ENGI9496 Lecture Notes State-Space Equation Generation

Size: px
Start display at page:

Download "ENGI9496 Lecture Notes State-Space Equation Generation"

Transcription

1 ENGI9496 Lecture Notes State-Space Equation Generation. State Equations and Variables - Definitions The end goal of model formulation is to simulate a system s behaviour on a computer. A set of coherent mathematical equations must be written for the computer to solve. These equations are called state equations. The state equations are written in terms of state variables, defined as [A] minimum set of [variables] which contain enough information about a system's history to enable computation of its future behavior. The state variables must completely describe the effect of the past history of the system on its response in the future. are, ideally, independent (so that you can t express one as a combination of the others). are usually associated with energy storage elements, since energy stored in these elements at t = t o is transferred to other elements and affects future response. To predict future system response for time t t o, you need knowledge of inputs for time t t o initial values of a suitable set of state variables at time t = t o. Consider mass-spring system. How many state variables are required? What are they?

2 Numerical integration example, showing how to proceed when you can plug the current value of the state variables into the right-hand side, along with the value of the input, and calculate the derivatives of the state variables. This is Euler integration.

3 For greatest ease of computation, state equations should: be first order differential equations have left-hand side equal to the derivative of one of the state variables have right-hand side containing only state variables and input variables ideally be explicit (the state variable derivative appears only on the left-hand side) Given an nth-order system, with r input variables, the most general (non-linear) form of explicit state equations is (Karnopp et al. Eq n 5.0) x x x 3 φ φ φ 3 n n n r r x,x,,x ;u,u,,u x,x,,x ;u,u,,u x,x,,x ;u,u,,u r For linear systems, explicit state equations can be written in matrix-vector form: x Ax Bu where dim(a) = n x n, dim(b) = n x r. As you may have guessed, system order is the number of first-order state variables required. It can also be defined as the number of independent energy storage elements in a system. If you have an nth order system, then you can express the system dynamics as a single nth order differential equation in one unknown variable n first-order equations some combination of first and higher-order equations Go back to mechanical (or electrical) system example from Lecture handout. Write state equations in matrix-vector form.. Demonstrate that state variables are not unique. The following scans are the closest you ll ever find to a procedure for writing governing equations for electrical and mechanical systems, in a typical system dynamics textbook. From Close, Frederick and Newell: 3

4 Mechanical Electrical 4

5 . Implicit and Differential-Algebraic Equations Possible forms of the governing equations (state equations): A. Explicit Ordinary Differential Equations each equation expresses derivative of a state variable as an algebraic function of other state variables, inputs, and system parameters Sometimes additional state variables may be required beyond the typical variables associated with energy storage elements Equations will be of the form x f x, u, t which can be written in matrix-vector form as above, for linear systems. x is vector of state variables u is vector in inputs This is the easiest form for computer simulation, as any explicit integration scheme can be used (e.g., Euler, Vode-Adams, Runge-Kutta, Runge-Kutta Fehlberg in 0SIM). Given initial values of the state variables, along with inputs, then the state derivatives can be easily calculated. A numerical integration time step then gives new values of the state variables and the process is repeated. B. Differential-Algebraic Equations (DAE s) Caused by Algebraic Loops algebraic equations exist among variables, which show up in the governing equations the algebraic variables do not have associated differential equations theoretically, the algebraic variables can be substituted out symbolically to create ODE s, but this is sometimes impractical Equations will be of the form x f x, u, z, t z g x, u, z, t z is vector of algebraic variables The algebraic variables in the vector z are not governed by differential equations. Numerical integration is more difficult, and 0SIM s implicit integrators (BDF Method, Modified BDF Method) are required. Such integrators use a predictorcorrector scheme. Given initial values for x and u, the algebraic equations must be solved numerically (for example, with a Newton-Raphson routine). Values of z must be found that make the right and left-hand sides of the algebraic equations equal to within some tolerance. These values for z are then plugged into the differential equations to calculate the derivatives. 5

6 C. Implicit Equations Algebraic constraints among state variables (dependency among state variables) Energy storage element initial states cannot be specified independently May have state variable derivatives on left and right-hand sides of governing equations, and it may be hard to solve for the derivatives explicitly. Equations may be of the form x f x, x, u, t The state variable vector x may consist of independent states x i and dependent states x d which depend on x i. x = x i x d. Again, implicit integration schemes are required. Given x and u, state derivatives cannot be calculated from the right-hand side of the equations. Given the independent state variables x i, the dependent states x d must be calculated so that the left and righthand sides of the above equation are equal. Many software packages such as 0SIM can symbolically solve the algebraic loops or derivative causalities and create explicit equations for simple systems. Examples: A. Explicit Equations with Additional State Variables B. DAE s / Algebraic Loop 6

7 Example B. Cont d Eq ns -4 are DAE s:. Start with state variable values x, v, x. Solve algebraic equation for v 3. Compute 4. Integrate 5. Repeat To convert to ODE s (explicit), substitute Eq n 4 into Eq ns and 3. What if we substitute Eq n 3 into Eq ns and 4? This will result in implicit ODE s. 7

8 Example B Cont d Taking the implicit equations, could we just substitute Eq n 3A into A? No, because we would still be left with x, and would need an equation for. To make the implicit equations explicit, write in matrix-vector form and use matrix inversion. 8

9 C. Implicit Equations (Dependent States) 9

10 Example C Cont d 0

11

12

13

14

15

Part IB Numerical Analysis

Part IB Numerical Analysis Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Applied Math for Engineers

Applied Math for Engineers Applied Math for Engineers Ming Zhong Lecture 15 March 28, 2018 Ming Zhong (JHU) AMS Spring 2018 1 / 28 Recap Table of Contents 1 Recap 2 Numerical ODEs: Single Step Methods 3 Multistep Methods 4 Method

More information

ODE Runge-Kutta methods

ODE Runge-Kutta methods ODE Runge-Kutta methods The theory (very short excerpts from lectures) First-order initial value problem We want to approximate the solution Y(x) of a system of first-order ordinary differential equations

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

Numerical Methods for the Solution of Differential Equations

Numerical Methods for the Solution of Differential Equations Numerical Methods for the Solution of Differential Equations Markus Grasmair Vienna, winter term 2011 2012 Analytical Solutions of Ordinary Differential Equations 1. Find the general solution of the differential

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Solving Ordinary Differential equations

Solving Ordinary Differential equations Solving Ordinary Differential equations Taylor methods can be used to build explicit methods with higher order of convergence than Euler s method. The main difficult of these methods is the computation

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25. Logistics Week 12: Monday, Apr 18 HW 6 is due at 11:59 tonight. HW 7 is posted, and will be due in class on 4/25. The prelim is graded. An analysis and rubric are on CMS. Problem du jour For implicit methods

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester HIGHER ORDER METHODS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE

More information

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs Topics covered so far: Analogies between mechanical (translation and rotation), fluid, and electrical systems o Review of domain-specific

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) 1 Computer Simulations Why is computation becoming so important in physics? One reason is that most of our analytical tools such as differential calculus are best

More information

Multistep Methods for IVPs. t 0 < t < T

Multistep Methods for IVPs. t 0 < t < T Multistep Methods for IVPs We are still considering the IVP dy dt = f(t,y) t 0 < t < T y(t 0 ) = y 0 So far we have looked at Euler s method, which was a first order method and Runge Kutta (RK) methods

More information

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods Initial-Value Problems for ODEs Introduction to Linear Multistep Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Linear Multistep Methods I: Adams and BDF Methods

Linear Multistep Methods I: Adams and BDF Methods Linear Multistep Methods I: Adams and BDF Methods Varun Shankar January 1, 016 1 Introduction In our review of 5610 material, we have discussed polynomial interpolation and its application to generating

More information

Chapter 11 ORDINARY DIFFERENTIAL EQUATIONS

Chapter 11 ORDINARY DIFFERENTIAL EQUATIONS Chapter 11 ORDINARY DIFFERENTIAL EQUATIONS The general form of a first order differential equations is = f(x, y) with initial condition y(a) = y a We seek the solution y = y(x) for x > a This is shown

More information

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP): MATH 351 Fall 217 multistep methods http://www.phys.uconn.edu/ rozman/courses/m351_17f/ Last modified: November 28, 217 Recall that we are interested in the numerical solution of the initial value problem

More information

Efficient Simulation of Physical System Models Using Inlined Implicit Runge Kutta Algorithms

Efficient Simulation of Physical System Models Using Inlined Implicit Runge Kutta Algorithms Efficient Simulation of Physical System Models Using Inlined Implicit Runge Kutta Algorithms by Vicha Treeaporn A Thesis Submitted to the Faculty of the Department of Electrical and Computer Engineering

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 05 Ordinary Differential Equations (Refer Slide

More information

Modeling Basics: 4. Numerical ODE Solving In Excel 5. Solving ODEs in Mathematica

Modeling Basics: 4. Numerical ODE Solving In Excel 5. Solving ODEs in Mathematica Modeling Basics: 4. Numerical ODE Solving In Excel 5. Solving ODEs in Mathematica By Peter Woolf University of Michigan Michigan Chemical Process Dynamics and Controls Open Textbook version 1.0 Creative

More information

Solving Ordinary Differential Equations

Solving Ordinary Differential Equations Solving Ordinary Differential Equations Sanzheng Qiao Department of Computing and Software McMaster University March, 2014 Outline 1 Initial Value Problem Euler s Method Runge-Kutta Methods Multistep Methods

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Numerics Michael Bader SCCS Technical University of Munich Summer 018 Recall: Molecular Dynamics System of ODEs resulting force acting on a molecule: F i = j

More information

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods COSC 336 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods Fall 2005 Repetition from the last lecture (I) Initial value problems: dy = f ( t, y) dt y ( a) = y 0 a t b Goal:

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Euler s Method, cont d

Euler s Method, cont d Jim Lambers MAT 461/561 Spring Semester 009-10 Lecture 3 Notes These notes correspond to Sections 5. and 5.4 in the text. Euler s Method, cont d We conclude our discussion of Euler s method with an example

More information

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes Jim Lambers MAT 772 Fall Semester 21-11 Lecture 21 Notes These notes correspond to Sections 12.6, 12.7 and 12.8 in the text. Multistep Methods All of the numerical methods that we have developed for solving

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 1 Dianne P. O Leary c 2008 1 The

More information

A First Course on Kinetics and Reaction Engineering Supplemental Unit S5. Solving Initial Value Differential Equations

A First Course on Kinetics and Reaction Engineering Supplemental Unit S5. Solving Initial Value Differential Equations Supplemental Unit S5. Solving Initial Value Differential Equations Defining the Problem This supplemental unit describes how to solve a set of initial value ordinary differential equations (ODEs) numerically.

More information

A first order system of ordinary di erential equations is a set of equations of the form .. (24) x 1 (t 0 )=x 10 x 2 (t 0 )=x 20.

A first order system of ordinary di erential equations is a set of equations of the form .. (24) x 1 (t 0 )=x 10 x 2 (t 0 )=x 20. Lecture notes for Numerical Analysis 4 Systems of ODEs Topics: 1 Problem statement 2 Two motivating examples 3 Connection between systems and higher order equations 4 Numerical solutions 5 Phase plane

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-71309 email: anita.buie@gmail.com 1 . Chapter 8 Numerical Solution of

More information

Numerical Algorithms for ODEs/DAEs (Transient Analysis)

Numerical Algorithms for ODEs/DAEs (Transient Analysis) Numerical Algorithms for ODEs/DAEs (Transient Analysis) Slide 1 Solving Differential Equation Systems d q ( x(t)) + f (x(t)) + b(t) = 0 dt DAEs: many types of solutions useful DC steady state: state no

More information

Lecture 17: Ordinary Differential Equation II. First Order (continued)

Lecture 17: Ordinary Differential Equation II. First Order (continued) Lecture 17: Ordinary Differential Equation II. First Order (continued) 1. Key points Maple commands dsolve dsolve[interactive] dsolve(numeric) 2. Linear first order ODE: y' = q(x) - p(x) y In general,

More information

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE Rafael ÅMAN*, Heikki HANDROOS*, Pasi KORKEALAAKSO** and Asko ROUVINEN** * Laboratory

More information

Numerical Integration of Equations of Motion

Numerical Integration of Equations of Motion GraSMech course 2009-2010 Computer-aided analysis of rigid and flexible multibody systems Numerical Integration of Equations of Motion Prof. Olivier Verlinden (FPMs) Olivier.Verlinden@fpms.ac.be Prof.

More information

Functions as Infinitely Long Column Vectors

Functions as Infinitely Long Column Vectors Functions as Infinitely Long Column Vectors The Switch from Fixed Vectors to Functions Solutions to Differential Equations are Graphs Numerical analysis, Graphs and Fixed Vectors Trouble Storing Sampled

More information

Cyber-Physical Systems Modeling and Simulation of Continuous Systems

Cyber-Physical Systems Modeling and Simulation of Continuous Systems Cyber-Physical Systems Modeling and Simulation of Continuous Systems Matthias Althoff TU München 29. May 2015 Matthias Althoff Modeling and Simulation of Cont. Systems 29. May 2015 1 / 38 Ordinary Differential

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations We call Ordinary Differential Equation (ODE) of nth order in the variable x, a relation of the kind: where L is an operator. If it is a linear operator, we call the equation

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Numerical Methods for Engineers

Numerical Methods for Engineers Numerical Methods for Engineers SEVENTH EDITION Steven C Chopra Berger Chair in Computing and Engineering Tufts University Raymond P. Canal Professor Emeritus of Civil Engineering of Michiaan University

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations Initial value problems for ordinary differential equations Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 IVP

More information

Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs

Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs Chapter 9 Implicit Methods for Linear and Nonlinear Systems of ODEs In the previous chapter, we investigated stiffness in ODEs. Recall that an ODE is stiff if it exhibits behavior on widelyvarying timescales.

More information

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2.

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2. Chapter 5 Exercises From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/ rjl/fdmbook Exercise 5. (Uniqueness for

More information

Modeling & Simulation 2018 Lecture 12. Simulations

Modeling & Simulation 2018 Lecture 12. Simulations Modeling & Simulation 2018 Lecture 12. Simulations Claudio Altafini Automatic Control, ISY Linköping University, Sweden Summary of lecture 7-11 1 / 32 Models of complex systems physical interconnections,

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations AMSC/CMSC 660 Scientific Computing I Fall 2008 UNIT 5: Numerical Solution of Ordinary Differential Equations Part 1 Dianne P. O Leary c 2008 The Plan Initial value problems (ivps) for ordinary differential

More information

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 740 Chapter 16. Integration of Ordinary Differential Equations 16.7 Multistep, Multivalue, and Predictor-Corrector Methods The terms multistepand multivaluedescribe two different ways of implementing essentially

More information

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E. Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright 2015 Diane L. Peters, Ph.D., P.E. Spring 2015 2 Contents 1 Overview of Dynamic Modeling 5 2 Bond Graph Basics 7 2.1 Causality.............................

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Numerical Methods - Initial Value Problems for ODEs

Numerical Methods - Initial Value Problems for ODEs Numerical Methods - Initial Value Problems for ODEs Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Initial Value Problems for ODEs 2013 1 / 43 Outline 1 Initial Value

More information

REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING

REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING Generating state space equations from a bond graph with dependent storage elements using singular perturbation theory. Krister Edstrom Department of Electrical Engineering Linkoping University, S-58 83

More information

CHAPTER 10: Numerical Methods for DAEs

CHAPTER 10: Numerical Methods for DAEs CHAPTER 10: Numerical Methods for DAEs Numerical approaches for the solution of DAEs divide roughly into two classes: 1. direct discretization 2. reformulation (index reduction) plus discretization Direct

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Physics 299: Computational Physics II Project II

Physics 299: Computational Physics II Project II Physics 99: Computational Physics II Project II Due: Feb 01 Handed out: 6 Jan 01 This project begins with a description of the Runge-Kutta numerical integration method, and then describes a project to

More information

δ Substituting into the differential equation gives: x i+1 x i δ f(t i,x i ) (3)

δ Substituting into the differential equation gives: x i+1 x i δ f(t i,x i ) (3) Solving Differential Equations Numerically Differential equations are ubiquitous in Physics since the laws of nature often take on a simple form when expressed in terms of infinitesimal changes of the

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Differential Equations

Differential Equations Differential Equations Overview of differential equation! Initial value problem! Explicit numeric methods! Implicit numeric methods! Modular implementation Physics-based simulation An algorithm that

More information

ME451 Kinematics and Dynamics of Machine Systems

ME451 Kinematics and Dynamics of Machine Systems ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics Newmark Integration Formula [not in the textbook] December 9, 2014 Dan Negrut ME451, Fall 2014 University of Wisconsin-Madison

More information

130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE

130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE 130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE Chapter 4 Sequences and functions of a discrete variable 4.1 Introduction In some instances, one may prefer to think of functions where the

More information

An initialization subroutine for DAEs solvers: DAEIS

An initialization subroutine for DAEs solvers: DAEIS Computers and Chemical Engineering 25 (2001) 301 311 www.elsevier.com/locate/compchemeng An initialization subroutine for DAEs solvers: DAEIS B. Wu, R.E. White * Department of Chemical Engineering, Uniersity

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

Ordinary differential equations - Initial value problems

Ordinary differential equations - Initial value problems Education has produced a vast population able to read but unable to distinguish what is worth reading. G.M. TREVELYAN Chapter 6 Ordinary differential equations - Initial value problems In this chapter

More information

Virtual University of Pakistan

Virtual University of Pakistan Virtual University of Pakistan File Version v.0.0 Prepared For: Final Term Note: Use Table Of Content to view the Topics, In PDF(Portable Document Format) format, you can check Bookmarks menu Disclaimer:

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Computing DC operating points of non-linear circuits using homotopy methods

Computing DC operating points of non-linear circuits using homotopy methods ENSC 895: SPECIAL TOPICS: THEORY, ANALYSIS, AND SIMULATION OF NONLINEAR CIRCUITS Computing DC operating points of non-linear circuits using homotopy methods Spring 2004 Final Project Report Renju S. Narayanan

More information

Black-Box Testing Techniques III

Black-Box Testing Techniques III Black-Box Testing Techniques III Software Testing and Verification Lecture 6 Prepared by Stephen M. Thebaut, Ph.D. University of Florida Another Cause-Effect Example: Symbol Table Storage Specification

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine

Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine Jordan Spoooner July 16, 2015 What is a Physics Engine? Engine: Computer software that

More information

The Chemical Kinetics Time Step a detailed lecture. Andrew Conley ACOM Division

The Chemical Kinetics Time Step a detailed lecture. Andrew Conley ACOM Division The Chemical Kinetics Time Step a detailed lecture Andrew Conley ACOM Division Simulation Time Step Deep convection Shallow convection Stratiform tend (sedimentation, detrain, cloud fraction, microphysics)

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

ODEs. PHY 688: Numerical Methods for (Astro)Physics

ODEs. PHY 688: Numerical Methods for (Astro)Physics ODEs ODEs ODEs arise in many physics problems Classifications: As with the other topics, there are a large number of different methods Initial value problems Boundary value problems Eigenvalue problems

More information

MATH 345 Differential Equations

MATH 345 Differential Equations MATH 345 Differential Equations Spring 2018 Instructor: Time: Dr. Manuela Girotti; office: Weber 223C email: manuela.girotti@colostate.edu Mon-Tue-Wed-Fri 1:00pm-1:50pm Location: Engineering E 206 Office

More information

Numerical Methods. Scientists. Engineers

Numerical Methods. Scientists. Engineers Third Edition Numerical Methods for Scientists and Engineers K. Sankara Rao Numerical Methods for Scientists and Engineers Numerical Methods for Scientists and Engineers Third Edition K. SANKARA RAO Formerly,

More information

G6943y: Myths and Methods in Modeling (M&M s in M)

G6943y: Myths and Methods in Modeling (M&M s in M) 1 G6943y: Myths and Methods in Modeling (M&M s in M) Instructor Marc Spiegelman, (mspieg@ldeo.columbia.edu, xtn 8425 (LDEO), 212 854 4918 (DAPAM/Columbia)) Teaching Assistant TBA Dates and Times Spring

More information

Manifesto on Numerical Integration of Equations of Motion Using Matlab

Manifesto on Numerical Integration of Equations of Motion Using Matlab Manifesto on Numerical Integration of Equations of Motion Using Matlab C. Hall April 11, 2002 This handout is intended to help you understand numerical integration and to put it into practice using Matlab

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

Lecture 8: Calculus and Differential Equations

Lecture 8: Calculus and Differential Equations Lecture 8: Calculus and Differential Equations Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE201: Computer Applications. See Textbook Chapter 9. Numerical Methods MATLAB provides

More information

Lecture 8: Calculus and Differential Equations

Lecture 8: Calculus and Differential Equations Lecture 8: Calculus and Differential Equations Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE21: Computer Applications. See Textbook Chapter 9. Numerical Methods MATLAB provides

More information

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations International Mathematics and Mathematical Sciences Volume 212, Article ID 767328, 8 pages doi:1.1155/212/767328 Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics And Differential Equations 1 Dynamics Dynamics of a material point Ideal case, but often sufficient Dynamics of a solid Including rotation, torques 2 Position, Velocity, Acceleration

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

Lösning: Tenta Numerical Analysis för D, L. FMN011,

Lösning: Tenta Numerical Analysis för D, L. FMN011, Lösning: Tenta Numerical Analysis för D, L. FMN011, 090527 This exam starts at 8:00 and ends at 12:00. To get a passing grade for the course you need 35 points in this exam and an accumulated total (this

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

QUESTIONS FOR THE TESTS-ECI 146

QUESTIONS FOR THE TESTS-ECI 146 QUESTIONS FOR THE TESTS-ECI 46 IMPORTANT: Please note that the questions in the exams WILL BE DIFFERENT than these. (These questions are valid for the midterm and for the final exam) Remember: A) both

More information

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 04 Ordinary Differential Equations (Initial Value

More information

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Christopher P. Stone, Ph.D. Computational Science and Engineering, LLC Kyle Niemeyer, Ph.D. Oregon State University 2 Outline

More information

Three Body Problem using High-Order Runge-Kutta Interpolation

Three Body Problem using High-Order Runge-Kutta Interpolation Three Body Problem using High-Order Runge-Kutta Interpolation Lawrence Mulholland Contents 1 NAG Library Mark 26 Reverse Communication Runge-Kutta Routines 1 1.1 Reverse Communication.....................

More information

ODEs. PHY 688: Numerical Methods for (Astro)Physics

ODEs. PHY 688: Numerical Methods for (Astro)Physics ODEs ODEs ODEs arise in many physics problems Classifications: As with the other topics, there are a large number of different methods Initial value problems Boundary value problems Eigenvalue problems

More information

Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations

Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations Reading: Numerical Recipes, chapter on Integration of Ordinary Differential Equations (which is ch. 15, 16, or 17 depending on

More information

FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods David Levermore Department of Mathematics University of Maryland

FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods David Levermore Department of Mathematics University of Maryland FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods David Levermore Department of Mathematics University of Maryland 30 September 0 Because the presentation of this material

More information

I. Numerical Computing

I. Numerical Computing I. Numerical Computing A. Lectures 1-3: Foundations of Numerical Computing Lecture 1 Intro to numerical computing Understand difference and pros/cons of analytical versus numerical solutions Lecture 2

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 21

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 21 Spring 2015 Lecture 21 REVIEW Lecture 20: Time-Marching Methods and ODEs IVPs Time-Marching Methods and ODEs Initial Value Problems Euler s method Taylor Series Methods Error analysis: for two time-levels,

More information

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS EECE 552 Numerical Circuit Analysis Chapter Nine APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS I. Hajj Application to Electrical Circuits Method 1: Construct state equations = f(x, t) Method

More information