CHAPTER 26 LINEAR MOMENTUM AND IMPULSE

Size: px
Start display at page:

Download "CHAPTER 26 LINEAR MOMENTUM AND IMPULSE"

Transcription

1 CHAPTER 26 LINEAR MOMENTUM AND IMPULSE EXERCISE 118, Page Determine the momentum in a mass of 50 kg having a velocity of 5 m/s. Momentum = mass velocity = 50 kg 5 m/s = 250 kg m/s downwards 2. A milling machine and its component have a combined mass of 400 kg. Determine the momentum of the table and component when the feed rate is 360 mm/min. Momentum = mass velocity = 400 kg m/s = 2.4 kg m/s downwards 3. The momentum of a body is 160 kg m/s when the velocity is 2.5 m/s. Determine the mass of the body. Momentum = mass velocity Hence, 160 = mass 2.5 from which, mass = 160 = 64 kg Calculate the momentum of a car of mass 750 kg moving at a constant velocity of 108 km/h. Momentum = mass velocity Mass = 750 kg and velocity = 108 km/h = m/s = 30 m/s. Hence, momentum = 750 kg 30 m/s = 22,500 kg m/s 5. A football of mass 200 g has a momentum of 5 kg m/s. What is the velocity of the ball in km/h. 312

2 Momentum = mass velocity Hence, 5 = 0.2 v from which, velocity, v = 5 = 25 m/s 0.2 = km/h = 90 km/h 6. A wagon of mass 8 t is moving at a speed of 5 m/s and collides with another wagon of mass 12 t, which is stationary. After impact, the wagons are coupled together. Determine the common velocity of the wagons after impact. Mass m 1 = 8 t = 8000 kg, m 2 = kg and velocity = 5 m/s, = 0. Total momentum before impact = m 1 = (8000 5) + ( ) = kg m/s Let the common velocity of the wagons after impact be v m/s Since total momentum before impact = total momentum after impact: = m 1 v v = v(m 1 ) = v(20000) Hence v = = 2 m/s i.e. the common velocity after impact is 2 m/s in the direction in which the 8 t wagon is initially travelling. 7. A car of mass 800 kg was stationary when hit head-on by a lorry of mass 2000 kg travelling at 15 m/s. Assuming no brakes are applied and the car and lorry move as one, determine the speed of the wreckage immediately after collision. Mass m 1 = 800 kg, m 2 = 2000 kg and velocity = 0, = 15 m/s 313

3 Total momentum before impact = m 1 = (800 0) + ( ) = kg m/s Let the common velocity of the wagons after impact be v m/s Since total momentum before impact = total momentum after impact: = m 1 v v = v(m 1 ) = v(2800) Hence v = = m/s 2800 i.e. the speed of the wreckage immediately after collision is m/s in the direction in which the lorry is initially travelling. 8. A body has a mass of 25 g and is moving with a velocity of 30 m/s. It collides with a second body which has a mass of 15 g and which is moving with a velocity of 20 m/s. Assuming that the bodies both have the same speed after impact, determine their common velocity (a) when the speeds have the same line of action and the same sense, and (b) when the speeds have the same line of action but are opposite in sense. Mass m 1 = 25 g = kg, m 2 = 15 g = kg, velocity = 30 m/s and = 20 m/s. (a) When the velocities have the same line of action and the same sense, both and are considered as positive values Total momentum before impact = m 1 = ( ) + ( ) = = 1.05 kg m/s Let the common velocity after impact be v m/s Total momentum before impact = total momentum after impact i.e = m 1 v v = v(m 1 ) 1.05 = v( ) 314

4 from which, common velocity, v = are initially travelling = m/s in the direction in which the bodies (b) When the velocities have the same line of action but are opposite in sense, one is considered as positive and the other negative. Taking the direction of mass m 1 as positive gives: velocity = +30 m/s and = - 20 m/s Total momentum before impact = m 1 = ( ) + ( ) = = kg m/s and since it is positive this indicates a momentum in the same direction as that of mass m 1. If the common velocity after impact is v m/s then from which, common velocity, v = initially travelling = v(m 1 ) = v(0.040) = m/s in the direction that the 25 g mass is 315

5 EXERCISE 119, Page The sliding member of a machine tool has a mass of 200 kg. Determine the change in momentum when the sliding speed is increased from 10 mm/s to 50 mm/s. Change of linear momentum = mass change of velocity Hence, change in momentum = 200 kg (50 10) 10 3 m/s = 8 kg m/s 2. A force of 48 N acts on a body of mass 8 kg for 0.25 s. Determine the change in velocity. Impulse = applied force time = change in linear momentum i.e. 48 N 0.25 s = mass change in velocity = 8 kg change in velocity from which, change in velocity = 48 N 0.25s 8kg = 1.5 m/s (since 1 N = 1 kg m/s 2 ) 3. The speed of a car of mass 800 kg is increased from 54 km/h to 63 km/h in 2 s. Determine the average force in the direction of motion necessary to produce the change in speed. Change of momentum = applied force time i.e. mass change of velocity = applied force time i.e. 800 kg m/s = applied force 2 s from which, applied force = 36. = 1000 N or 1kN 2 316

6 4. A 10 kg mass is dropped vertically on to a fixed horizontal plane and has an impact velocity of 15 m/s. The mass rebounds with a velocity of 5 m/s. If the contact time of mass and plane is s, calculate (a) the impulse, and (b) the average value of the impulsive force on the plane. (a) Impulse = change in momentum = m( - v 1 ) where = impact velocity = 15 m/s and v 1 = rebound velocity = - 5 m/s (v 1 is negative since it acts in the opposite direction to ) Thus, impulse = m( - v 1 ) = 10 kg ( ) m/s = = 200 kg m/s (b) Impulsive force = impulse 200kg m / s = 8000 N or 8 kn time 0.025s 5. The hammer of a pile driver of mass 1.2 t falls 1.4 m on to a pile. The blow takes place in 20 ms and the hammer does not rebound. Determine the average applied force exerted on the pile by the hammer. Initial velocity, u = 0, acceleration due to gravity, g = 9.81 m/s 2 and distance, s = 1.4 m. Using the equation of motion: v 2 = + 2gs gives: v 2 = (9.81)(1.4) from which, impact velocity, v = ( 2)( 9. 81)( 1. 4) = m/s Neglecting the small distance moved by the pile and hammer after impact, momentum lost by hammer = the change of momentum = mv = 1200 kg m/s Rate of change of momentum = changeof momentum changeof time = 3 = N Since the impulsive force is the rate of change of momentum, the average force exerted on the pile is kn 317

7 6. A tennis ball of mass 60 g is struck from rest with a racket. The contact time of ball on racket is 10 ms and the ball leaves the racket with a velocity of 25 m/s. Calculate (a) the impulse, and (b) the average force exerted by a racket on the ball. (a) Impulse = change of momentum = mv = (0.060 kg)(25 m/s) = 1.5 kg m/s impulse 1.5kg m / s (b) Impulsive force = 3 time = 150 N 7. In a press-tool operation, the tool is in contact with the work piece for 40 ms. If the average force exerted on the work piece is 90 kn, determine the change in momentum. Change in momentum = applied force time = N = 3600 kg m/s EXERCISE 120, Page 267 Answers found from within the text of the chapter, pages 262 to 267. EXERCISE 121, Page (d) 2. (b) 3. (f) 4. (c) 5. (a) 6. (c) 7. (a) 8. (g) 9. (f) 10. (f) 11. (b) 12. (e) 318

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Apply the principle of linear impulse and momentum

More information

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0.

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0. 1 (a) A solar-powered ion propulsion engine creates and accelerates xenon ions. The ions are ejected at a constant rate from the rear of a spacecraft, as shown in Fig. 2.1. The ions have a fixed mean speed

More information

Chapter 15 Kinematics of a Particle: Impulse and Momentum. Lecture Notes for Section 15-2~3

Chapter 15 Kinematics of a Particle: Impulse and Momentum. Lecture Notes for Section 15-2~3 Chapter 15 Kinematics of a Particle: Impulse and Momentum Lecture Notes for Section 15-2~3 PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES Today s

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Physics February 2, Hand-In 10.6 Energy Problems

Physics February 2, Hand-In 10.6 Energy Problems Physics February 2, 2018 Hand-In 10.6 Energy Problems Momentum and Impulse Momentum and Impulse Momentum A team is said to have Momentum if they are on a roll, or hard to stop. In Physics, momentum is

More information

Which car (A or B) experiences the greatest change in momentum? Explain.

Which car (A or B) experiences the greatest change in momentum? Explain. MOM B - Impulse and Change of Momentum Original Assignment Start with #3. Using the F t = m v Equation to Analyze Impulses and Momentum Changes: 3. Two cars of equal mass are traveling down Lake Avenue

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES Today s Objectives: Students will be able to: 1. Apply the principle of

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Created by T. Madas COLLISIONS. Created by T. Madas

Created by T. Madas COLLISIONS. Created by T. Madas COLLISIONS Question (**) Two particles A and B of respective masses 2 kg and M kg move on a smooth horizontal surface in the same direction along a straight line. The speeds of A and B are 4 ms and 2 ms,

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

TOPIC B: MOMENTUM EXAMPLES SPRING 2019

TOPIC B: MOMENTUM EXAMPLES SPRING 2019 TOPIC B: MOMENTUM EXAMPLES SPRING 2019 (Take g = 9.81 m s 2 ). Force-Momentum Q1. (Meriam and Kraige) Calculate the vertical acceleration of the 50 cylinder for each of the two cases illustrated. Neglect

More information

2015 AQA A Level Physics. Momentum and collisions

2015 AQA A Level Physics. Momentum and collisions 2015 AQA A Level Physics Momentum and collisions 9/22/2018 Momentum An object having mass and velocity has MOMENTUM. Momentum (symbol p ) is simply given by the formula: Momentum = Mass x Velocity (in

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. Particle P has mass m kg and particle Q has mass 3m kg. The particles are moving in opposite directions along a smooth horizontal plane when they collide directly. Immediately before the collision P

More information

Impulse. Two factors influence the amount by which an object s momentum changes.

Impulse. Two factors influence the amount by which an object s momentum changes. Impulse In order to change the momentum of an object, either its mass, its velocity, or both must change. If the mass remains unchanged, which is most often the case, then the velocity changes and acceleration

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM AND CONSERVATION OF LINEAR MOMENTUM FOR SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Apply the principle of linear impulse and momentum

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Momentum: Exercises. 1. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point

Momentum: Exercises. 1. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point Momentum: Exercises. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point (a) A. (b) B. (c) C. (d) D. (e) none of the above. 2. An object with mass

More information

Unit 8 Momentum, Impulse, & Collisions

Unit 8 Momentum, Impulse, & Collisions Unit 8 Momentum, Impulse, & Collisions Essential Fundamentals of Momentum, Impulse, & Collisions 1. Momentum is conserved in both elastic, and inelastic collisions. Early E. C.: / 1 Total HW Points Unit

More information

AP Homework 6.1. (4) A kg golf ball initially at rest is given a speed of 25.0 m/s when a club strikes. If the club and ball are

AP Homework 6.1. (4) A kg golf ball initially at rest is given a speed of 25.0 m/s when a club strikes. If the club and ball are AP Homework 6.1 Momentum & Impulse Name: Date: Class Period: (1) (a) What is the magnitude of the momentum of a 10,000 kg truck whose speed is 12.0 m/s? (b) What speed would a 2000 kg SUV have to attain

More information

A level Exam-style practice

A level Exam-style practice A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : 6.5 40 10v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy 1 1 6.5

More information

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta. Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

1. A tennis ball of mass 100 g is struck by a tennis racket. The velocity of the ball is changed as shown.

1. A tennis ball of mass 100 g is struck by a tennis racket. The velocity of the ball is changed as shown. NAME:... NEWTONS LAWS OF MOTION 1. A tennis ball of mass 100 g is struck by a tennis racket. The velocity of the ball is changed as shown. What is the magnitude of the change in momentum of the ball? [2m]

More information

9. Force and Laws of Motions

9. Force and Laws of Motions Intext Exercise 1 Question 1: Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-rupees coin and a one-rupee coin? Solution 1:

More information

D sn 1 (Total 1 mark) Q3. A ball of mass 2.0 kg, initially at rest, is acted on by a force F which varies with time t as shown by the graph.

D sn 1 (Total 1 mark) Q3. A ball of mass 2.0 kg, initially at rest, is acted on by a force F which varies with time t as shown by the graph. Drayton Manor High School Momentum, Impulse, Force-time Graphs Old Exam Questions Q1. Which one of the following is a possible unit of impulse? A Ns 1 B kg ms 1 C kg ms 2 D sn 1 (Total 1 mark) Q2. Which

More information

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum Table of Contents Momentum and Section 2 Conservation of Momentum Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities.

More information

Momentum and Impulse Test Practice

Momentum and Impulse Test Practice Momentum and Impulse Test Practice Q1 Determine whether the following statements are true or false. 1. Momentum is not equal to the mass of an object divided by its velocity. 2. The momentum of an object

More information

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. Name Physics! Review Problems Unit 8 1. A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. a) What is the initial momentum of the body? b) What is the final momentum

More information

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1

Dynamics Kinetics of a particle Section 4: TJW Force-mass-acceleration: Example 1 Section 4: TJW Force-mass-acceleration: Example 1 The beam and attached hoisting mechanism have a combined mass of 1200 kg with center of mass at G. If the inertial acceleration a of a point P on the hoisting

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

PROBLEM SOLUTION

PROBLEM SOLUTION PROLEM 13.119 35, Mg ocean liner has an initial velocity of 4 km/h. Neglecting the frictional resistance of the water, determine the time required to bring the liner to rest by using a single tugboat which

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Study Questions/Problems Week 6

Study Questions/Problems Week 6 Study Questions/Problems Week 6 Chapters 9 explores further elaborations on Newton s laws that lead to another conservation principle conservation of linear momentum. These problems will help you appreciate

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

UNIT 2G. Momentum & It s Conservation

UNIT 2G. Momentum & It s Conservation Name: Date:_ UNIT 2G Momentum & It s Conservation Momentum & Newton s 2 nd Law of Motion Newton s 2 nd Law states When an unbalanced force acts upon a body, it accelerates that body in the direction of

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 1 / 96 1 train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 2 / 96 2 bicyclist moves at a constant speed of 6 m/s. How long it will

More information

Physical Science (SCI101) Final Exam

Physical Science (SCI101) Final Exam Department of Mathematics and General Sciences Final Exam Second Semester, Term 132 Date: Wednesday 28/5/2014 Name: ID number: Section number or time: Instructor s name: Important instructions: 1. Examination

More information

horizontal motion? Assume that the positive direction is the direction the ball is traveling before it is hit by the opponent's racket.

horizontal motion? Assume that the positive direction is the direction the ball is traveling before it is hit by the opponent's racket. Ch 8 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch 8 Supplemental Due: 6:59pm on Wednesday, November 16, 2016 To understand how points are awarded, read the Grading

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

5.2 Conservation of Momentum in One Dimension

5.2 Conservation of Momentum in One Dimension 5. Conservation of Momentum in One Dimension Success in the sport of curling relies on momentum and impulse. A player must accelerate a curling stone to a precise velocity to collide with an opponent s

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

Outline. Collisions in 1- and 2-D. Energies from Binary Star Expt. Energy Plot. Energies with Linear Fit. Energy Plot

Outline. Collisions in 1- and 2-D. Energies from Binary Star Expt. Energy Plot. Energies with Linear Fit. Energy Plot Collisions in 1- and 2-D Momentum and Energy Conservation Physics 109, Class Period 9 Experiment Number 6 in the Physics 121 Lab Manual 16 October 2007 Outline Brief summary of Binary Star Experiment Description

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Momentum. Physics Momentum and Impulse Practice

Momentum. Physics Momentum and Impulse Practice Physics Momentum and Impulse Practice Momentum Momentum is the resistance of an object to giving up kinetic energy. Momentum is times. It is abbreviated with a p. The equation is p = m*v Solve the following

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Dynamics Notes Name 1 Equations of Motion Vectors and Scalars (Revision of National 5) It is possible to split up quantities in physics into two distinct

More information

Review Energy and Momentum a. a. b. b. c a. b. 4. c a. a. b. 6. b.

Review Energy and Momentum a. a. b. b. c a. b. 4. c a. a. b. 6. b. Review 6 Energy and Momentum 1. A player pushes a 250 g hockey puck over frictionless ice with a constant force, causing it to accelerate at 24 m/s 2 over a distance of 50 cm. a. Find the work done by

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Thinking about collisions (L8)

Thinking about collisions (L8) Thinking about collisions (L8) collisions can be very complicated two objects bang into each other and exert strong forces over short time intervals fortunately, even though we usually do not know the

More information

FORCE AND LAWS OF MOTION

FORCE AND LAWS OF MOTION 9 FORCE AND LAWS OF MOTION TEXTBOOK QUESTIONS AND THEIR ANSWERS Q. 1 Which of the following has more inertia : (a) A rubber ball and a stone of the same size? (b) A bicycle and a train? (c) A five rupees

More information

Questions on Momentum

Questions on Momentum Questions on Momentum 1. A model truck A of mass 1.2 kg is travelling due west with a speed of 0.90 m s 1. A second truck B of mass 4.0 kg is travelling due east towards A with a speed of 0.35 m s 1. Calculate

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Force Numerical questions

Force Numerical questions 1 Force Numerical questions Multiple choice questions Question 1: Why a goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal? a)keep the ball in hands firmly

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 23, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Chapter 10 Collision and Impulse

Chapter 10 Collision and Impulse Chapter 10 Collision and Impulse Momentum provides a new analysis technique. With fce analysis and wk-energy analysis, application of the appropriate analysis technique to the problems at the end of the

More information

Broughton High School of Wake County

Broughton High School of Wake County Name: Section: 1 Section 1: Which picture describes Newton s Laws of Motion? 5. Newton s Law 1. Newton s Law 2. Newton s Law 6. Newton s Law 3. Newton s Law 7. Newton s Law 4. Newton s Law 8. Newton s

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

P11 Dynamics 3 Momentum and Impulse Bundle.notebook November 05, 2013

P11 Dynamics 3 Momentum and Impulse Bundle.notebook November 05, 2013 Momentum 1 Momentum Momentum is a physics term that refers to the quantity of motion that an object has. Sometimes it is defined as "inertia in motion" or "mass in motion." The amount of momentum which

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity. AP Physics - Problem Drill 08: Momentum and Collisions No. 1 of 10 1. A car and motor bike are travelling down the road? Which of these is a correct statement? (A) The car will have a higher momentum.

More information

Momentum and Impulse Practice Multiple Choice

Momentum and Impulse Practice Multiple Choice Choose the alternative that best answers the question and record your answer on the Scantron sheet provided 1. A ball of putty is thrown at a wall and sticks to its surface. Which of the following quantities

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

Inertia, momentum 6.4

Inertia, momentum 6.4 6.1 6.2 6.3 Inertia, momentum 6.4 Momentum Impulse (Ft) (mv) = F t 6.5 6.6 6.7 6.8 6.9 -- Questions -- MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum Slide 1 / 40 Multiple Choice AP Physics 1 Momentum Slide 2 / 40 1 A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Physics 11. Unit 5 Momentum and Impulse

Physics 11. Unit 5 Momentum and Impulse Physics 11 Unit 5 Momentum and Impulse 1 1. Momentum It is always amazing to see karate experts chopping woods or blocks. They look so extraordinary and powerful! How could they do that? 2 Let s consider

More information