SiO 2 : A Computer Simulation Microscopic Picture of Aging in SiO 2 : A Computer Simulation Katharina Vollmayr-Lee, Robin Bjorkquist, Landon M. Chambers Bucknell University & Göttingen 7 td tb r n (t) 6 R 5 4 3 2 ti t [ns] waiting

More information

arxiv: v1 [cond-mat.stat-mech] 26 Sep 2013

arxiv: v1 [cond-mat.stat-mech] 26 Sep 2013 EPJ manuscript No. (will be inserted by the editor) Density-temperature scaling of the fragility in a model glass-former arxiv:1309.6891v1 [cond-mat.stat-mech] 26 Sep 2013 Shiladitya Sengupta 1,a homas

More information

Density-temperature scaling of the fragility in a model glass-former

Density-temperature scaling of the fragility in a model glass-former Eur. Phys. J. E (2013) 36: 141 DOI 10.1140/epje/i20133141-9 Regular Article HE EUROPEAN PHYSICAL JOURNAL E Density-temperature scaling of the fragility in a model glass-former Shiladitya Sengupta 1,a,

More information

arxiv: v4 [cond-mat.soft] 18 Jan 2012

arxiv: v4 [cond-mat.soft] 18 Jan 2012 The dynamic thermal expansivity of liquids near the glass transition. Kristine Niss, Ditte Gundermann, Tage Christensen, and Jeppe C. Dyre DNRF Centre Glass and Time, IMFUFA, Department of Sciences, Roskilde

More information

Effect of density on the physical aging of pressure-densified polymethylmethacrylate

Effect of density on the physical aging of pressure-densified polymethylmethacrylate ABSTRACT Effect of density on the physical aging of pressure-densified polymethylmethacrylate R. Casalini and C.M. Roland Naval Research Laboratory, Chemistry Division, Washington DC 20375-5342 (July 6,

More information

arxiv: v1 [physics.chem-ph] 9 Jul 2013

arxiv: v1 [physics.chem-ph] 9 Jul 2013 Four-component united-atom model of bitumen J. S. Hansen DNRF Centre Glass and Time, IMFUFA, Department of Science, Systems and Models, Roskilde University, Postbox 26, DK-4 Roskilde, Denmark Claire A.

More information

arxiv: v2 [cond-mat.soft] 6 Jun 2016

arxiv: v2 [cond-mat.soft] 6 Jun 2016 Studies of the Lennard-Jones fluid in 2, 3, and 4 dimensions highlight the need for a liquid-state 1/d expansion arxiv:1605.06007v2 [cond-mat.soft] 6 Jun 2016 Lorenzo Costigliola, Thomas B. Schrøder, and

More information

arxiv: v2 [physics.chem-ph] 4 Sep 2014

arxiv: v2 [physics.chem-ph] 4 Sep 2014 Cooee bitumen II: Stability of linear asphaltene nanoaggregates arxiv:1406.7592v2 [physics.chem-ph] 4 Sep 2014 Claire A. Lemarchand DNRF Centre Glass and Time, IMFUFA, Department of Sciences, Roskilde

More information

arxiv: v2 [physics.chem-ph] 3 Sep 2013

arxiv: v2 [physics.chem-ph] 3 Sep 2013 Cooee bitumen. Chemical aging arxiv:1307.2460v2 [physics.chem-ph] 3 Sep 2013 Claire A. Lemarchand DNRF Centre Glass and Time, IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde,

More information

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study Thermodynamic behaviour of mixtures containing. A molecular simulation study V. Lachet, C. Nieto-Draghi, B. Creton (IFPEN) Å. Ervik, G. Skaugen, Ø. Wilhelmsen, M. Hammer (SINTEF) Introduction quality issues

More information

Damped harmonic motion

Damped harmonic motion Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Density scaling of the diffusion coefficient at various pressures in viscous liquids [accepted for publication in Phys. Rev.

Density scaling of the diffusion coefficient at various pressures in viscous liquids [accepted for publication in Phys. Rev. Density scaling of the diffusion coefficient at various pressures in viscous liquids [accepted for publication in Phys. Rev. E (2009)] Anthony N. Papathanassiou University of Athens, Physics Department,

More information

Important practical questions:

Important practical questions: Colloidal stability Important practical questions: - Does dispersion change when T, P or... is changed? - If T, P or... is changed and the dispersion phase separates, what are then the final products?

More information

arxiv: v1 [cond-mat.other] 5 Oct 2015

arxiv: v1 [cond-mat.other] 5 Oct 2015 a) st@ruc.dk Dynamics of homogeneous nucleation Søren Toxvaerd a) arxiv:1510.01065v1 [cond-mat.other] 5 Oct 2015 DNRF centre Glass and Time, IMFUFA, Department of Sciences, Roskilde University, Postbox

More information

arxiv: v1 [cond-mat.soft] 28 Jul 2018

arxiv: v1 [cond-mat.soft] 28 Jul 2018 The pair-potential system. I. Fluid phase isotherms, isochores, and quasiuniversality Andreas Kvist Bacher, Thomas B. Schrøder, and Jeppe C. Dyre Glass and Time, IMFUFA, Department of Science and Environment,

More information

Speeding up path integral simulations

Speeding up path integral simulations Speeding up path integral simulations Thomas Markland and David Manolopoulos Department of Chemistry University of Oxford Funded by the US Office of Naval Research and the UK EPSRC Outline 1. Ring polymer

More information

The Temperature Dependence of the Relaxation Time in ultraviscous liquids

The Temperature Dependence of the Relaxation Time in ultraviscous liquids The Temperature Dependence of the Relaxation Time in ultraviscous liquids Is there evidence for a dynamic divergence in data? Tina Hecksher, Albena I. Nielsen, Niels B. Olsen, and Jeppe C. Dyre DNRF Centre

More information

Computing phase diagrams of model liquids & self-assembly of (bio)membranes

Computing phase diagrams of model liquids & self-assembly of (bio)membranes Computing phase diagrams of model liquids & self-assembly of (bio)membranes Ulf Rørbæk Pedersen (ulf@urp.dk) Crystal structure of a simplistic model of a molecule. What is the melting temperature? A typical

More information

Pressure densification of a simple liquid

Pressure densification of a simple liquid 1 Pressure densification of a simple liquid R. Casalini and C.M. Roland Naval Research Laboratory, Chemistry Division, Washington, DC 20375-53342 (Aug 9, 2017) ABSTRACT The magnitude of the high frequency,

More information

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses A normal liquid will crystallize at a melting temperature T m as it is cooled via a first-order phase transition (see figure above).

More information

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Supplementary Information for: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Tamoghna Das, a,b Saswati Ganguly, b Surajit Sengupta c and Madan Rao d a Collective Interactions

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Lecture #20: Virial

More information

Spatially heterogeneous dynamics in supercooled organic liquids

Spatially heterogeneous dynamics in supercooled organic liquids Spatially heterogeneous dynamics in supercooled organic liquids Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu UW-Madison NSF Chemistry 1 Image from Weeks and Weitz,

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Gases and the Virial Expansion

Gases and the Virial Expansion Gases and the irial Expansion February 7, 3 First task is to examine what ensemble theory tells us about simple systems via the thermodynamic connection Calculate thermodynamic quantities: average energy,

More information

Thermodynamic consequences of the. kinetic nature of the glass transition.

Thermodynamic consequences of the. kinetic nature of the glass transition. Thermodynamic consequences of the kinetic nature of the glass transition. Kajetan Koperwas 1,2, *, Andrzej Grzybowski 1,2, atya N. Tripathy 1,2, Elzbieta Masiewicz 1,2 & Marian Paluch 1,2 1 Institute of

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Modeling So+ Ma-er: Linking Mul3ple Length and Time Scales KITP Conference, Santa Barbara, June 4-8, 2012 Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Bingbing Hong Alexandros Chremos

More information

Fast and slow dynamics of hydrogen bonds in liquid water. Abstract

Fast and slow dynamics of hydrogen bonds in liquid water. Abstract Fast and slow dynamics of hydrogen bonds in liquid water Francis W. Starr 1, Johannes K. Nielsen 1,2 & H. Eugene Stanley 1 1 Center for Polymer Studies, Center for Computational Science, and Department

More information

arxiv: v1 [cond-mat.soft] 8 May 2013

arxiv: v1 [cond-mat.soft] 8 May 2013 The Rosenfeld-Tarazona expression for liquids specific heat: A numerical investigation of eighteen systems arxiv:1305.1776v1 [cond-mat.soft] 8 May 2013 Trond S. Ingebrigtsen, 1, Arno A. eldhorst, 1 Thomas

More information

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows II Peter Schall University of Amsterdam Flow of glasses 1st Lecture Glass Phenomenology Basic concepts: Free volume, Dynamic correlations Apply Shear Glass? Soft

More information

1. A Covalent bonding B Polar covalent bonding C Metallic bonding D Hydrogen bonding E Ionic bonding F London dispersion forces

1. A Covalent bonding B Polar covalent bonding C Metallic bonding D Hydrogen bonding E Ionic bonding F London dispersion forces Higher (National 6) Unit 1: Chemical changes and structure 1c Bonding and structure Problem sheets 1. A Covalent bonding B Polar covalent bonding C Metallic bonding D Hydrogen bonding E Ionic bonding F

More information

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter Volodymyr Vovchenko In collaboration with Dmitry Anchishkin, Mark Gorenstein, and Roman Poberezhnyuk based on:

More information

Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid

Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid JOURNAL OF CHEMCAL PHYSCS VOLUME 112, NUMBER 22 8 JUNE 2000 Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid Thomas B. Schrøder Center for Theoretical and Computational

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Long-time simulations of viscous liquids from strong correlations to crystallization

Long-time simulations of viscous liquids from strong correlations to crystallization phd thesis Long-time simulations of viscous liquids from strong correlations to crystallization Ulf Rørbæk Pedersen Supervisor: Thomas B. Schrøder Danish National Research Foundation Centre Glass and Time,

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases MD Simulation of Diatomic Gases Bull. Korean Chem. Soc. 14, Vol. 35, No. 1 357 http://dx.doi.org/1.51/bkcs.14.35.1.357 Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases Song

More information

Nanotube AFM Probe Resolution

Nanotube AFM Probe Resolution Influence of Elastic Deformation on Single-Wall Carbon Nanotube AFM Probe Resolution Ian R. Shapiro, Santiago D. Solares, Maria J. Esplandiu, Lawrence A. Wade, William A. Goddard,* and C. Patrick Collier*

More information

Are polar liquids less simple?

Are polar liquids less simple? Are polar liquids less simple? D. Fragiadakis and C.M. Roland Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375 5342 Aug 28, 2012 ABSTRACT Strong correlation between equilibrium

More information

Eli Barkai. Wrocklaw (2015)

Eli Barkai. Wrocklaw (2015) 1/f Noise and the Low-Frequency Cutoff Paradox Eli Barkai Bar-Ilan University Niemann, Kantz, EB PRL (213) Theory Sadegh, EB, Krapf NJP (214) Experiment Stefani, Hoogenboom, EB Physics Today (29) Wrocklaw

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio Non equilibrium thermodynamic transformations Giovanni Jona-Lasinio Kyoto, July 29, 2013 1. PRELIMINARIES 2. RARE FLUCTUATIONS 3. THERMODYNAMIC TRANSFORMATIONS 1. PRELIMINARIES Over the last ten years,

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

G : Statistical Mechanics

G : Statistical Mechanics G5.651: Statistical Mechanics Notes for Lecture 8 I. DISTRIBUTION FUNCTIONS AND PERTURBATION THEORY A. General formulation Recall the expression for the configurational partition function: Z N = dr 1 dr

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

arxiv: v1 [cond-mat.soft] 17 Dec 2007

arxiv: v1 [cond-mat.soft] 17 Dec 2007 Approximate t relaxation in glass-forming liquids Albena I. Nielsen, Tage Christensen, Bo Jakobsen, Kristine Niss, Niels Boye Olsen, Ranko Richert, and Jeppe C. Dyre DNRF Centre Glass and Time, IMFUFA,

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Inelastic X ray Scattering

Inelastic X ray Scattering Inelastic X ray Scattering with mev energy resolution Tullio Scopigno University of Rome La Sapienza INFM - Center for Complex Dynamics in Structured Systems Theoretical background: the scattering cross

More information

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function?!?! Thermodynamic limit 4211 Statistical Mechanics 1 Week 4 4.1.2 Phase diagrams p S S+L S+G L S+G L+G G G T p solid triple

More information

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014 Ab initio molecular dynamics Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy Bangalore, 04 September 2014 What is MD? 1) Liquid 4) Dye/TiO2/electrolyte 2) Liquids 3) Solvated protein 5) Solid to liquid

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

Metropolis, 2D Ising model

Metropolis, 2D Ising model Metropolis, 2D Ising model You can get visual understanding from the java applets available, like: http://physics.ucsc.edu/~peter/ising/ising.html Average value of spin is magnetization. Abs of this as

More information

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l SUPPLEMENTARY INFORMATION Bond-orientational order parameters. We use a particle-level bond-orientational order parameter defined as follows. where the coefficients W l l l l q lm1 q lm2 q lm3 (1) m 1,m

More information

Theory of Disordered Condensed-Matter Systems

Theory of Disordered Condensed-Matter Systems Electronic hopping transport in disordered semiconductors Theory of Disordered Condensed-Matter Systems Walter Schirmacher University of Mainz, Germany Summer School on Soft Matters and Biophysics, SJTU

More information

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES V.V. Korenkov 1,3, a, E.G. Nikonov 1, b, M. Popovičová 2, с 1 Joint Institute for Nuclear

More information

How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? 1

How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? 1 How Different is the Dynamics of a Lennard-Jones Binary Fluid from One-Component Lennard-Jones Fluid? Takayuki NARUMI and Michio TOKUYAMA Summary We investigate the dynamics of liquids and supercooled

More information

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT Explorations in Phase-Space Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT in Phase-Space Outline Why phase-space DFT? Some motivating examples and

More information

Thermodynamics of histories: application to systems with glassy dynamics

Thermodynamics of histories: application to systems with glassy dynamics Thermodynamics of histories: application to systems with glassy dynamics Vivien Lecomte 1,2, Cécile Appert-Rolland 1, Estelle Pitard 3, Kristina van Duijvendijk 1,2, Frédéric van Wijland 1,2 Juan P. Garrahan

More information

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4 2. Which if the following is the correct order of boiling points for KNO 3, CH 3 OH, C 2 H 6, Ne? A) Ne < CH 3 OH < C 2 H 6 < KNO 3 B) KNO 3 < CH 3 OH < C 2 H 6 < Ne C) Ne < C 2 H 6 < KNO 3 < CH 3 OH D)

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer Liquid-Vapor Interface Sudheer Siddapuredddy sudheer@iitp.ac.in Department of Mechanical Engineering Indian Institution of Technology Patna Multiphase Flow and Heat Transfer

More information

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange A McDermott, Columbia University Winter School in Biomolecular NMR, Stowe VT January 20-23 2008 Effects on NMR Spectra: Local,

More information

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud Statistical physics Emmanuel Trizac LPTMS / University Paris-Sud Outline I Introduction to phase transitions and critical phenomena 1- The problems raised by phase transitions, from a statistical mechanics

More information

Effect of entropy on the dynamics of supercooled liquids: new results from high pressure data

Effect of entropy on the dynamics of supercooled liquids: new results from high pressure data Downloaded from http://polymerphysics.net Philosophical Magazine, Vol. 87, Nos. 3 5, 21 January 11 February 27, 459 467 Downloaded By: [Naval Research Laboratory] At: 21:43 26 March 27 Effect of entropy

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 4 I. THE ISOTHERMAL-ISOBARIC ENSEMBLE The isothermal-isobaric ensemble is the closest mimic to the conditions under which most experiments are

More information

Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer

Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 14 8 APRIL 1999 Molecular dynamics study of isobaric and isochoric glass transitions in a model amorphous polymer Liu Yang, a) David J. Srolovitz, and Albert

More information

The correlation between fragility, density and atomic interaction in glassforming

The correlation between fragility, density and atomic interaction in glassforming The correlation between fragility, density and atomic interaction in glassforming liquids Lijin Wang 1, Pengfei Guan 1*, and W. H. Wang 2 1 Beijing Computational Science Research Center, Beijing, 100193,

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Analysis of the simulation

Analysis of the simulation Analysis of the simulation Marcus Elstner and Tomáš Kubař January 7, 2014 Thermodynamic properties time averages of thermodynamic quantites correspond to ensemble averages (ergodic theorem) some quantities

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

LAMMPS Performance Benchmark on VSC-1 and VSC-2

LAMMPS Performance Benchmark on VSC-1 and VSC-2 LAMMPS Performance Benchmark on VSC-1 and VSC-2 Daniel Tunega and Roland Šolc Institute of Soil Research, University of Natural Resources and Life Sciences VSC meeting, Neusiedl am See, February 27-28,

More information

Section B: Electrical Engineering Answer ALL questions

Section B: Electrical Engineering Answer ALL questions Section B: Electrical Engineering Answer ALL questions EE8) (0 Marks) The transient current flowing in an RL electrical circuit is a solution of the first order differential equation: di R + i = 0. dt

More information

arxiv: v1 [cond-mat.stat-mech] 6 Jan 2014

arxiv: v1 [cond-mat.stat-mech] 6 Jan 2014 arxiv:1401.1181v1 [cond-mat.stat-mech] 6 Jan 2014 Determination of Forces from a Potential in Molecular Dynamics (note) Bernard Monasse Mines-ParisTech, Cemef bernard.monasse@mines-paristech.fr January

More information

CHEMICAL KINETICS Order and molecularity of reactions with examples, zero and first order reaction with examples

CHEMICAL KINETICS Order and molecularity of reactions with examples, zero and first order reaction with examples CHEMICAL KINETICS Topic-2 Order and molecularity of reactions with examples, zero and first der reaction with examples VERY SHORT ANSWER QUESTIONS 1. What is der of as reaction? Ans: The sum of the powers

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics SMR/1856-10 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Dielectric relaxation and ac universality in materials with disordered structure. J. Juul Rasmussen Risø National Laboratory

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information Formation of New Polymorphs and Control of

More information

Bifurcations and multistability in turbulence

Bifurcations and multistability in turbulence Bifurcations and multistability in turbulence VKS team A. Chiffaudel L. Marié F. Ravelet F.Daviaud CEA/Saclay, France O. Dauchot A. Prigent Conceptual Aspects of turbulence, Vienna, February 28 1 Bifurcations

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS Int. J. Chem. Sci.: 10(3), 01, 1419-147 ISSN 097-768X www.sadgurupublications.com AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS A. K. SINGH * and L. K. MISHRA a Department

More information

Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry

Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry Peter Mausbach Technical University of Cologne, 50678 Köln/Germany Andreas Köster and Jadran Vrabec

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI. INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY

CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI. INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY E-mail: pietroni@pd.infn.it The formation of topological defects in a second order

More information

Size Segregation in the Brazil Nut Effect

Size Segregation in the Brazil Nut Effect Size Segregation in the Brazil Nut Effect Aline C. Soterroni and Fernando M. Ramos Applied Computing Program, National Institute for Space Research, São José dos Campos, Brazil Laboratory of Computing

More information

Free Energy Simulation Methods

Free Energy Simulation Methods Free Energy Simulation Methods Free energy simulation methods Many methods have been developed to compute (relative) free energies on the basis of statistical mechanics Free energy perturbation Thermodynamic

More information