Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine

Size: px
Start display at page:

Download "Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine"

Transcription

1 Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine Jordan Spoooner July 16, 2015

2 What is a Physics Engine? Engine: Computer software that performs a fundamental function, especially as part of a larger program Moves objects Detects collisions Resolves collisions

3 Moves Objects Newton s Laws of Motion A body will remain at rest or continue with constant velocity unless acted upon by an external force The acceleration of the body is proportional to the resultant force acting upon the body a = F m For every action there is an equal and opposite reaction

4 Storing the Data Particles - No volume, no angular motion Position, Velocity, and Acceleration - What about speed/ direction of motion? (a = dn) Mass Volume/ Any other variables? class Particle{ protected: Vector3 position; Vector3 velocity; Vector3 acceleration; real damping; real inversemass;}

5 Implementation: The Update Loop The integrator Separate to graphics Calculates change in position, p Damping

6 The Integrator Resolves forces a = F m v = a dt s = v dt, s = p

7 Algorithms for Numerical Integration Explicit Euler Integration vn+1 = v n + a n t sn+1 = s n + v n t Implicit Euler Integration v n+1 = v n + a n+1 t s n+1 = s n + v n+1 t Semi-Implicit Euler Integration v n+1 = v n + a n t s n+1 = s n + v n+1 t Verlet Integration sn+1 = s n + v n t + a n t 2 and v n = sn sn 1 t gives s n+1 = 2S n S n 1 + a n t 2

8 Runge-Kutta Methods By Solving Differential Equations: Figure: Runge-Kutta Method for Numerical Integration

9 Damping Why do we include damping? Issues caused by variable frame rate

10 Implementation Calculating the new position: Calculating the new velocity: p = p + vt v = vd t + at if (inversemass <= 0.0f) return; assert(duration > 0.0); position.addscaledvector(velocity, duration); velocity.addscaledvector(acceleration, duration); velocity *= real pow(damping, duration);

11 Testing: Projectiles Figure: Projectile Simulation projectilenumber->particle.setmass(200.0f); projectilenumber-> particle.setvelocity(projectilevelocity); projectilenumber-> particle.setacceleration(0.0f,-20.0f,0.0f); projectilenumber->particle.setdamping(0.99f); projectilenumber->particle.setposition(0.0f,1.5f,0.0f);

12 Forces D Alemberts Principle: F = i F i Figure: Geometrical Representation of Vector Addition Interfaces and Polymorphism

13 Implementation void PForceReg::updateForces(real duration){ Registry::iterator i = registrations.begin(); for(; i!= registrations.end(); i++){ i->fg->updateforce(i->particle, duration);}}

14 Springs Hooke s Law: f = kx Applications Stiff Springs Figure: Stiff Springs over Time

15 force.normalize(); force *= magnitude; particle->addforce(force);} Implementation void PSpring::updateForce(Particle *particle, real duration){ Vector3 force; particle->getposition(&force); force -= other->getposition(); real magnitude = force.magnitude(); magnitude = real abs(magnitude - restlength); magnitude *= springconstant;

16 Broadphase Collision Detection Methods BSP (Octrees/ Quadtrees) Figure: BSP Method for Broadphase Collision Detection

17 Sort and Sweep Figure: Sort and Sweep Method for Broadphase Collision Detection

18 Narrowphase Collision Detection and Resolving Interpenetration Figure: Resolving Interpenetration

19 Limitations High-Speed? Objects at Rest? Figure: Errors Caused by Objects at Rest

20 Dealing with Multiple Objects? Figure: Interpenetration Resolution with Multiple Objects p a = m b m a+m b dn and p b = ma m a+m b dn

21 Collision Resolution Figure: The Impulse Method for Collision Resolution Newton s Law of Restitution: v = eu Law of Conservation of Momentum: m a u a + m b u b = m a v a + m b v b Equating Impulses: j a = j b where j = mv mu Other Methods? Applications

22 Implementation Get approach speed v = eu v total = v u j total = m total v total v a = j total m a v b = j total m b

23 Limitations of the Real-Time Mass-Aggregate Physics Engine Rigid Bodies Soft Bodies

Lecture V: The game-engine loop & Time Integration

Lecture V: The game-engine loop & Time Integration Lecture V: The game-engine loop & Time Integration The Basic Game-Engine Loop Previous state: " #, %(#) ( #, )(#) Forces -(#) Integrate velocities and positions Resolve Interpenetrations Per-body change

More information

PSE Game Physics. Session (6) Angular momentum, microcollisions, damping. Oliver Meister, Roland Wittmann

PSE Game Physics. Session (6) Angular momentum, microcollisions, damping. Oliver Meister, Roland Wittmann PSE Game Physics Session (6) Angular momentum, microcollisions, damping Oliver Meister, Roland Wittmann 23.05.2014 Session (6)Angular momentum, microcollisions, damping, 23.05.2014 1 Outline Angular momentum

More information

Simulation in Computer Graphics Elastic Solids. Matthias Teschner

Simulation in Computer Graphics Elastic Solids. Matthias Teschner Simulation in Computer Graphics Elastic Solids Matthias Teschner Outline Introduction Elastic forces Miscellaneous Collision handling Visualization University of Freiburg Computer Science Department 2

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Particle Systems. University of Texas at Austin CS384G - Computer Graphics

Particle Systems. University of Texas at Austin CS384G - Computer Graphics Particle Systems University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Witkin, Particle System Dynamics, SIGGRAPH 97 course notes on Physically Based Modeling.

More information

GAME PHYSICS ENGINE DEVELOPMENT

GAME PHYSICS ENGINE DEVELOPMENT GAME PHYSICS ENGINE DEVELOPMENT IAN MILLINGTON i > AMSTERDAM BOSTON HEIDELBERG fpf l LONDON. NEW YORK. OXFORD ^. PARIS SAN DIEGO SAN FRANCISCO втс^н Г^ 4.«Mt-fSSKHbe. SINGAPORE. SYDNEY. TOKYO ELSEVIER

More information

Applied Mathematics B Study Guide

Applied Mathematics B Study Guide Science, Engineering and Technology Portfolio School of Life and Physical Sciences Foundation Studies (Applied Science/Engineering) Applied Mathematics B Study Guide Topics Kinematics Dynamics Work, Energy

More information

Particle Systems. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017

Particle Systems. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Particle Systems CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Particle Systems Particle systems have been used extensively in computer animation and special effects since their

More information

41514 Dynamics of Machinery

41514 Dynamics of Machinery 41514 Dynamics of Machinery Theory, Experiment, Phenomenology and Industrial Applications Ilmar Ferreira Santos 1. Recapitulation Mathematical Modeling & Steps 2. Example System of Particle 3. Example

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1)

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM (Section 15.1) Linear momentum: L = mv vector mv is called the linear momentum denoted as L (P in 1120) vector has the same direction as v. units of (kg m)/s or

More information

Physical Simulation. October 19, 2005

Physical Simulation. October 19, 2005 Physical Simulation October 19, 2005 Objects So now that we have objects, lets make them behave like real objects Want to simulate properties of matter Physical properties (dynamics, kinematics) [today

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Integral Section List for OCR Specification

Integral Section List for OCR Specification Integral Section List for OCR Specification 161 Sections are listed below, covering all of AS/A level Mathematics and Further Mathematics, categorised by Module and Topic Module Topic Section Name OCR

More information

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t)

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t) Runga-Kutta Schemes Exact evolution over a small time step: x(t + t) =x(t)+ t 0 d(δt) F (x(t + δt),t+ δt) Expand both sides in a small time increment: x(t + t) =x(t)+x (t) t + 1 2 x (t)( t) 2 + 1 6 x (t)+

More information

Collision Resolution

Collision Resolution Collision Resolution Our Problem Collision detection (supposedly) reported a collision. We want to solve it, i.e. move back the colliding objects apart from each other. In which direction and with what

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 29 Physics 7B Lecture 7 17-Feb-2010 Slide 2 of 29 The Definition of Impulse Recall that

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

APPLIED MATHEMATICS AM 02

APPLIED MATHEMATICS AM 02 AM SYLLABUS (2013) APPLIED MATHEMATICS AM 02 SYLLABUS Applied Mathematics AM 02 Syllabus (Available in September) Paper I (3 hrs)+paper II (3 hrs) Applied Mathematics (Mechanics) Aims A course based on

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Numerics Michael Bader SCCS Technical University of Munich Summer 018 Recall: Molecular Dynamics System of ODEs resulting force acting on a molecule: F i = j

More information

Physics Tutorial 6: Collision Response

Physics Tutorial 6: Collision Response Physics Tutorial 6: Collision Response Summary Collision response, the final step of our physics engine, is introduced. Solutions are discussed and implemented. New Concepts Collision response, Penalty

More information

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Peter Young (Dated: April 14, 2009) I. INTRODUCTION One frequently obtains detailed dynamical

More information

Ordinary differential equations. Phys 420/580 Lecture 8

Ordinary differential equations. Phys 420/580 Lecture 8 Ordinary differential equations Phys 420/580 Lecture 8 Most physical laws are expressed as differential equations These come in three flavours: initial-value problems boundary-value problems eigenvalue

More information

Projects. Assignments. Plan. Motivational Films. Motivational Film 1/6/09. Dynamics II. Forces, Collisions and Impulse

Projects. Assignments. Plan. Motivational Films. Motivational Film 1/6/09. Dynamics II. Forces, Collisions and Impulse Projects Dynamics II Forces, Collisions and Impulse Presentations: Dates: Week 0: Mon, Feb 6 Week 0: Wed, Feb 8 Finals Week: Tues, Feb 4 (:30 :30) room TBA 5 minutes / presentation Schedule now on Web

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Graphical Display of a Physics Simulation

Graphical Display of a Physics Simulation Graphical Display of a Physics Simulation Steven Oetjen TJHSST Computer Systems Lab, 2006-2007 March 29, 2007 Abstract A physics simulation, in order to adequately demonstrate physical laws and predict

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Curriculum Map-- Kings School District Honors Physics

Curriculum Map-- Kings School District Honors Physics Curriculum Map-- Kings School District Honors Physics Big ideas Essential Questions Content Skills/Standards Assessment + Criteria Activities/Resources Motion of an object can be described by its position,

More information

ENGI9496 Lecture Notes State-Space Equation Generation

ENGI9496 Lecture Notes State-Space Equation Generation ENGI9496 Lecture Notes State-Space Equation Generation. State Equations and Variables - Definitions The end goal of model formulation is to simulate a system s behaviour on a computer. A set of coherent

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Review of chapters 1-14 Note: I m taking for granted that you ll still know SI/cgs units, order-of-magnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

Dynamical Systems. Mechanical Systems

Dynamical Systems. Mechanical Systems EE/ME/AE324: Dynamical Systems Chapter 2: Modeling Translational Mechanical Systems Common Variables Used Assumes 1 DoF per mass, i.e., all motion scalar Displacement: x ()[ t [m] Velocity: dx() t vt ()

More information

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment

Modeling and Solving Constraints. Erin Catto Blizzard Entertainment Modeling and Solving Constraints Erin Catto Blizzard Entertainment Basic Idea Constraints are used to simulate joints, contact, and collision. We need to solve the constraints to stack boxes and to keep

More information

Course syllabus Engineering Mechanics - Dynamics

Course syllabus Engineering Mechanics - Dynamics Course syllabus Engineering Mechanics - Dynamics COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number of credits allocated) Course status Year of study Course Web

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM Today s Objectives: Students will be able to: 1. Calculate the linear momentum of a particle and linear impulse of a force. 2. Apply the principle of linear impulse

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Passive Dynamics and Particle Systems COS 426

Passive Dynamics and Particle Systems COS 426 Passive Dynamics and Particle Systems COS 426 Computer Animation Animation Make objects change over time according to scripted actions Simulation / dynamics Predict how objects change over time according

More information

What make cloth hard to simulate?

What make cloth hard to simulate? Cloth Simulation What make cloth hard to simulate? Due to the thin and flexible nature of cloth, it produces detailed folds and wrinkles, which in turn can lead to complicated selfcollisions. Cloth is

More information

SPRING SEMESTER AE 262 DYNAMICS. (02) Dr. Yavuz YAMAN

SPRING SEMESTER AE 262 DYNAMICS. (02) Dr. Yavuz YAMAN 2012-2013 SPRING SEMESTER AE 262 DYNAMICS INSTRUCTOR (01) Dr. Yavuz YAMAN (02) Dr. Yavuz YAMAN TEXTBOOK Vector Mechanics for Engineers DYNAMICS F.P. Beer, E.R. Johnston Jr. and W.E. Clausen Eighth Edition

More information

Virtual Reality & Physically-Based Simulation

Virtual Reality & Physically-Based Simulation Virtual Reality & Physically-Based Simulation Mass-Spring-Systems G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Definition: A mass-spring system is a system consisting of: 1. A set of

More information

Advanced Higher Mathematics of Mechanics

Advanced Higher Mathematics of Mechanics Advanced Higher Mathematics of Mechanics Course Outline (2016-2017) Block 1: Change of timetable to summer holiday Assessment Standard Assessment 1 Applying skills to motion in a straight line (Linear

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

Rigid Body Dynamics and Beyond

Rigid Body Dynamics and Beyond Rigid Body Dynamics and Beyond 1 Rigid Bodies 3 A rigid body Collection of particles Distance between any two particles is always constant What types of motions preserve these constraints? Translation,

More information

Dynamics. Kinematics and Dynamics. Passive vs. Active Dynamics. Passive Dynamics. Passive Dynamics. Particle Systems

Dynamics. Kinematics and Dynamics. Passive vs. Active Dynamics. Passive Dynamics. Passive Dynamics. Particle Systems Kinematics and Dynamics Dynamics Thomas Funkhouser Princeton University C0S 426, Spring 2004 Kinematics Considers only motion Determined by positions, velocities, accelerations Dynamics Considers underlying

More information

Time scales. Notes. Mixed Implicit/Explicit. Newmark Methods [ ] [ ] "!t = O 1 %

Time scales. Notes. Mixed Implicit/Explicit. Newmark Methods [ ] [ ] !t = O 1 % Notes Time scales! For using Pixie (the renderer) make sure you type use pixie first! Assignment 1 questions?! [work out]! For position dependence, characteristic time interval is "!t = O 1 % $ ' # K &!

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Atanas Atanasov, Philipp Neumann, Martin Schreiber

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Atanas Atanasov, Philipp Neumann, Martin Schreiber PSE Game Physics Session (3) Springs, Ropes, Linear Momentum and Rotations Atanas Atanasov, Philipp Neumann, Martin Schreiber 20.05.2011 Session (3)Springs, Ropes, Linear Momentum and Rotations, 20.05.2011

More information

AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics And Differential Equations 1 Dynamics Dynamics of a material point Ideal case, but often sufficient Dynamics of a solid Including rotation, torques 2 Position, Velocity, Acceleration

More information

CS 480/680: GAME ENGINE PROGRAMMING

CS 480/680: GAME ENGINE PROGRAMMING CS 480/680: GAME ENGINE PROGRAMMING PHYSICS 2/14/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs480-680/intro.html Outline Student Presentations Basics on Rigid

More information

the gamedesigninitiative at cornell university Lecture 18 Box2D Physics

the gamedesigninitiative at cornell university Lecture 18 Box2D Physics Lecture 18 Box2D Physics Physics in Games Moving objects about screen Kinematics: Motion ignoring external forces (Only consider position, velocity, acceleration) Dynamics: The effect of forces on screen

More information

The dimensions of an object tend to change when forces are

The dimensions of an object tend to change when forces are L A B 8 STRETCHING A SPRING Hooke s Law The dimensions of an object tend to change when forces are applied to the object. For example, when opposite forces are applied to both ends of a spring, the spring

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

A Level Maths Notes: M2 Equations for Projectiles

A Level Maths Notes: M2 Equations for Projectiles A Level Maths Notes: M2 Equations for Projectiles A projectile is a body that falls freely under gravity ie the only force acting on it is gravity. In fact this is never strictly true, since there is always

More information

Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

More information

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

APPLIED MATHEMATICS IM 02

APPLIED MATHEMATICS IM 02 IM SYLLABUS (2013) APPLIED MATHEMATICS IM 02 SYLLABUS Applied Mathematics IM 02 Syllabus (Available in September) 1 Paper (3 hours) Applied Mathematics (Mechanics) Aims A course based on this syllabus

More information

[ ] is a vector of size p.

[ ] is a vector of size p. Lecture 11 Copyright by Hongyun Wang, UCSC Recap: General form of explicit Runger-Kutta methods for solving y = F( y, t) k i = hfy n + i1 j =1 c ij k j, t n + d i h, i = 1,, p + p j =1 b j k j A Runge-Kutta

More information

Game Physics: Basic Concepts

Game Physics: Basic Concepts CMSC 498M: Chapter 8a Game Physics Reading: Game Physics, by David H Eberly, 2004 Physics for Game Developers, by David M Bourg, 2002 Overview: Basic physical quantities: Mass, center of mass, moment of

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (C/D) Professor Cebra (Guest Lecturer) Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 36 Slides 3-19 were discussed in the 7:30 Lecture Slides 6-27 were discussed

More information

Momentum. Edexcel GCE. Core Mathematics M1

Momentum. Edexcel GCE. Core Mathematics M1 Edexcel GCE Core Mathematics M1 Momentum Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Thursday Simulation & Unity

Thursday Simulation & Unity Rigid Bodies Simulation Homework Build a particle system based either on F=ma or procedural simulation Examples: Smoke, Fire, Water, Wind, Leaves, Cloth, Magnets, Flocks, Fish, Insects, Crowds, etc. Simulate

More information

Baccalieu Collegiate. Physics Course Outline

Baccalieu Collegiate. Physics Course Outline Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant

More information

Collisions Impulse and Momentum

Collisions Impulse and Momentum rev 06/2017 Collisions Impulse and Momentum Equipment Qty Items Part Number 1 Collision Cart ME-9454 1 Dynamics Track ME-9493 1 Force Sensor CI-6746 1 Motion Sensor II CI-6742A 1 Accessory Bracket CI-6545

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Translational and Rotational Dynamics!

Translational and Rotational Dynamics! Translational and Rotational Dynamics Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Copyright 217 by Robert Stengel. All rights reserved. For educational use only.

More information

6.11 MECHANICS 3, M3 (4763) A2

6.11 MECHANICS 3, M3 (4763) A2 6.11 MECHANICS 3, M3 (4763) A Objectives To build on the work in Mechanics 1 and Mechanics, further extending the range of mechanics concepts which students are able to use in modelling situations. The

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocwmitedu 200 Dynamics and Control Spring 200 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts nstitute of Technology

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

A level Exam-style practice

A level Exam-style practice A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : 6.5 40 10v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy 1 1 6.5

More information

Numerical Methods for the Solution of Differential Equations

Numerical Methods for the Solution of Differential Equations Numerical Methods for the Solution of Differential Equations Markus Grasmair Vienna, winter term 2011 2012 Analytical Solutions of Ordinary Differential Equations 1. Find the general solution of the differential

More information

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall Physics 231 Topic 7: Oscillations Alex Brown October 14-19 2015 MSU Physics 231 Fall 2015 1 Key Concepts: Springs and Oscillations Springs Periodic Motion Frequency & Period Simple Harmonic Motion (SHM)

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Assignment 4: Rigid Body Dynamics

Assignment 4: Rigid Body Dynamics Assignment 4: Rigid Body Dynamics Due April 4 at :59pm Introduction Rigid bodies are a fundamental element of many physical simulations, and the physics underlying their motions are well-understood. In

More information

Curriculum Map-- Kings School District- Physics

Curriculum Map-- Kings School District- Physics Curriculum Map-- Kings School District- Physics Big ideas Essential Questions Content Skills/Standards Assessment + Criteria Activities/Resources Motion of an object can be described by its position, speed,

More information

Modeling Mechanical Systems

Modeling Mechanical Systems Modeling Mechanical Systems Mechanical systems can be either translational or rotational. Although the fundamental relationships for both types are derived from Newton s law, they are different enough

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #25: Rigid Body Simulations Tobias Pfaff 537 Soda (Visual Computing Lab) tpfaff@berkeley.edu Reminder Final project presentations next week! Game Physics Types of Materials

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Dynamic Loads CE 543. Examples. Harmonic Loads

Dynamic Loads CE 543. Examples. Harmonic Loads CE 543 Structural Dynamics Introduction Dynamic Loads Dynamic loads are time-varying loads. (But time-varying loads may not require dynamic analysis.) Dynamics loads can be grouped in one of the following

More information

Leaving Cert Applied Maths: Some Notes

Leaving Cert Applied Maths: Some Notes Leaving Cert Applied Maths: Some Notes Golden Rule of Applied Maths: Draw Pictures! Numbered equations are in the tables. Proportionality: Figure 1: Note that P = kq y = mx + c except c = 0 the line goes

More information

One-dimensional kinematics

One-dimensional kinematics Phsics 45 Formula Sheet Eam One-dimensional kinematics Vectors displacement: Δ f i total distance traveled average speed total time Δ f i average velocit: vav t f ti Δ instantaneous velocit: v lim Δ t

More information

, gives a coupled set of first order dt m differential equations.

, gives a coupled set of first order dt m differential equations. Force and dynamics with a spring, numerical approach It may strike you as strange that one of the first forces we will discuss will be that of a spring. It is not one of the four Universal forces and we

More information

GAME PHYSICS (INFOMGP) FINAL EXAM

GAME PHYSICS (INFOMGP) FINAL EXAM GAME PHYSICS (INFOMGP) FINAL EXAM 15/JUN/ 016 LECTURER: AMIR VAXMAN Student name: Student number: This exam is 3 hours long and consists of 5 exercises. The points add up to 100. Answer only in English.

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. These equations greatl facilitate the solution of man problems in which

More information

Visual Interactive Simulation, TDBD24, Spring 2006

Visual Interactive Simulation, TDBD24, Spring 2006 Visual Interactive Simulation, TDBD24, Spring 2006 Lecture 6 Outline Cross product as matrix multiplication The collision matrix The Newton Coulomb impulse for rigid bodies N C updates of translational

More information

1 Restatement of the Problem. 2 Terms and Ambiguous Words. 3 Ambiguous Words. 4 Assumptions. # 6654 Page 2 / 19

1 Restatement of the Problem. 2 Terms and Ambiguous Words. 3 Ambiguous Words. 4 Assumptions. # 6654 Page 2 / 19 Contents 1 Restatement of the Problem... Terms and Ambiguous Words... 3 Ambiguous Words... 4 Assumptions... 5 The COP Model... 3 5.1 Introduction... 3 5. Development... 3 5.3 Examinations... 4 5.4 Strengths

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

Evaluation copy 10A. Impulse and Momentum. Experiment INTRODUCTION OBJECTIVES MATERIALS PRE-LAB QUESTIONS

Evaluation copy 10A. Impulse and Momentum. Experiment INTRODUCTION OBJECTIVES MATERIALS PRE-LAB QUESTIONS Impulse and Momentum Experiment 10A INTRODUCTION You are no doubt familiar with everyday uses of the term momentum; e.g., a sports team that has begun to exert superiority over an opponent is said to have

More information

Page 1 of 9. Curriculum Map: Physics/Lab Course: Physics Sub-topic: Physics. Unit: Language of Physics Timeline: 2 Weeks Unit Description:

Page 1 of 9. Curriculum Map: Physics/Lab Course: Physics Sub-topic: Physics. Unit: Language of Physics Timeline: 2 Weeks Unit Description: Curriculum Map: Physics/Lab Course: Physics Sub-topic: Physics Grade(s): 10 to 12 Course Course Textbooks, Workbooks, Materials Citations: Through theory and laboratory practices, the student will learn

More information

Impulse and Momentum

Impulse and Momentum Impulse and Momentum Computer 19 The impulse- theorem relates impulse, the average force applied to an object times the length of time the force is applied, and the change in of the object: F t mv f mv

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information