A level Exam-style practice

Size: px
Start display at page:

Download "A level Exam-style practice"

Transcription

1 A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy J d Work done by friction = loss of kinetic energy 1 F F 5.65 N (1) Friction: F R R = 10g So F 10g () From equations (1) and (): 10g So g Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 1

2 a Power 0 kw 0 000W Power Tv So T v Using F ma T 10 v 1400a v 1400a v When v : a a 618 So a 0.44 m s 1400 b Power W Power Tv T 0 So T and T 1000 N The total force down the plane is: T 1400g sin sin 6 434N The resistance to the car s motion is: 10 v N The total force down the plane is greater than the resistive force, so there is a net force down the plane. Therefore the driver will need to brake to maintain his or her original speed. Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free.

3 c The driver places the car in neutral, so T 0 The maximum speed of the car will occur when its acceleration is 0 m s i.e. when the resultant force parallel to the plane is zero. Therefore 10 v 1400g sin 6 3 So 1400g sin 6 10 v and v 5.6 m s 1 Since 3 tan, you have that 4 3 sin and 5 4 cos from the right-angled triangle: 5 Suppose the ball hits the plane with speed u m s 1 and rebounds with speed v m s 1 Then down the plane : usin vsin Newton s law of restitution parallel to the plane : vcos eucos (1) () Squaring equation (1) gives Squaring equation () gives u sin v sin v co s e u cos Adding these equations gives: v sin v co s u sin e u cos v sin co s u sin e u cos v u sin e u cos 3 4 v u e u 5 5 9u e u v (3) 5 5 Since the ball loses half its kinetic energy upon impact, you have mv mu mu 4 u So v (4) Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 3

4 3 continued Solving equations (3) and (4) simultaneously, you obtain: u 9u e u e e e 50 5 So e 3 7 and e a Impulse on the football = change in momentum of the football P mv mu 8 5 P P N s b Let be the angle between P and i 1. tan 0.6 So 63.4 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 4

5 5 a Consider the ball hanging in vertical equilibrium. T mg e Hooke s Law gives T l e So mg l mgl So e m 15 So PQ l e m b When the string has length 1.9 m, its extension is m So its elastic potential energy is J 1. When the string is in equilibrium, its extension is m So its elastic potential energy is 0.401J 1. Therefore the work done in stretching the string to a length of 1.9 m is J Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 5

6 5 c PX 1.9, so QX PX PQ m Let v be the velocity of the ball as it passes through Q. Using the conservation of energy: EPE PE KE at Q EPE at X v v v So v 3.6 m s d Let h be the distance travelled by the ball above point X After travelling through a distance h, the string will be slack and its velocity will be zero. Using the work-energy principle: Potential energy gained = elastic potential energy lost h 1..45h So h This is a distance of m from the ceiling. Hence, the ball will not hit the ceiling. Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 6

7 6 a i Using conservation of momentum for the system : 33 3v 1v v 1v (1) Consider the final kinetic energy of Q : 1 1 v v 7.9 v m s -1 Substituting v into equation (1) gives 9 3v v1.1 m s -1 3 ii Newton s law of restitution: separation speed.7.1 e 0. approach speed 3 0 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 7

8 6 b Consider the collision between Q and R: 7 a Using conservation of momentum for the system :.7 w1 w () Newton s law of restitution: w w w w (3) 1 Adding equations () and (3) gives: 3.4 3w So w 1.08 m s -1 Substituting w into equation (3) gives: w 1 So w m s -1 So the kinetic energy lost in this collision is given by J c P moves with speed.1 m s -1 and Q moves with speed 0.54 m s -1 Since P and Q are moving in the same direction, they will collide again. ucos60 cos 15cos 60 8 cos i ii Newton s law of restitution final speed (vertically) gives: sin 15 sin 57.8 e 0.9 approach speed (vertically) usin 60 sin 60 Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 8

9 7 b Conservation of momentum parallel to the line of centres: m cos mv mw cos v w (1) Newton s law of restitution: 3 w v 4 cos 45 cos 64 u w v () Adding equations (1) and () gives: u cos u cos w cos 64 u w 8 Substituting cos leads to u w u w u 7u Substitute w in equation (1): 7u cos v 8 7u v 15 u v 0.065u Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 9

10 7 b continued So the speed of S is given by u sin u sin sin sin tan u u v 0.065u So 85.5 Therefore S has velocity 0.795u m s 1 at 85.5 to the line of centres. T has velocity u m s 1 along the line of centres. Pearson Education Ltd 018. Copying permitted for purchasing institution only. This material is not copyright free. 10

Elastic collisions in two dimensions 5A

Elastic collisions in two dimensions 5A Elastic collisions in two dimensions 5A 1 a e= 1 3, tanα = 3 4 cosα = 4 5 and sinα = 3 5 (from Pythagoras theorem) For motion parallel to the wall: 4 vcosβ = ucosα vcos β = u (1) 5 For motion perpendicular

More information

Elastic strings and springs Mixed exercise 3

Elastic strings and springs Mixed exercise 3 Elastic strings and springs Mixed exercise ( )T cosθ mg By Hooke s law 5mgx T 6a a sinθ a + x () () () a 4 5mg Ifcos θ, T from () 5 8 5mg 5mgx so, from () 8 6a a x 4 If cos θ, then sinθ 5 5 a sinθ from

More information

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes Q Scheme Marks AOs Pearson 1a States or uses I = F t M1 1.2 TBC I = 5 0.4 = 2 N s Answer must include units. 1b 1c Starts with F = m a and v = u + at Substitutes to get Ft = m(v u) Cue ball begins at rest

More information

Mixed Exercise 5. For motion parallel to the wall: For motion perpendicular to the wall:

Mixed Exercise 5. For motion parallel to the wall: For motion perpendicular to the wall: Mixed Exercise 5 For motion parallel to the wall: 4u cos β u cos45 5 4u u cos β () 5 For motion perpendicular to the wall: 4u sin β eu sin45 5 4u eu sin β () 5 Squaring and adding equations () and () gives:

More information

Elastic collisions in one dimension 4D

Elastic collisions in one dimension 4D Elastic collisions in one dimension 4D 1 a First collision (between A and B) 5+ 1 1= u+ v u+ v= 11 (1) 1 v u e= = 5 1 v u= () Subtracting equation () from equation (1) gives: 3u=9 u=3 Substituting into

More information

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b 1a States that a = 4. 6 + a = 0 may be seen. B1 1.1b 4th States that b = 5. 4 + 9 + b = 0 may be seen. B1 1.1b () Understand Newton s first law and the concept of equilibrium. 1b States that R = i 9j (N).

More information

Elastic collisions in two dimensions 5C

Elastic collisions in two dimensions 5C Elastic collisions in two dimensions 5C 1 No change in component of velocity perpendicular to line of centres. So component of velocity for A=6sin10 Since B is stationary before impact, it will be moving

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Mechanics M2 Advanced/Advanced Subsidiary Candidate Number Tuesday 24 January 2017 Morning Time: 1 hour

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

MEI Mechanics 2. A Model for Friction. Section 1: Friction

MEI Mechanics 2. A Model for Friction. Section 1: Friction Notes and Examples These notes contain subsections on model for friction Modelling with friction MEI Mechanics Model for Friction Section 1: Friction Look at the discussion point at the foot of page 1.

More information

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson.

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson. Exam Question 5: Work, Energy, Impacts and June 18, 016 In this section we will continue our foray into forces acting on objects and objects acting on each other. We will first discuss the notion of energy,

More information

TOPIC B: MOMENTUM EXAMPLES SPRING 2019

TOPIC B: MOMENTUM EXAMPLES SPRING 2019 TOPIC B: MOMENTUM EXAMPLES SPRING 2019 (Take g = 9.81 m s 2 ). Force-Momentum Q1. (Meriam and Kraige) Calculate the vertical acceleration of the 50 cylinder for each of the two cases illustrated. Neglect

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Mechanics M4 Advanced/Advanced Subsidiary Candidate Number Wednesday 15 June 2016 Morning Paper Reference Time: 1 hour 30 minutes

More information

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference 6 6 7 8 0 1 Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Thursday 31 May 2012 Morning Time: 1 hour 30 minutes Materials required

More information

CHAPTER 26 LINEAR MOMENTUM AND IMPULSE

CHAPTER 26 LINEAR MOMENTUM AND IMPULSE CHAPTER 26 LINEAR MOMENTUM AND IMPULSE EXERCISE 118, Page 265 1. Determine the momentum in a mass of 50 kg having a velocity of 5 m/s. Momentum = mass velocity = 50 kg 5 m/s = 250 kg m/s downwards 2. A

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

A-level FURTHER MATHEMATICS Paper 3 - Mechanics

A-level FURTHER MATHEMATICS Paper 3 - Mechanics SPECIMEN MATERIAL Please write clearly, in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level FURTHER MATHEMATICS Paper 3 - Mechanics Exam Date Morning Time

More information

Kinematics. Exam-style assessment

Kinematics. Exam-style assessment 1 Exam-style assessment Kinematics 1. golfer hits a ball from a point O on a horizontal surface. The initial velocity of the ball is 35 m s -1 at an angle of 40 to the horizontal. (a) Calculate the maximum

More information

University of Malta. Junior College

University of Malta. Junior College University of Malta Junior College Subject: Advanced Applied Mathematics Date: June Time: 9. -. End of Year Test Worked Solutions Question (a) W µ o 4W At Equilibrium: esolving vertically esolving horizontally

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

GCE Advanced Level 2014

GCE Advanced Level 2014 GCE Advanced Level 2014 Combined Mathematics I Model Paper 04 PART A (Answer all questions) Time 3 hrs 1. A cyclist rides along a straight path with uniform velocity u and passes a motor car, which is

More information

AQA Maths M2. Topic Questions from Papers. Energy, Work and Power. Answers

AQA Maths M2. Topic Questions from Papers. Energy, Work and Power. Answers AQA Maths M Topic Questions from Papers Energy, Work and Power Answers PhysicsAndMathsTutor.com 4(a) P (30 4) 4 590 W AG Finding force Correct answer from P Fv (b)(i) F 00 9.8sin5 + 30v Finding force.

More information

Find the value of λ. (Total 9 marks)

Find the value of λ. (Total 9 marks) 1. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O 3 on

More information

Mechanics M2 Advanced Subsidiary

Mechanics M2 Advanced Subsidiary Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced Subsidiary Tuesday 6 June 2006 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac or Green) Items

More information

Mechanics 2. Revision Notes

Mechanics 2. Revision Notes Mechanics 2 Revision Notes October 2016 2 M2 OCTOER 2016 SD Mechanics 2 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 7 Centre

More information

Exam-style practice: Paper 3, Section A: Statistics

Exam-style practice: Paper 3, Section A: Statistics Exam-style practice: Paper 3, Section A: Statistics a Use the cumulative binomial distribution tables, with n = 4 and p =.5. Then PX ( ) P( X ).5867 =.433 (4 s.f.). b In order for the normal approximation

More information

A Level Maths Notes: M2 Equations for Projectiles

A Level Maths Notes: M2 Equations for Projectiles A Level Maths Notes: M2 Equations for Projectiles A projectile is a body that falls freely under gravity ie the only force acting on it is gravity. In fact this is never strictly true, since there is always

More information

Elastic collisions in one dimension Mixed Exercise 4

Elastic collisions in one dimension Mixed Exercise 4 Elastic collisions in one dimension Mixed Exercise 1 u w A (m) B (m) A (m) B (m) Using conseration of linear momentum for the system ( ): mu m= mw u = w (1) 1 w e= = 3 u ( ) u+ = 3 w () Adding equations

More information

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference(s) 6678/01R Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Thursday 6 June 2013 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

CENTRE OF MASS (CoM)

CENTRE OF MASS (CoM) REVISION SHEET MECHANICS CENTRE OF MASS (CoM) The main ideas are AQA Edx MEI OCR Uniform bodies M M M M Composite bodies M M M M CoM when suspended M M M - Centre of Mass In much of the work that ou have

More information

Motion in a straight line

Motion in a straight line Exam-style assessment Motion in a straight line 1. The speed-time graph shown relates to a car travelling between two sets of traffic lights. The car accelerates from rest and reaches a speed of 0 ms -1

More information

Find the magnitude of F when t = 2. (9 marks)

Find the magnitude of F when t = 2. (9 marks) Condensed M2 Paper These questions are all taken from a Mechanics 2 exam paper, but any intermediate steps and diagrams have been removed, leaving enough information to answer the question, but none of

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE in Mechanics 4 (6680/01) Mark Scheme (Results) Summer 016 Pearson Edexcel GCE in Mechanics 4 (6680/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We

More information

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 260 Examination date: 10 November 2014

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 260 Examination date: 10 November 2014 Tutorial #: Circle correct course: PHYS P or PHYS P9 Name: Student #: BROCK UNIVERSITY Test 5: November 04 Number of pages: 5 + formula sheet Course: PHYS P/P9 Number of students: 0 Examination date: 0

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Elastic collisions in two dimensions 5B

Elastic collisions in two dimensions 5B Elastic collisions in two dimensions 5B a First collision: e=0.5 cos α = cos30 () sin α = 0.5 sin30 () Squaring and adding equations () and () gies: cos α+ sin α = 4cos 30 + sin 30 (cos α+ sin α)= 4 3

More information

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons M.D [] M.A [] M3.A [] M4.(a) ANY from Slow moving neutrons or low (kinetic) energy neutrons B (They are in) thermal equilibrium with the moderator / Are in thermal equilibrium with other material (at a

More information

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.

More information

D sn 1 (Total 1 mark) Q3. A ball of mass 2.0 kg, initially at rest, is acted on by a force F which varies with time t as shown by the graph.

D sn 1 (Total 1 mark) Q3. A ball of mass 2.0 kg, initially at rest, is acted on by a force F which varies with time t as shown by the graph. Drayton Manor High School Momentum, Impulse, Force-time Graphs Old Exam Questions Q1. Which one of the following is a possible unit of impulse? A Ns 1 B kg ms 1 C kg ms 2 D sn 1 (Total 1 mark) Q2. Which

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Constant acceleration, Mixed Exercise 9

Constant acceleration, Mixed Exercise 9 Constant acceleration, Mixed Exercise 9 a 45 000 45 km h = m s 3600 =.5 m s 3 min = 80 s b s= ( a+ bh ) = (60 + 80).5 = 5 a The distance from A to B is 5 m. b s= ( a+ bh ) 5 570 = (3 + 3 + T ) 5 ( T +

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

More information

L.41/42. Pre-Leaving Certificate Examination, Applied Mathematics. Marking Scheme. Ordinary Pg. 2. Higher Pg. 19.

L.41/42. Pre-Leaving Certificate Examination, Applied Mathematics. Marking Scheme. Ordinary Pg. 2. Higher Pg. 19. L.4/4 Pre-Leaving Certificate Examination, 04 Applied Mathematics Marking Scheme Ordinary Pg. Higher Pg. 9 Page of 44 exams Pre-Leaving Certificate Examination, 04 Applied Mathematics Ordinary Level Marking

More information

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS AP Physics Free Response Practice Momentum and Impulse ANSWERS 1976B. a Apply momentum conservation. p before = p after mv o = (m(v o /3 + (4m(v f v f = v o / 6 b KE f KE i = ½ mv o ½ m (v o / 3 = 4/9

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Momentum. Physics Momentum and Impulse Practice

Momentum. Physics Momentum and Impulse Practice Physics Momentum and Impulse Practice Momentum Momentum is the resistance of an object to giving up kinetic energy. Momentum is times. It is abbreviated with a p. The equation is p = m*v Solve the following

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy 1 of 31 Boardworks Ltd 2016 Potential and Kinetic Energy 2 of 31 Boardworks Ltd 2016 What is a system? 3 of 31 Boardworks Ltd 2016 A system is an object or a group of objects.

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2014. M32 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2014 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, 20 JUNE MORNING, 9.30 to 12.00 Six questions to be answered.

More information

Physics 53 Summer Exam I. Solutions

Physics 53 Summer Exam I. Solutions Exam I Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols for the quantities given, and standard constants such as g. In numerical questions

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Wednesday 18 May 2016 Morning

Wednesday 18 May 2016 Morning Oxford Cambridge and RSA Wednesday 18 May 2016 Morning A2 GCE MATHEMATICS 4729/01 Mechanics 2 QUESTION PAPER * 6 3 9 5 6 4 5 6 6 1 * Candidates answer on the Printed Answer Book. OCR supplied materials:

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Review of chapters 1-14 Note: I m taking for granted that you ll still know SI/cgs units, order-of-magnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Silver Level S2 Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Candidates

More information

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved:

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved: Name: M1 - Dynamics Date: Time: Total marks available: Total marks achieved: Questions Q1. A railway truck P, of mass m kg, is moving along a straight horizontal track with speed 15 ms 1. Truck P collides

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 00. M3 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, 5 JUNE MORNING, 9.30 to.00 Six questions to be answered.

More information

Physics 12 Final Exam Review Booklet # 1

Physics 12 Final Exam Review Booklet # 1 Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] Multiple choice questions [60 points] Answer all of the following questions. Read each question carefully. Fill the correct bubble on your scantron sheet. Each correct answer is worth 4 points. Each question

More information

2013 Applied Mathematics Mechanics. Advanced Higher. Finalised Marking Instructions

2013 Applied Mathematics Mechanics. Advanced Higher. Finalised Marking Instructions 0 Applied Mathematics Mechanics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 0 The information in this publication may be reproduced to support SQA qualifications only on

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Paper Reference. Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

Paper Reference. Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Centre No. Candidate No. Surname Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary Wednesday 21 May 2008 Afternoon Time: 1 hour 30 minutes Materials required for examination

More information

Kinetic and Potential Energy Old Exam Qs

Kinetic and Potential Energy Old Exam Qs Kinetic and Potential Energy Old Exam Qs Q. A firework rocket is fired vertically into the air and explodes at its highest point. What are the changes to the total kinetic energy of the rocket and the

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Mechanics M2 Advanced Subsidiary

Mechanics M2 Advanced Subsidiary Paper Reference(s) 6678 Edexcel GCE Mechanics M2 Advanced Subsidiary Wednesday 12 January 2005 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac or Green)

More information

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9 Test 3 solution Problem 1: Short Answer Questions / Multiple Choice a. > 1 b. > 4 c. > 9 d. > 8 e. > 9 Problem : Estimation Problem (a GOAL Approach student solution) While this is a good GOAL approach

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

*************************************************************************

************************************************************************* Your Name: TEST #2 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

www.onlineexamhelp.com www.onlineexamhelp.com *5840741268* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level FURTHER MATHEMATICS 9231/02 Paper 2 October/November

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

UNIVERSITY OF MALTA JUNIOR COLLEGE JUNE SUBJECT: ADVANCED APPLIED MATHEMATICS AAM J12 DATE: June 2012 TIME: 9.00 to 12.00

UNIVERSITY OF MALTA JUNIOR COLLEGE JUNE SUBJECT: ADVANCED APPLIED MATHEMATICS AAM J12 DATE: June 2012 TIME: 9.00 to 12.00 UNIVERSITY OF MALTA JUNIOR COLLEGE JUNE 2012 SUBJECT: ADVANCED APPLIED MATHEMATICS AAM J12 DATE: June 2012 TIME: 9.00 to 12.00 Attempt any 7 questions. Directions to candidates The marks carried by each

More information

OCR Physics Specification A - H156/H556

OCR Physics Specification A - H156/H556 OCR Physics Specification A - H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity

More information

paths 1, 2 and 3 respectively in the gravitational field of a point mass m,

paths 1, 2 and 3 respectively in the gravitational field of a point mass m, 58. particles of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a c is varying with time t as a c = k 2 rt 2 where k is a constant. The power delivered

More information

Class XI Exercise 6 Work, Energy And Power Physics

Class XI Exercise 6 Work, Energy And Power Physics Question 6.1: The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative: (a) work done by a man in lifting a bucket out

More information

Which row, A to D, in the table correctly shows the quantities conserved in an inelastic collision? mass momentum kinetic energy total energy

Which row, A to D, in the table correctly shows the quantities conserved in an inelastic collision? mass momentum kinetic energy total energy 1 Water of density 1000 kg m 3 flows out of a garden hose of cross-sectional area 7.2 10 4 m 2 at a rate of 2.0 10 4 m 3 per second. How much momentum is carried by the water leaving the hose per second?

More information

PHYS 131 MIDTERM October 31 st, 2008

PHYS 131 MIDTERM October 31 st, 2008 PHYS 131 MIDTERM October 31 st, 2008 The exam comprises two parts: 8 short-answer questions, and 4 problems. Calculators are allowed, as well as a formula sheet (one-side of an 8½ x 11 sheet) of your own

More information

Page 2. Example Example Example Jerk in a String Example Questions B... 39

Page 2. Example Example Example Jerk in a String Example Questions B... 39 Page 1 Dynamics Newton's Laws...3 Newton s First Law... 3 Example 1... 3 Newton s Second Law...4 Example 2... 5 Questions A... 6 Vertical Motion...7 Example 3... 7 Example 4... 9 Example 5...10 Example

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level Physics: Mechanics Newton s Laws, Momentum and Energy Answers The Mess that is NCEA Assessment Schedules. Level Physics: AS 97 replaced AS 9055. In 9055, from 003 to 0, there was an Evidence column

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

National Quali cations

National Quali cations National Quali cations AH017 X70/77/11 Mathematics of Mechanics MONDAY, 9 MAY 1:00 PM :00 PM Total marks 100 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

PH211 Chapter 10 Solutions

PH211 Chapter 10 Solutions PH Chapter 0 Solutions 0.. Model: We will use the particle model for the bullet (B) and the running student (S). Solve: For the bullet, K B = m v = B B (0.00 kg)(500 m/s) = 50 J For the running student,

More information

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics MECHANICS: Momentum and Collisions (Answers) Name: Total Marks: /30 Maths Made Easy Complete

More information

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR END-OF-YEAR EXAMINATION SUBJECT: PHYSICS DATE: JUNE 2010 LEVEL: INTERMEDIATE TIME: 09.00h to 12.00h Show ALL working Write units where appropriate

More information