CHAPTER 1 Introduction to Physics

Size: px
Start display at page:

Download "CHAPTER 1 Introduction to Physics"

Transcription

1 CHAPTER 1 Introduction to Physics Physics (from the Greek, φυσικός (phusikos), "natural", and φύσις (phusis), "nature") is the science of Nature in the broadest sense. Physicists study the behavior and properties of matter in a wide variety of contexts, ranging from the sub-nuclear particles from which all ordinary matter is made (particle physics) to the behavior of the material Universe as a whole (cosmology). Physics: the study of the fundamental laws of nature these laws can be expressed as mathematical equations much complexity can arise from relatively simple laws. Physics is often described as the study of matter and energy. It is concerned with how matter and energy relate to each other, and how they affect each other over time and through space. Physicists ask the fundamental questions how did the universe begin, what is it made, how does it change and what rules govern its behavior? Physicists may be divided into two categories: experimental physicists and theoretical physicists. Experimental physicists design and run careful investigations on a broad range of phenomena in nature, often under conditions which are atypical of our everyday lives. They may, for example, investigate what happens to the electrical properties of materials at temperatures very near absolute zero ( 460 degrees Fahrenheit) or measure the characteristics of energy emitted by very hot gases. Theoretical physicists propose and develop models and theories to explain mathematically the results of experimental observations. Experiment and theory therefore have a broad overlap. Accordingly, an experimental physicist remains keenly aware of the current theoretical work in his or her field, while the theoretical physicist must know the experimenter's results and the context in which the results need be interpreted. It is also useful to distinguish classical physics and modern physics. Classical physics has its origins approximately four hundred years ago in the studies of Galileo and Newton on mechanics, and similarly, in the work of Ampere, Faraday, Maxwell and Oersted one hundred fifty years ago in the fields of electricity and magnetism. This physics handles objects which are neither too large nor too small, which move at relatively slow speeds (at least compared to the speed of light: 186,000 miles per second!). The emergence of modern physics at the beginning of the twentieth century 1

2 was marked by three achievements. The first, in 1905, was Einstein's brilliant model of light as a stream of particles (photons). The second, which followed a few months later, was his revolutionary theory of relativity which described objects moving at speeds close to the speed of light. The third breakthrough came in 1910 with Rutherford's discovery of the nucleus of the atom. Rutherford's work was followed by Bohr's model of the atom, which in turn stimulated the work of de Broglie, Heisenberg, Schrödinger, Born, Pauli, Dirac and others on the quantum theory. The avalanche of exciting discoveries in modern physics continues today. Given these distinctions within the field of physics experimental and theoretical, classical and modern it is useful to further subdivide physics into various disciplines, including astrophysics, atomic and molecular physics, biophysics, solid state physics, optical and laser physics, fluid and plasma physics, nuclear physics, and particle physics. Physicists study the behavior and properties of matter in a wide variety of contexts, ranging from the sub-nuclear particles from which all ordinary matter is made (particle physics) to the behavior of the material Universe as a whole (cosmology). Physics: the study of the fundamental laws of nature these laws can be expressed as mathematical equations much complexity can arise from relatively simple laws. Physics and Its Relation to Other Fields Physics is needed in architecture and engineering, medicine, chemistry, sports, and other fields such as: physiology, zoology, life sciences Physics is the science of measurement Physics is used in any field where problem solving is needed. That could be in medicine, law, business, etc. You must first define the problem at hand by examining the information available, and then determine the steps that must be followed in order to solve it. Physics does just that! Physics is the number one recommended science by the UC system, private colleges/universities and the Cal State Universities. Accuracy vs. Precision The dictionary definitions of these two words do not clearly make the distinction as it is used in the science of measurement. Accurate means "capable of providing a correct reading or measurement." In physical science it means 'correct'. A measurement is accurate if it correctly reflects the size of the thing being measured. 2

3 Precise means "exact, as in performance, execution, or amount. In physical science it means "repeatable, reliable, getting the same measurement each time." We can never make a perfect measurement. The best we can do is to come as close as possible within the limitations of the measuring instruments. Let's use a model to demonstrate the difference. Suppose you are aiming at a target, trying to hit the bull's eye (the center of the target) with each of five darts. Here are some representative patterns of darts in the target. Neither Precise nor Accurate This is a random like pattern, neither precise nor accurate. The darts are not clustered together and are not near the bull's eye. Precise, Not Accurate This is a precise pattern, but not accurate. The darts are clustered together but did not hit the intended mark. 3

4 Accurate, Not Precise This is an accurate pattern, but not precise. The darts are not clustered, but their 'average' position is the center of the bull's eye. Precise and Accurate This pattern is both precise and accurate. The darts are tightly clustered and their average position is the center of the bull's eye. Quantifying the Uncertainty The number we write as the uncertainty tells the reader about the instrument used to make the measurement. (We assume that the instrument has been used correctly.) Consider the following examples. Example 1: Using a ruler 4

5 The length of the object being measured is obviously somewhere near 4.3cm (but it is certainly not exactly 4.4cm). The result could therefore be stated as 4.3cm ± half the smallest division on the ruler. In choosing an uncertainty equal to half the smallest division on the ruler, we are accepting a range of possible results equal to the size of the smallest division on the ruler. length = 4 3cm ± 0 1cm Example 2: Using a Stop-Watch In general, we state a result as reading ± the smallest division on the measuring instrument Consider using a stop-watch which measures to 1/100 of a second to find the time for a pendulum to oscillate once. Suppose that this time is about 1s. Then, the smallest division on the watch is only about 1% of the time being measured. We could write the result as T = 1s ± 0.01s which is equivalent to saying that the time T is between 0.99s and 1.01s. This sounds quite good until you remember that the reaction-time of the person using the watch might be about 0.15s. Now considering the measurement again, with a possible 0.15s at the starting and stopping time of the watch, we should now state the result as T = 1s ± ( )s In other words, T is between about 0.7s and 1.3s. Conclusions If we accept that an uncertainty (sometimes called an indeterminacy) of about 1% of the measurement being made is reasonable, then a) a ruler, marked in mm, is useful for making measurements of distances of about 10cm or greater. b) a manually operated stop-watch is useful for measuring times of about 30s or more (for precise measurements of shorter times, an electronically operated watch must be used). Percent Error Physics students often assume that each measurement that they make in the laboratory is true and accurate. Likewise, they often assume that the values that they derive through experimentation are very accurate. However, sources of error often prevent students from being as accurate as they would like. Percent error calculations are used to determine how close to the true values, or how accurate, their experimental values really are. The value that the student comes up with is usually called the observed value, or the experimental value. A value that can be found in reference tables is usually called the true value, or the accepted value. The percent error can be determined when the true value is compared to the observed value according to the equation below: (observed value - true value) Percent error = x 100 true value 5

6 Example. 3 A student measures the mass and volume of a piece of copper in the laboratory and uses his data to calculate the density o the metal. According to his results, the copper has a density of 8.37 g/cm 3. Curious about the accuracy of his results, the student consults a reference table and finds that the accepted value for the density of copper is 8.92 g/cm 3. What would be the student's percent error? Solution - Step 1. Determine which values are known. The students result, or the observed value = 8.37 g/cm 3. The accepted, or true value = 8.92 g/cm 3 Step 2. Substitute these values in the percent error calculation, as shown below: (observed value - true value) Percent error = x 100 true value 3 3 (8.37 g/cm g/cm ) Percent error = x 100 = -6.17% g/cm Note that the negative sign does not mean that the error was less than zero, which would be impossible. It shows that the student's calculated value was actually too low. The Atlantic/Pacific Rule for Determining Significant Figures The Atlantic-Pacific Rule states: If a decimal point is Present, ignore zeros on the Pacific (left) side. If the decimal point is Absent, ignore zeros on the Atlantic (right) side. Everything is significant Pacific Atlantic If a decimal point is present, count from this side starting with the first non-zero digit and keep counting until you run out of digits. Side Side If a decimal point is absent, count from this side starting with the first non-zero digit and keep counting until you run out of digits. This rule is simple to use and to remember and it lets you count significant digits without having the slightest idea what they are. 6

7 Examples using the Atlantic/Pacific Rule: Number Atlantic/Pacific Rule The decimal is Present: start on the Pacific side (left) and ignore the zeros. The first non-zero number is 2. Every number including zeros from that point on is significant. Therefore there are 4 sig figs The decimal point is Present: start on the Pacific side (left) and ignore the zeros. The first non-zero number is 4. Every number including zeros from that point on is significant. Therefore there are 4 sig figs The decimal point is Present: start on the Pacific side (left). There are starting zeros so all of the numbers are significant. There are 5 sig figs The decimal point is Absent: start on the Atlantic side (right) and ignore the zeros. The remaining numbers are significant. There are 3 sig figs. Scientific Notation Scientific notation is used to express very large or very small numbers. A number in scientific notation is written as the product of a number (integer or decimal) and a power of 10. The number has one digit to the left of the decimal point. That number must be 1 or greater but less than 10. The power of ten indicates how many places the decimal point was moved. For example the decimal number written in scientific notation would be 6.5x10-7 because the decimal point was moved 7 places to the right to form the number 6.5. The number written in scientific notation would be 2.9x10 8 because the decimal point was moved 8 places to the left. A decimal number smaller than 1 can be converted to scientific notation by decreasing the power of ten by one for each place the decimal point is moved to the right. Scientific notation numbers may be written in different forms. The number 6.5x10-7 could also be written as 6.5e-7, and the number 2.9x10 8 could also be written as 2.9e+8. The "Best-Fit" Line The "best-fit" line is the straight line which passes as near to as many of the points as possible. By drawing such a line, we are attempting to minimize the effects of random errors in the measurements. For example, if our points look like this 7

8 Notice that the best-fit line does not necessarily pass through any of the points plotted. Error Bars Instead of plotting points on a graph we sometimes plot lines representing the uncertainty in the measurements. These lines are called error bars and if we plot both vertical and horizontal bars we have what might be called "error rectangles", as shown below The best-fit line could be any line which passes through all of the rectangles. x was measured to ±0 5s y was measured to ±0 3m Measuring the Slope at a Point on a Curved Graph Usually we will plot results which we expect to give us a straight line. If we plot a graph which we expect to give us a smooth curve, we might want to find the slope of the curve at a given point; for example, the slope of a displacement against time graph tells us the (instantaneous) velocity of the object. To find the slope at a given point, draw a tangent to the curve at that point and then find the slope of the tangent in the usual way. This method is illustrated on the graph on the next page. A tangent to the curve has been drawn at x = 3s. The slope of the graph at this point is given by Dy/Dx = (approximately) 6ms-1. 8

9 Metric (SI) Prefixes Quantity Unit Abbreviation Prefix Abbreviation Value Length meter m tera T Time second s giga G 10 9 Mass kilogram kg mega M 10 6 Electric current ampere A kilo k 10 3 Temperature kelvin K hecto h 10 2 Volume cubic meter m 3 deka da 10 1 Area square meter m 2 deci d 10-1 Force newton N centi c 10-2 Energy/work joule J milli m 10-3 Power watt W micro 10-6 Pressure pascal Pa nano n 10-9 Frequency hertz Hz pico p Units, Standards, and the SI System We will be working in the SI system, where the basic units are kilograms, meters, and seconds. Other systems: cgs; units are grams, centimeters, and seconds. British engineering system has force instead of mass as one of its basic quantities, which are feet, pounds, and seconds. 9

10 Metric Conversions There are several methods available to convert from one metric unit to another. For example, converting from millimeters to hectometers. One such method is to use the following phrase: (K H Da m D C M) King Henry Died many Deaths Counting Money. K = kilo H = hector Da = deca m = many (liters, grams, meters) K H Da m D C M L g m 30 centimeters = hectometers Since centimeters is on the right and hectometers on the left we must move the decimal to the left. We move four steps (don t count the centi spot) 30.0 centimeters = hectometers 3 kilograms = milligrams Since kilograms is on the left and milligrams is on the right we must move the decimal to the right. We move five steps (don t count the kilo spot) 3.0 kilograms = milligrams Example. 4 How many significant figures are there in: (a) (b) 28 (c) 2.8 x 10-4 (d) 2.80 x 10-5 Solution: (a) 4 (b) 2 (c) 2 (d) 3 Example. 5 A storm drops 0.01 m of rain in California which covers about 70 square kilometers (10 8 m 2 ). Estimate the number of raindrops. Assume that the diameter of each raindrop is 4 mm. (r = 2mm) V Ad (10 m )(0.01 m) 10 m water (0.002 ) Vdrop r m m Vwater 10 m number of raindrops V 10 m drop 14 10

11 DEFINITION OF SIN, COS, AND TAN The sine, cosine, and tangent of an angle are numbers without units, because each is the ratio of the lengths of two sides of a right triangle. Example 6. On a sunny day, a tall tower casts a shadow that is 60.m m long. The angle between the sun s rays and the ground is 50.0 o. Determine the height of the tower. o 50.0 and h 60m h tan h o a o h h tan (60.0 m)(tan 50 ) o a (60.0 m)(1.19) 71.4m a END OF CHAPTER 1 11

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

In chemistry we use metric units (called SI units after the French term for Systeme internationale.

In chemistry we use metric units (called SI units after the French term for Systeme internationale. Metric system / SI units: In chemistry we use metric units (called SI units after the French term for Systeme internationale. SI units: The SI units we ll be primarily concerned with are shown here: Base

More information

Tools of Chemistry. Measurement Scientific Method Lab Safety & Apparatus

Tools of Chemistry. Measurement Scientific Method Lab Safety & Apparatus Tools of Chemistry Measurement Scientific Method Lab Safety & Apparatus Scientific Notation Scientific Notation a number described as a power of 10 (used for very large or small numbers) 1000 = 1 X 10

More information

These worksheets are representative of skills that students will need to be proficient in before

These worksheets are representative of skills that students will need to be proficient in before June 16, 2016 GSMST Physics & Engineering Summer Assignment Greetings! All students enrolled in GSMST s Physics & Engineering class (PhysEng) in the upcoming year are required to complete the following

More information

Measuring Time, Space, and Matter. Units of Measurement

Measuring Time, Space, and Matter. Units of Measurement Measuring Time, Space, and Matter Physics is an experimental science. To understand physics we must be able to connect our theoretical description of nature with our experimental observations of nature.

More information

Physics 11. Unit 1 Mathematical Toolkits

Physics 11. Unit 1 Mathematical Toolkits Physics 11 Unit 1 Mathematical Toolkits 1 1.1 Measurement and scientific notations Système International d Unités (SI Units) The base units for measurement of fundamental quantities. Other units can be

More information

Basic math skills you should already have

Basic math skills you should already have Basic math skills you should already have Physics 102 Goderya Why Measurements? A basic scientific activity Measure is to gain information. Measurements allow us to compare Example: A body temperature

More information

Notes: Measurement and Calculation

Notes: Measurement and Calculation Name Chemistry-PAP Per. I. The Basics of Measurement Notes: Measurement and Calculation A. Measurement Most provide quantitative information, but because they are obtained experimentally, they are inexact.

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Number vs. Quantity. Quantity - number + unit UNITS MATTER!! for a measurement to be useful, must include both a number and unit

Number vs. Quantity. Quantity - number + unit UNITS MATTER!! for a measurement to be useful, must include both a number and unit Measurement Data UNITS MATTER!! Number vs. Quantity Quantity - number + unit for a measurement to be useful, must include both a number and unit Measurements We make measurements every day: buying products,

More information

MEASUREMENTS. Significant Figures

MEASUREMENTS. Significant Figures SIGNIFICANT FIGURES MEASUREMENTS Significant Figures Every measured value, that you record on paper, reflects the precision of the measuring device used to obtain that value. Every calculated value that

More information

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers.

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers. Scientific Notation Notes Chapter 2: Measurements and Calculations It is used to easily and simply write very large numbers, and very small numbers. It begins with a number greater than zero & less than

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

The SI system and units of measurement

The SI system and units of measurement The SI system and units of measurement Scientists all over the world use a single measurement system called Le Systeme International d Units, Abbreviated SI. It was adopted in 1960. Advantages of the Metric

More information

Chapter 2: Measurements & Calculations

Chapter 2: Measurements & Calculations Chapter 2: Measurements & Calculations LA-PRIVATE:sg:sg.02_Measurements_and_Calculations.docx (9/1/14) Chemistry Measurements & Calculations p.1 TABLE OF CONTENTS I. SCIENTIFIC METHOD... 2 II. METRIC UNITS

More information

US Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures

US Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures Units & Significant Figures US Customary System (USC) What is the length of this line? Based on things that made sense to people Previously known as English (or British) 1 inch = 3 dry, round, barleycorns

More information

Using the Metric System

Using the Metric System C H E M I S TRY I METRIC REVIEW Using the Metric System On Sept., 1999, a $15 million Mars orbiter went missing. The loss occurred because the engineering team that designed part of the orbiter used Imperial

More information

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits Notes: Measurement and Math 1 Accuracy and Precision Precision depends on the precision of the measuring device o For example a device that can measure to the ten thousands place (1.6829 grams) is a more

More information

Welcome to the World of Chemistry. Mrs. Panzarella Rm. 351

Welcome to the World of Chemistry. Mrs. Panzarella Rm. 351 Welcome to the World of Chemistry c Mrs. Panzarella Rm. 351 The Central Science Astronomy Nuclear Chemistry Health and Medicine Biology Physics Geology Chemistry Biology Plant Sciences Biochemistry Environmental

More information

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry.

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Chemistry Name: Section ANALYZE DATA KEY Date: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Most, but not all,

More information

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 Chemistry - the study of matter, its behavior and interactions. matter - anything that takes up space and has mass mass - the substance which makes up the

More information

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Conversion factor Density Uncertainty Significant digits/figures Precision Accuracy Percent error September 2017 Page 1 of 32 Scientific

More information

US Customary System (USC)

US Customary System (USC) What is the length of this line? US Customary System (USC) Based on things that made sense to people Previously known as English (or British) inch = 3 dry, round, barleycorns end-to-end foot = length of

More information

see page 8 of these notes )

see page 8 of these notes ) UNIT 1 Note Packet INTRODUCTION TO CHEMISTRY Name: METRICS AND MEASUREMENT In the chemistry classroom and lab, the metric system of measurement is used, so it is important to know what you are measuring,

More information

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley

Chapter 1: The Science of Physics. Physics 1-2 Mr. Chumbley Chapter 1: The Science of Physics Physics 1-2 Mr. Chumbley The Topics of Physics The origin of the word physics comes from the ancient Greek word phusika meaning natural things The types of fields of

More information

precision accuracy both neither

precision accuracy both neither I. Measurement and Observation There are two basic types of data collected in the lab: Quantitative : numerical information (e.g., the mass of the salt was.45 g) Qualitative : non-numerical, descriptive

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

Section 5.1 Scientific Notation and Units Objectives

Section 5.1 Scientific Notation and Units Objectives Objectives 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement 3. To use the metric system to measure

More information

Everyday Conversion: Money

Everyday Conversion: Money Everyday Conversion: Money Everyday Measurement: Water Everyday Measurement: Water Everyday Accuracy: Weighing Scales The need to measure correctly and convert! Some Interesting Quantities Length Volume

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

In recording measurements, it is necessary to understand 1. SIGNIFICANCE of numbers 2. importance of UNITS.

In recording measurements, it is necessary to understand 1. SIGNIFICANCE of numbers 2. importance of UNITS. CHEMISTRY IS LARGELY A QUANTITATIVE SCIENCE Theories and ideas are tested by measurement Measurements are usually quantitative have numbers Science is built on a foundation of mathematics. In recording

More information

Pre-Lab 0.2 Reading: Measurement

Pre-Lab 0.2 Reading: Measurement Name Block Pre-Lab 0.2 Reading: Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You

More information

Scientific Measurement

Scientific Measurement A measurement is a quantity that has both a number and a unit Some numbers encountered in science can be either very large or very small We use scientific notation to make those numbers easier to work

More information

1 - Astronomical Tools

1 - Astronomical Tools ASTR 110L 1 - Astronomical Tools Purpose: To learn fundamental tools astronomers use on a daily basis. Turn in all 13 problems on a separate sheet. Due in one week at the start of class. Units All physical

More information

1.1 - Scientific Theory

1.1 - Scientific Theory 1.1 - Scientific Theory Babylonians/Egyptians Observation for the practical Religious Agriculture Pseudosciences (science + nonscience) Alchemy Astrology, etc. Greeks Good Theoreticians (knowledge for

More information

I. Qualit a Qualit t a ive iv vs. Quantit Quan a tit tiv a e tiv Measurements

I. Qualit a Qualit t a ive iv vs. Quantit Quan a tit tiv a e tiv Measurements I. Qualitative vs. Quantitative Measurements Qualitative Measurement 1) Qualitative measurement = a measurement that gives descriptive, NONnumeric results a)ex: Jillian ran a fast race. b)ex: The light

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density

Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density Name: Name: Name: Name: Worksheet 1 Units, Signifiant Figures, Dimensional Analysis, & Density Objeitives To recognize and use both S.I. and English units correctly. To be able to record a measurement

More information

Chapter 6 Dimensions and Units

Chapter 6 Dimensions and Units Chapter 6 Dimensions and Units Length The standard unit of length in the metric system is the meter. Other units of length and their equivalents in meters are as follows: 1 millimeter = 0.001 meter 1 centimeter

More information

SCIENTIFIC MEASUREMENT C H A P T E R 3

SCIENTIFIC MEASUREMENT C H A P T E R 3 SCIENTIFIC MEASUREMENT C H A P T E R 3 WHAT IS MEASUREMENT? Comparing one object to a standard In science, we use SI Units meters, o C, grams NOT o F, pounds, ounces etc. TWO TYPES OF MEASUREMENTS 1.

More information

Chapter 1 Introduction, Measurement, Estimating

Chapter 1 Introduction, Measurement, Estimating Chapter 1 Introduction, Measurement, Estimating The Nature of Science Units of Chapter 1 Physics and Its Relation to Other Fields Models, Theories, and Laws Measurement and Uncertainty; Significant Figures

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

International System of Units (SI)

International System of Units (SI) Measurement International System of Units (SI) revised metric system proposed in 1960 widely used in science 7 base units SI Base Units Length Meter m Mass Kilogram kg Time Second s or sec Electrical current

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! 2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

QUIZ 2 (METRICS) REVIEW TOPICS AND REVIEW PROBLEMS

QUIZ 2 (METRICS) REVIEW TOPICS AND REVIEW PROBLEMS QUIZ 2 (METRICS) REVIEW TOPICS AND REVIEW PROBLEMS GENERAL INFORMATION You will have 5 minutes for this quiz. As the quiz is pure memorization, this amount of time for each question should be limited only

More information

Chapter 5 Measurements and Calculations Objectives

Chapter 5 Measurements and Calculations Objectives Objectives 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement 3. To use the metric system to measure

More information

What is Physics? It is a Science

What is Physics? It is a Science It is a Science What is Physics? (What is science?) Physics is a physical science (as compared to earth or life science). Physics is the study of motion and energy. Science is a study Science How is science

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry 20 Chapter 1 An Introduction to Chemistry 1.5 Reporting Values from Measurements All measurements are uncertain to some degree. Scientists are very careful to report the values of measurements in a way

More information

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS

AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR AP PHYSICS 1 STUDENTS AP Physics 1 Mr. Perkins June 2014 SUMMER WORK FOR 2014-2015 AP PHYSICS 1 STUDENTS 1. Read Chapter 1 of Textbook (Giancoli pp.1-17). Make a list of questions about any topics you would like clarified on

More information

Scientific Method, Units of Measurement, Scientific Notation, Significant Figures BASICS OF PHYSICAL SCIENCE

Scientific Method, Units of Measurement, Scientific Notation, Significant Figures BASICS OF PHYSICAL SCIENCE Scientific Method, Units of Measurement, Scientific Notation, Significant Figures BASICS OF PHYSICAL SCIENCE EQ: WHAT IS PHYSICAL SCIENCE? The sciences can be divided into 2 main branches: and Natural

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Qualitative Observations: General types of observations. Easy to determine. Not necessarily precise. I have many fingers, the speed limit is fast, class is long,

More information

1.1 Convert between scientific notation and standard notation

1.1 Convert between scientific notation and standard notation Unit 1 Measurements Objectives 1.1 Convert between scientific notation and standard notation 1.2 Define and identify significant digits including being able to round and perform mathematical operations

More information

International System of Units (SI)

International System of Units (SI) Measurement International System of Units (SI) revised metric system proposed in 1960 widely used in science 7 base units SI Base Units Length Meter m Mass Kilogram kg Time Electrical current Second Ampere

More information

In your textbook, read about base units and derived units. For each SI unit in Column A, write the letter of the matching item from Column B.

In your textbook, read about base units and derived units. For each SI unit in Column A, write the letter of the matching item from Column B. Name Per _Date Pre-AP Chemistry 4323.H Exam review ( + 5 exam pts) 2 Analyzing Data Section 2.1 Units and Measurement In your textbook, read about SI units. Complete the following table. SI Base Units

More information

The Metric System, Measurements, and Scientific Inquiry (Chapter 23)

The Metric System, Measurements, and Scientific Inquiry (Chapter 23) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: The Metric System, Measurements, and Scientific Inquiry (Chapter 23) For this assignment, you will require: a calculator & a metric ruler. Objectives:

More information

Measurement. Weight, height, and length are common measurements. List at least five things you can measure.

Measurement. Weight, height, and length are common measurements. List at least five things you can measure. chapter 32 Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You ll Learn how to estimate

More information

Making measurements and manipulating experimental results

Making measurements and manipulating experimental results Making measurements and manipulating experimental results Much of science, including the chemical sciences, is about making measurements and then manipulating them using them to calculate another quantity

More information

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER?

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER? UNITS & MEASUREMENT WHY DO UNITS AND MEASUREMENT MATTER? Chemistry In Action On 9/3/99, $15,000,000 Mars Climate Orbiter entered Mar s atmosphere 100 km (6 miles) lower than planned and was destroyed by

More information

Objective -> Students will: 1. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes.

Objective -> Students will: 1. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes. Objective -> Students will:. identify SI units that we will use for various measurements. 2. perform calculations involving SI prefixes. Warm-up: Use the english system of units (the same ones we use in

More information

Metric System (System International or SI)

Metric System (System International or SI) Metric System (System International or SI) The metric system is used in science so that the entire world will be using the same system. It is based on the number 10. Units of measurement: Mass = Gram (g)

More information

Corner Brook Regional High School

Corner Brook Regional High School Corner Brook Regional High School Measurement and Calculations Significant Digits Scientific Notation Converting between Units Accuracy vs. Precision Scalar Quantities Distance Calculations Speed Calculations

More information

Name: Measurements and Calculations (Chapter 3 and 4) Notes

Name: Measurements and Calculations (Chapter 3 and 4) Notes Name: Measurements and Calculations (Chapter 3 and 4) Notes I. Scientific Method - the process researchers use to carry out their investigations. It is a logical approach to solving problems. A. Steps

More information

Chemistry 11. Unit 2 : Introduction to Chemistry

Chemistry 11. Unit 2 : Introduction to Chemistry Chemistry 11 Unit 2 : Introduction to Chemistry 1 2 1. Unit conversion In Chemistry 11 and 12, a mathematical method called Unit Conversions will be used extensively. This method uses CONVERSION FACTORS

More information

Measurement and Sig Figs Review

Measurement and Sig Figs Review Name: Class: Date: Measurement and Sig Figs Review Matching Match each item with the correct statement below. a. absolute zero e. mass b. Kelvin temperature scale f. significant figure c. Celsius temperature

More information

LAB EXERCISE: Basic Laboratory Techniques

LAB EXERCISE: Basic Laboratory Techniques LAB EXERCISE: Basic Laboratory Techniques Introduction Scientists use measurements in describing objects and these measurements are based on universally accepted standards. A measurement of height specifies

More information

Exact and Measured Numbers

Exact and Measured Numbers EIE 240 Electrical and Electronic Measurement December 8, 2011 Werapon Chiracharit 1 Exact and Measured Numbers Exact numbers e.g. Ih have exactly 10 fingers and 10 toes. Any measurements e.g. a pen s

More information

PS 300 Spring 2019 Lecture 2

PS 300 Spring 2019 Lecture 2 PS 300 Spring 2019 Lecture 2 1/24/19 1 UNIT 1: outline for exam 1 Prologue: About Science + Measurements Ch. 1: Patterns of Motion & Equilibrium Ch. 2: Newton s Laws of Motion Ch. 3: Momentum and Energy

More information

Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density

Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density Name: Name: Name: Name: Worksheet 2 Units, Signifiant Figures, Dimensional Analysis, & Density Objeitives To recognize and use both S.I. and English units correctly. To be able to record a measurement

More information

Chemistry I Chapter 3 Scientific Measurement

Chemistry I Chapter 3 Scientific Measurement Chemistry I Chapter 3 Scientific Measurement Learning Goals: 1. Students will understand how to use scientific measurement as a method of quantifying matter. 2. Students will be able to represent measurements

More information

Scientific Notation Review

Scientific Notation Review Summer Packet AP Physics B Use the internet for additional reference on the following problems. Complete all problems!! You must bring this on the first day of school it will count as your first exam!!

More information

Introductory Chemistry

Introductory Chemistry Introductory Chemistry Lab 3: Data Measurement Objectives Learn about the metric system, using grams, meters, and liters Understand how to convert between US and metric systems Practice the proper technique

More information

Regents Chemistry NOTE PACKET

Regents Chemistry NOTE PACKET *STUDENT* *STUDENT* Regents Chemistry NOTE PACKET Unit 1: Measurement 1 Co py ri g ht 2015 Tim Dol g os *STUDENT* *STUDENT* Name: Date: Period: Unit 1: Measurement Unit Vocabulary: 1. S.I. unit 9. Significant

More information

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1 AS Physics 9702 unit 1: Standards and their Measurements 1 UNIT 1 - STANDARDS AND THEIR MEASUREMENT: This unit includes topic 1 and 2 from the CIE syllabus for AS course. Units of Measurement: Measuring

More information

Chapter 3 Scientific Measurement

Chapter 3 Scientific Measurement Chapter 3 Scientific Measurement Measurements 2 types: Qualitative measurements (words) Heavy, hot, or long Quantitative measurements (# s) & depend on: 1) Reliability of measuring instrument 2) Care w/

More information

GUIDELINES FOR COMPLETING THE ASSIGNMENT

GUIDELINES FOR COMPLETING THE ASSIGNMENT RAHWAY HIGH SCHOOL SCIENCE DEPARTMENT AP Physics 1 Summer Assignment packet Summer 018 Due date: September 7th GUIDELINES FOR COMPLETING THE ASSIGNMENT Welcome to AP Physics 1. This is, by far, a very

More information

TY Physics Measurement Module 1

TY Physics Measurement Module 1 TY Physics Measurement Module 1 Introduction Units of measure were among the earliest tools invented by humans, they were needed for many tasks, such as constructing dwellings, fashioning clothes, or bartering

More information

Lecture notes on * Measurement and Error * Least Square Fitting

Lecture notes on * Measurement and Error * Least Square Fitting Lecture notes on * Measurement and Error * Least Square Fitting Department of Optical Engineering University of Gaziantep Oct 2016 Sayfa 1 PART I Measurement and Error Sayfa 2 System of Units Physics is

More information

8/11/2015 PHYSICAL SCIENCE 1.1 WHAT IS SCIENCE? BIG IDEAS OF PHYSICAL SCIENCE BRANCHES OF SCIENCE WHAT IS SCIENCE?

8/11/2015 PHYSICAL SCIENCE 1.1 WHAT IS SCIENCE? BIG IDEAS OF PHYSICAL SCIENCE BRANCHES OF SCIENCE WHAT IS SCIENCE? PHYSICAL SCIENCE Chapter 1 Science Skills GOAL: Students will be able to distinguish what characterizes science and its methods. Standard: SC.912.N.1.2, SC.912.N.1.3, SC.912.N.1.4, SC.912.N.1.5, SC.912.N.1.6,

More information

Unit Conversions, Important Constants and Relationships

Unit Conversions, Important Constants and Relationships NOTE: Exact quantities are specified as exact. Consider 1 as exact! mass (M) 1 kg = 2.20462 lb m = 35.27392 oz 1 lb m = 16 oz (exact)= 453.593 g length (L) 1 m = 10 10 (exact) angstroms (Å) = 100 cm =

More information

Technical English -I 3 rd week SYSTEMS OF UNITS

Technical English -I 3 rd week SYSTEMS OF UNITS Technical English -I 3 rd week SYSTEMS OF UNITS 2D 3D Coordinate conversion (Transformation coordinates) From Cartesian to polar, or vice versa (below) From a local system to a global system (right) Polar

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

The Nature of Science

The Nature of Science chapter 1 The Nature of Science section 2 Standards of Measurement Before You Read If someone asked you how wide your desk is, how would you measure it? Would you measure using inches, centimeters, feet,

More information

Dimensional Analysis

Dimensional Analysis Ch01 Dimensional Analysis Measurements include both a value and unit of measurement. Dimensional Analysis is the process we ll use to manage units in our calculations. version 1.5 Nick DeMello, PhD. 2007-2014

More information

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E.

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Using sig figs in arithmetic operations F. The metric system G. Problem solving

More information

Lesson 5: Measurement Part II Accuracy & Precision SI Units

Lesson 5: Measurement Part II Accuracy & Precision SI Units Lesson 5: Measurement Part II Accuracy & Precision SI Units Do Now: 6 th grade Record information from CJ board into your CJ. KEEP CJ s OUT on your desk opened to today s date: Sept.22 Take out notes from

More information

HI-1017: Pharmacy Technician. Module 14 - Metric System

HI-1017: Pharmacy Technician. Module 14 - Metric System HI-1017: Pharmacy Technician Module 14 - Metric System Slide 1 Main Objectives The Metric System Converting Metric Units Practice Exercises Slide 2 The Metric System The Metric System Units of Measurement

More information

Physics Math Notes. A. Scientific Method Process used to ensure scientific precision and accuracy. 1. Problem State the question at hand.

Physics Math Notes. A. Scientific Method Process used to ensure scientific precision and accuracy. 1. Problem State the question at hand. Physics Math Notes A. Scientific Method Process used to ensure scientific precision and accuracy. 1 1. Problem State the question at hand. 2. Hypothesis Best guess on what the experiment will produce.

More information

Analyzing Data. Units and Measurement In your textbook, read about SI units. STUDY GUIDE. Section 2.1 CHAPTER 2. Complete the following table.

Analyzing Data. Units and Measurement In your textbook, read about SI units. STUDY GUIDE. Section 2.1 CHAPTER 2. Complete the following table. Analyzing Data Section 2.1 Units and Measurement In your textbook, read about SI units. Complete the following table. SI Base Units Quantity Base unit Unit abbreviation 1. s 2. Mass 3. kelvin 4. Length

More information

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next Chemical Principles 50:160:115 Fall 2016 Chemistry is easy IF: don t fall behind understand, not just memorize do problems remember things from one chapter to the next Proficient in: Explanations at the

More information

Name: Period: Date: Unit 1 Part 1 Introduction to Chemistry. What is the equation for density and its rearrangements for mass and volume?

Name: Period: Date: Unit 1 Part 1 Introduction to Chemistry. What is the equation for density and its rearrangements for mass and volume? Unit 1 Part 1 Introduction to Chemistry Which element has a type of chemistry devoted to it? What is the equation for density and its rearrangements for mass and volume? Chemistry is often referred to

More information

QUANITY NAME OF UNIT ABBREVIATION length meter m mass kilogram kg time second s

QUANITY NAME OF UNIT ABBREVIATION length meter m mass kilogram kg time second s Mathematics Review Sheet AP Physics 1 Systems of Units Physics involves an objective description of the world, so measurement is a crucial tool. In measuring, we make use of a group of standard units comprising

More information

Lesson 6: Unit Conversions and Scientific Notation

Lesson 6: Unit Conversions and Scientific Notation Lesson 6: Unit Conversions and Scientific Notation Introduction: The metric system s many prefixes allow quantities to be expressed in many different units. Dimensional analysis is useful to convert from

More information

Bell ringer- Take out your POE/Doing Science worksheet from yesterday. Take a min or two to look over/ finish either side.

Bell ringer- Take out your POE/Doing Science worksheet from yesterday. Take a min or two to look over/ finish either side. Bell ringer- Take out your POE/Doing Science worksheet from yesterday. Take a min or two to look over/ finish either side. Explain The pressure of the air is pushing the egg inside. Before the burning

More information

Name: Class: Date: General Organic and Biological Chemistry 7th Edition Stoker SOLUTIONS MANUAL

Name: Class: Date: General Organic and Biological Chemistry 7th Edition Stoker SOLUTIONS MANUAL General Organic and Biological Chemistry 7th Edition Stoker TEST BANK Full download at: https://testbankreal.com/download/general-organic-biological-chemistry-7thedition-stoker-test-bank/ General Organic

More information

Units and Dimensionality

Units and Dimensionality Chapter 1 Units and Dimensionality If somebody asked me how tall I am, I might respond 1.78. But what do I mean by that? 1.78 feet? 1.78 miles? In fact, my height is 1.78 meters. Most physical measurements

More information

Skill Building Topic 1 UNDERSTANDING THE USES OF NUMBERS

Skill Building Topic 1 UNDERSTANDING THE USES OF NUMBERS Skill Building Topic 1 UNDERSTANDING THE USES OF NUMBERS Chemistry is a quantitative science. Theories are based on and supported by measurements and calculations. Most chemistry experiments involve not

More information