Important practical questions:

Size: px
Start display at page:

Download "Important practical questions:"

Transcription

1 Colloidal stability

2 Important practical questions: - Does dispersion change when T, P or... is changed? - If T, P or... is changed and the dispersion phase separates, what are then the final products? - How fast does the phase separation take place? Examples: - Food processing - Protein crystal growing - Rain makers - Cataract (grauer Star) - Synthesis of monodisperse colloidal particles - Percipitation of CaCO 3

3 Dutch example: Cheese Depletion of Wey proteins by Extracellular Poly-Saccharides ρ(wey proteins) low ρ(wey proteins) high

4 Phase separation: System with concentration ρ 0 decomposes in to a phase with a higher concentration ρ and a phase with a lower concentration ρ - Two types of phase separation, two types of kinetics : Liquid-solid or Gas-Solid Gas-liquid

5 Molecular systems hard to study: - Phase separation is too fast - Particles are too small to be observed with a microscope - No control on/knowledge of the interaction potential Use Colloids: - Mesoscopic Brownian particles dispersed in solvent instead of molecules dispersed in vacuum consider Π instead of P. Advantages: - Potential can be tuned by choice of particles and solvent - Dynamics is slow - Particles are detectable by microscopy and light scattering

6 Simple estimation of spinodal When B becomes sufficiently negative demixing takes place ( Π v / kt) c c φ = 1 ( B / v ) φ... Estimation spinodal: φ spinodal v = c B c HS B ( ϕ ) /B ϕ

7 Colloid Dispersion with mediated by depletion forces q=a FOS /R a FOS R

8 Second virial coefficient B can be computed from depletion potential: ( r) ω B = π r 1 d e kt r 0 for r < σ ω ( r) = Π V () r for σ < r < σ δ p overlap 0 for r > σ δ σ δ Π V () r p ov B = 4V π r 1 exp d r HS kt σ

9

10 Demixing concentrations estimated from B De Hek and Vrij, 1980: 1 wt% HS-like silica a=46 nm mixed with PS in CHX ( a ) ( b ) 4 c PS (%) log (M/g mol 1 )

11 Mao, Cates, Lekkerkerker JCP 97 Sphere Rod Mixtures R = 3 μm c TRIS = 1. mm κ -1 = 1.4 nm φ(h)/k B T ( h) Δφ Geff h φdepl = Bexp{ κh} kt kt kt B B B h / nm 41 fn B=1400 k B T κ -1 = 13. nm L=880 nm φ 3 depl N A h = π c RL 1 kt B 3 M fd L

12 Example: stearyl alcohol-coated silica in cyclohexane Tunable attraction, hard core repulsion R V T V r sphere r sphere r R V Potential of colloidal particles similar to non-ideal gas van der Waals-like behavior of osmotic pressure Π.

13 Unstable region Temperature quench Π Unstable region: < 0 Π ρ Π or > 0 v Π v Connection to free energy:π = A V N V/N = v = 1 ρ d ( A/ N) Unstable region: < 0 d v A/N v

14 Phase separation? Minimize Free Energy A/N A 0 A A - A/N A 0 A A - 1/c 1/ c0 1/c v 1/c 1/ c 1/c 0 v A 0 >A A - A 0 <A A - d ( A/ N) < d v Concave, : YES 0 Convex, d ( A/ N) d v > 0 : NO

15 Spinodal A/N Π Π V/N d ( A dv / N ) = 0 v

16 Meta-stable region A/N A A -- A 0 1 / c 1/ c0 1/c A A -- <A 0 Lower free energy for big fluctuations But small probability

17 Unstable: Spinodal decomposition Meta-stable: Nucleation and growth A/N A/N v - Small fluctuations grow - Instantaneous start of phase separation - Phase separation starts throughout the sample v - Only big fluctuations grow - Induction time before phase separation - Phase separation only local

18 Where does the phase separtion end up?

19 Concentrations of lowest energy: d ( A / N ) d ( A / N ) Π( c ) = ( ) dv end = Π c dend v C Equality of chemical potential end F / C end N = Π ρμ A/N A 0 A end A -end μ 1 / c end 1/ c 1/c 0 end The line of minimum energy We found the binodal points (which depend on T or )

20 Spinodal and Binodal A/N Critical point Π Π( c end ) = Π( c end ) Π V/N d ( A dv / N ) = 0 v

21 Small density fluctuation δρ Attractive potential between particles

22 gas-liquid Lennard-Jones interaction: f ( a ) polymer concentration inversed temperature! α β ϕ

23 Simulation of the spinodal decomposition followed by domain coarsening End states after demixing Cates and Wagner, Nov. 000

24 Attractive potential between particles Small density fluctuation δρ Hard sphere

25 Fluid-solid f ( b ) fluid-solid α β ϕ No attraction, so: 1) very simple phase diagram. ) use equation of state for fluid and FCC crystal

26 Nucleation and growth Colloidal hard spheres P. N. Pusey Glass (see Zorn) heterogeneous homogeneous

27 Shallow quench Small density fluctuation δρ N x N1 Big density fluctuation δρ nucleation

28 Very deep quench nucleation Δt

29 Nucleation and growth Concentrated hard spheres, initial stage: nuclei dissolve Gasser et al, Science 9, April 001

30 Nucleation and growth Full picture: Gasser et al, Science 9, April 001

31 Hard spheres freely overlapping spheres Depletion potential: W dep (r) = Π V overlap (r) larger chains longer range of W range. more chains depth, more attractive W depth at c=c*, a HS /a FOS =5/3, W min =.5 kt

32 f Phase behaviour from f gas-liquid ( a ) f ( b ) fluid-solid α β ϕ α β ϕ f close ( c ) to a triple point f Metastable ( d ) gas-liquid fluid-solid α βγ δ α β ϕ ϕ

33 Compare to atomic/molecular fluids with Lennard-Jones interaction: Lennard-Jones interaction: polymer concentration inversed temperature!

34 Compare to atomic/molecular fluids with Lennard-Jones interaction: Lennard-Jones fluid n=1: polymer mixture: colloid-

35 Is dv ρ 1 true? Π = ( V ct V red ) α( N / V )

Structure and phase behaviour of colloidal dispersions. Remco Tuinier

Structure and phase behaviour of colloidal dispersions. Remco Tuinier Structure and phase behaviour of colloidal dispersions Remco Tuinier Yesterday: Phase behaviour of fluids and colloidal dispersions Colloids are everywhere Hard sphere fluid at the base understanding fluids

More information

Critical Phenomena under Shear Flow

Critical Phenomena under Shear Flow Critical Phenomena under Shear Flow Pavlik Lettinga, Hao Wang, Jan K.G. Dhont Close to a gas-liquid critical point, effective interactions between particles become very long ranged, and the dynamics of

More information

Structure and phase behaviour of colloidal dispersions. Remco Tuinier

Structure and phase behaviour of colloidal dispersions. Remco Tuinier Structure and phase behaviour of colloidal dispersions Remco Tuinier Yesterday: Hard and adhesive colloidal dispersions Hard sphere dispersions can be described: Percus-Yevick closure relation semi-empirical

More information

Chapter 4 Polymer solutions

Chapter 4 Polymer solutions Chapter 4 Polymer solutions 4.1 Introduction Solution: any phase containing more than one component.(gas, liquid or solid) Polymer solution is important: Classical analyses of polymers are conducted on

More information

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials.

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials. The forces of nature: 1. Strong forces hold protons and neutrons together (exchange of mesons) 2. Weak interactions are involved in some kinds of radioactive decay (β-decay) 3. Coulombic or electrostatic

More information

Depletion forces induced by spherical depletion agents

Depletion forces induced by spherical depletion agents Depletion forces induced by spherical depletion agents Laurent Helden Jules Mikhael. Physikalisches Institut Universität Stuttgart Model system for hard core interactions accessible fortirm-measurements.

More information

Direct observation of dynamical heterogeneities near the attraction driven glass

Direct observation of dynamical heterogeneities near the attraction driven glass Direct observation of dynamical heterogeneities near the attraction driven glass Maria Kilfoil McGill University Co-worker: Yongxiang Gao, PhD student http://www.physics.mcgill.ca/~kilfoil Dynamical heterogeneity

More information

Liquid crystal phase transitions in dispersions of rod-like colloidal particles

Liquid crystal phase transitions in dispersions of rod-like colloidal particles J. Phys.: Condens. Matter 8 (1996) 9451 9456. Printed in the UK Liquid crystal phase transitions in dispersions of rod-like colloidal particles M P B van Bruggen, F M van der Kooij and HNWLekkerkerker

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Phase behaviour of very asymmetric binary mixtures

Phase behaviour of very asymmetric binary mixtures J. Phys.: Condens. Matter 12 (2000) A109 A114. Printed in the UK PII: S0953-8984(00)06914-9 Phase behaviour of very asymmetric binary mixtures José A Cuesta and Yuri Martínez-Ratón Grupo Interdisciplinar

More information

Network formation in viscoelastic phase separation

Network formation in viscoelastic phase separation INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) S387 S393 PII: S0953-8984(03)54761-0 Network formation in viscoelastic phase separation Hajime Tanaka,

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics and Chemistry, University of North Texas Denton, TX 76203, U. S. A. Phone: 940-565 -4583, FAX: 940-565-4824,

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997 Depletion forces between two spheres in a rod solution. K. Yaman, C. Jeppesen, C. M. Marques arxiv:cond-mat/9708069v1 [cond-mat.soft] 9 Aug 1997 Department of Physics, U.C.S.B., CA 93106 9530, U.S.A. Materials

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

File ISM02. Dynamics of Soft Matter

File ISM02. Dynamics of Soft Matter File ISM02 Dynamics of Soft Matter 1 Modes of dynamics Quantum Dynamics t: fs-ps, x: 0.1 nm (seldom of importance for soft matter) Molecular Dynamics t: ps µs, x: 1 10 nm Brownian Dynamics t: ns>ps, x:

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Generalized depletion potentials

Generalized depletion potentials INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 13 (2001) L777 L784 PII: S0953-8984(01)26979-3 LETTER TO THE EDITOR Generalized depletion potentials A A Louis

More information

This is the accepted manuscript made available via CHORUS. The article has been published as:

This is the accepted manuscript made available via CHORUS. The article has been published as: This is the accepted manuscript made available via CHORUS. The article has been published as: Similarity of the Signatures of the Initial Stages of Phase Separation in Metastable and Unstable Polymer Blends

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Pedro H. C. Camargo, Thenner S. Rodrigues, Anderson G. M. da Silva and Jiale Wang Abstract The controlled synthesis of metallic nanomaterials

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

Simple model of sickle hemogloblin

Simple model of sickle hemogloblin Simple model of sickle hemogloblin THE JOURNAL OF CHEMICAL PHYSICS 125, 024902 2006 Andrey Shiryayev, a Xiaofei Li, and J. D. Gunton b Department of Physics, Lehigh University, Bethlehem, Pennsylvania

More information

Local order in a supercooled colloidal fluid observed by confocal microscopy

Local order in a supercooled colloidal fluid observed by confocal microscopy INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (23) S375 S38 PII: S953-8984(3)55271-7 Local order in a supercooled colloidal fluid observed by confocal

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Scattering experiments

Scattering experiments Scattering experiments Menu 1. Basics: basics, contrast, q and q-range. Static scattering: Light, x-rays and neutrons 3. Dynamics: DLS 4. Key examples Polymers The Colloidal Domain The Magic Triangle Length-

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Solvent Wrapped Metastable Colloidal Crystals: Highly Mutable Colloidal Assemblies. Sensitive to Weak External Disturbance

Solvent Wrapped Metastable Colloidal Crystals: Highly Mutable Colloidal Assemblies. Sensitive to Weak External Disturbance Solvent Wrapped Metastable Colloidal Crystals: Highly Mutable Colloidal Assemblies Sensitive to Weak External Disturbance Dongpeng Yang 2, Siyun Ye 1 and Jianping Ge 1 * 1. Shanghai Key Laboratory of Green

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

A simple model for block-copolymer layer morphology formation

A simple model for block-copolymer layer morphology formation A simple model for block-copolymer layer morphology formation A. J. Wagner and A. Croll, Department of Physics, North Dakota State University, Fargo, ND 58102 Prato Workshop, February 12, 2016 A big thanks

More information

Fundamental Interactions: 6 Forces

Fundamental Interactions: 6 Forces Fundamental Interactions: 6 Forces In nuclear and high-energy physics 6 fundamental forces are recognized, which describe the structure of matter. - the strong interaction - the weak interaction act inside

More information

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014 Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 1, 014 What is role of (dis)order for mechanical behavior? Andrea J. Liu Carl Goodrich Justin

More information

Group of Complex Fluids Physics, Departamento de Física Aplicada, Universidad de Almería.

Group of Complex Fluids Physics, Departamento de Física Aplicada, Universidad de Almería. 1 GLASSES IN COLLOIDAL SYSTEMS. ATTRACTIVE INTERACTIONS AND GELATION. Antonio M. Puertas Group of Complex Fluids Physics, Departamento de Física Aplicada, Universidad de Almería. 04120 Almería, Andalucía,

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

Colloidal Fluids, Glasses, and Crystals

Colloidal Fluids, Glasses, and Crystals Colloidal Fluids, Glasses, and Crystals Pierre Wiltzius Beckman Institute for Advanced Science and Technology University of Illinois, Urbana-Champaign wiltzius@uiuc.edu Thermodynamics of Hard Spheres

More information

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION Dipl.-Ing. Johannes Lindner*, Dipl.-Ing. Katharina Menzel, Prof. Dr.-Ing. Hermann Nirschl Institute of Mechanical Process Engineering and Mechanics

More information

Section 1 What Is a Solution? Chapter 13. Mixtures

Section 1 What Is a Solution? Chapter 13. Mixtures Mixtures Mixtures can either be heterogeneous or homogeneous. The particles of a heterogeneous mixture are large enough to see under a microscope. In a homogeneous mixture, however, the particles are molecule-sized,

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Steric Repulsion by Adsorbed Polymer Layers

Steric Repulsion by Adsorbed Polymer Layers TOC only 1 Steric Repulsion by Adsorbed Polymer Layers Studied with Total Internal Interaction Microscopy Dzina Kleshchanok*, Peter R. Lang Forschungszentrum Jülich, Institut für Festkörperforschung, Weiche

More information

Trans-States-Repulsion Scenario of polymer crystallization

Trans-States-Repulsion Scenario of polymer crystallization Trans-States-Repulsion Scenario of polymer crystallization S. Stepanow University of Halle, Dept. Phys., D-06099 Halle, Germany 1. What is polymer crystallization? 1.1 Nucleation theories 2. The trans-states-repulsion

More information

Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan

Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan Thermodynamic of polymer blends Assoc.Prof.Dr. Jatyuphorn Wootthikanokkhan Division of Materials Technology, School of Energy, Environment and Materials, KMUTT, Thailand Classification of polymer blends

More information

Experimental Colloids I (and I)

Experimental Colloids I (and I) Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab Boulder Summer School 7/24/17 Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab

More information

MONODISPERSE COLLOIDAL SUSPENSIONS OF SILICA AND PMMA SPHERES AS MODEL ELECTRORHEOLOGICAL FLUIDS: A REAL-SPACE STUDY OF STRUCTURE FORMATION

MONODISPERSE COLLOIDAL SUSPENSIONS OF SILICA AND PMMA SPHERES AS MODEL ELECTRORHEOLOGICAL FLUIDS: A REAL-SPACE STUDY OF STRUCTURE FORMATION MONODISPERSE COLLOIDAL SUSPENSIONS OF SILICA AND PMMA SPHERES AS MODEL ELECTRORHEOLOGICAL FLUIDS: A REAL-SPACE STUDY OF STRUCTURE FORMATION ANAND YETHIRAJ AND ALFONS VAN BLAADEREN Soft Condensed Matter,

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, AU 5.0 Thermodynamics of Polymer Solutions In this section, we investigate the solubility of polymers in small molecule

More information

Attractions in StericaUy Stabilized Silica Dispersions. I. Theory of Phase Separation

Attractions in StericaUy Stabilized Silica Dispersions. I. Theory of Phase Separation Attractions in StericaUy Stabilized Silica Dispersions I. Theory of Phase Separation J. W. JANSEN, C. G. DE KRUIF, AND A. VRIJ Van't Hoff Laboratory for Physical and Colloid Chemistry, University of Utrecht,

More information

COMPLEX FLOW OF NANOCONFINED POLYMERS

COMPLEX FLOW OF NANOCONFINED POLYMERS COMPLEX FLOW OF NANOCONFINED POLYMERS Connie B. Roth, Chris A. Murray and John R. Dutcher Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1 OUTLINE instabilities in freely-standing

More information

Oscillantions in phase transitions

Oscillantions in phase transitions Oscillantions in phase transitions Clémence Devailly, Caroline Crauste, Artyom Petrosyan, Sergio Ciliberto Laboratoire de Physique Ecole Normale Supérieure de Lyon and CNRS 46, Allée d'italie, 69364 Lyon

More information

MOLECULAR INTERACTIONS NOTES

MOLECULAR INTERACTIONS NOTES - 1 - MOLECULAR INTERACTIONS NOTES Summary of Fundamental Molecular Interactions Q1Q Ion-Ion U ( r) = 4 r πεε o µ Q cosθ U ( r) = 4πεε o r µ 1µ U ( r) 3 r µ 1 µ U ( r) 6 r µ 1 α U ( r) 6 r Ion-Dipole Dipole-Dipole

More information

Fluid-solid transitions on walls in binary hard-sphere mixtures

Fluid-solid transitions on walls in binary hard-sphere mixtures EUROPHYSICS LETTERS 1 November 1997 Europhys. Lett., 40 (3), pp. 337-342 (1997) Fluid-solid transitions on walls in binary hard-sphere mixtures A. D. Dinsmore 1,P.B.Warren 2,W.C.K.Poon 3 and A. G. Yodh

More information

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE CAV2:sessionA.5 MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE Takashi Tokumasu, Kenjiro Kamijo, Mamoru Oike and Yoichiro Matsumoto 2 Tohoku University, Sendai, Miyagi, 98-8577, Japan 2 The University

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

Entropic wetting and the fluid fluid interface of a model colloid polymer mixture

Entropic wetting and the fluid fluid interface of a model colloid polymer mixture INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 4 (22) L L8 PII: S953-8984(2)28952-3 LETTER TO THE EDITOR Entropic wetting and the fluid fluid interface of

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

EXPERIMENTAL STUDIES OF TWO-STEP NUCLEATION DURING TWO- DIMENSIONAL CRYSTALLIZATION OF COLLOIDAL PARTICLES WITH SHORT- RANGE ATTRACTION

EXPERIMENTAL STUDIES OF TWO-STEP NUCLEATION DURING TWO- DIMENSIONAL CRYSTALLIZATION OF COLLOIDAL PARTICLES WITH SHORT- RANGE ATTRACTION Submitted to Advances in Chemical Physics, 2010. EXPERIMENTAL STUDIES OF TWO-STEP NUCLEATION DURING TWO- DIMENSIONAL CRYSTALLIZATION OF COLLOIDAL PARTICLES WITH SHORT- RANGE ATTRACTION John R. Savage,*

More information

Steric stabilization. Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans

Steric stabilization. Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans Steric stabilization Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting April 9 10, 2008 New Orleans Rates of flocculation Strength of interparticle forces The time for half

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

A dispersion (system) Colloidal solutions High molecular mass compounds

A dispersion (system) Colloidal solutions High molecular mass compounds A dispersion (system) Colloidal solutions High molecular mass compounds Outline Types of dispersions Characteristics of main types of dispersions Properties of colloidal solutions Structure of colloidal

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Formation of valine microcrystals through rapid antisolvent precipitation

Formation of valine microcrystals through rapid antisolvent precipitation Formation of valine microcrystals through rapid antisolvent precipitation Miroslav Variny a, Sandra Alvarez de Miguel b, Barry D. Moore c, Jan Sefcik b a Department of Chemical and Biochemical Engineering,

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Analysis of the simulation

Analysis of the simulation Analysis of the simulation Marcus Elstner and Tomáš Kubař January 7, 2014 Thermodynamic properties time averages of thermodynamic quantites correspond to ensemble averages (ergodic theorem) some quantities

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Rheology of Dispersions

Rheology of Dispersions Rheology of Dispersions Outline BASF AG Hard particles Interactions among colloidal particles Repulsive particles Particle size distribution Shear thickening Attractive particles Prof. Dr. N. Willenbacher

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /1.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /1. Russo, J., & Tanaka, H. (2016). Crystal nucleation as the ordering of multiple order parameters. Journal of Chemical Physics, 145(21), [211801]. DOI: 10.1063/1.4962166 Peer reviewed version Link to published

More information

COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN

COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN David Pine Department of Physics New York University 2012 Boulder Summer School 24 July 2012 Boulder, Colorado Outline of lectures on colloids Lecture 1:

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Lecture #20: Virial

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Jean-François Dufrêche

Jean-François Dufrêche Jean-François Dufrêche! Entropy and Temperature A fifth force in the nature? E TS Rudolf Clausius (Koszalin, 1822 - Bonn, 1888) Entropy = η τροπη = the transformation Thermodynamics In mechanics Equilibrium

More information

Material Properties & Characterization - Surfaces

Material Properties & Characterization - Surfaces 1) XPS Spectrum analysis: The figure below shows an XPS spectrum measured on the surface of a clean insoluble homo-polyether. Using the formulas and tables in this document, answer the following questions:

More information

Statistical Physics. Solutions Sheet 11.

Statistical Physics. Solutions Sheet 11. Statistical Physics. Solutions Sheet. Exercise. HS 0 Prof. Manfred Sigrist Condensation and crystallization in the lattice gas model. The lattice gas model is obtained by dividing the volume V into microscopic

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due:

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due: 3.012 PS 6 THERMODYANMICS SOLUTIONS 3.012 Issued: 11.28.05 Fall 2005 Due: THERMODYNAMICS 1. Building a binary phase diagram. Given below are data for a binary system of two materials A and B. The two components

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides Owen G Jones 1, Stephaandschin 1, Jozef Adamcik 1, Ludger Harnau 2, Sreenath Bolisetty 1, and Raffaele Mezzenga

More information

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud Statistical physics Emmanuel Trizac LPTMS / University Paris-Sud Outline I Introduction to phase transitions and critical phenomena 1- The problems raised by phase transitions, from a statistical mechanics

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Particle Theory. Matter is anything that has volume and mass.

Particle Theory. Matter is anything that has volume and mass. Material World Particle Theory Matter is anything that has volume and mass. The particle model is a scientific model based on the idea that matter is made up of small particles. Matter is also organized

More information

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10 MIXTURES AND DISSOLVING CE/Honors Chemistry Unit 10 TYPES OF MIXTURES Solution: homogeneous mixture of two or more substances in a single phase Two parts: solvent (greater amt) and solute Does not separate

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

Critical Depletion Force

Critical Depletion Force XCVI CONGRESSO NAZIONALE SOCIETA ITALIANA DI FISICA BOLOGNA 20-24 settembre 2010 Critical Depletion Force Stefano BUZZACCARO Prof. Roberto PIAZZA Politecnico di Milano Prof. Alberto PAROLA Jader COLOMBO

More information